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Abstract

Intelligent tutoring systems (ITS’s) have a rich history
of helping students in certain scientific domains, like ge-
ometry, chemistry, and programming. These domains
are ideal for ITS’s, because they can be easily repre-
sented and because the type of interaction between the
student and the tutor can be limited to entering a few
simple numbers, symbols, or keywords. Students need
help in other areas, but without the ability to robustly
understand a student’s input, ITS’s in these areas are
inherently limited. Recently a technique called Latent
Semantic Analysis has offered a corpus-based approach
to understanding textual input which is not sensitive to
errors in spelling or grammar – in fact, it pays no atten-
tion to word order at all. We are using this technique as
part of an ITS system which promotes learning using
natural human-like dialogue between the human and
the student. This paper describes the tutoring system
and Latent Semantic Analysis, and how they operate
together. Then it describes our evaluation of LSA’s
performance by comparing its judgments with those of
human raters.

Introduction1

In the past, intelligent tutoring systems (ITS’s) have
been very successful in certain types of domains. The
LISP tutor helped students stay on the right track while
writing programs (Corbett & Anderson 1992). Alge-
bra and geometry tutors have been the basis for two
years’ high school math curriculum (Anderson et al.
1995). College students have learned physics from an
ITS (VanLehn et al. 1998). Another system helped
military personnel learn to troubleshoot faults in elec-
tronic equipment (Lesgold et al. 1992). While these
systems have performed very well, the types of inter-
action that they support have been largely limited to
pressing buttons or entering a few numbers or symbols.
Even systems which accept free-form inputs from stu-
dents have attempted to limit them as much as pos-
sible to single-word entries (Freedman et al. 1998).
This limitation in the types of interaction supported by
ITS’s unfortunately leads to a limitation in the range
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of domains which they can address, or the depth of
knowledge within those domains. Without significant
advances in the application of natural language under-
standing techniques, the use of an ITS in a domain like
history, for example, would be very difficult, and for
philosophy would be out of the question.

Metasurveys of human tutoring research have shown
that even untrained tutors, who account for the vast
majority of tutors, enhance learning by 0.4 to 2.3 stan-
dard deviation units over classroom teaching (Cohen,
Kulik, & Kulik 1982; Bloom 1984). Our group’s studies
have shed light on the types of dialogue that untrained
human tutors use in tutoring situations. They have also
shown that human tutors do not develop an in-depth
model of their students’ knowledge (Person et al. 1994;
Graesser & Person 1994). Rather they have an approx-
imate understanding of whether a student’s answer is
anywhere close to the answer they are expecting. We
are currently developing an ITS called AutoTutor which
serves as a testbed for research into ways of support-
ing smooth dialogue interaction for tutoring in differ-
ent types of domains. The key element for our ability
to accomplish this is the evaluation of the student’s re-
sponses using a corpus-based natural language process-
ing mechanism called Latent Semantic Analysis (LSA).
This mechanism uses a statistical technique as a basis
for its judgments of the meanings of the words and sen-
tences in a student’s responses. Because it does not rely
on syntax, AutoTutor is not affected by ungrammatical
or colloquial texts. And it exhibits graceful degrada-
tion, focussing on the parts of a text that it does know.

This paper describes at a high level how LSA makes
its judgments of text similarity. Then we present the
overall structure of AutoTutor. In the fourth section,
we give details of AutoTutor’s use of LSA and how the
student contributions are assessed. The fifth section
describes our tests of LSA in comparison to human rat-
ings.

LSA
LSA was originally developed as a method of informa-
tion retrieval: selecting from a large database of texts
the subset which matches a query (Deerwester et al.
1990). The simplest approaches to this task match



keywords from the query with words in the text and
select those texts with the highest number of keywords.
However these approaches are incapable of recognizing
synonyms or alternate senses of keywords. LSA was de-
veloped as an attempt to circumvent these limitations.
It uses a statistical technique called singular value de-
composition (SVD) to reduce a terms× documents co-
occurrence matrix to a set of three much smaller ma-
trices of rank K which describe a K-dimensional se-
mantic space. The first of these three resultant matri-
ces specifies the K-dimensional vector in this space for
each of the terms, the second gives the vectors for the
documents, and the third gives the relative importance
of each of the K dimensions. The sum of the vectors
for the terms in a document equals (when normalized)
the vector for the document. The product of the three
smaller matrices is an approximation to the original co-
occurrence matrix. Thus, SVD is a type of data com-
pression mechanism. The functional relevance of this is
that the reduced representation must generalize across
similar instances of words occurring in similar contexts
to best reproduce the original data. This results in a
representation where similar terms and similar docu-
ments have similar vectors in the K-dimensional space.
The distance between these vectors, viewed as the sim-
ilarity between the terms or documents, is easily mea-
sured by taking the cosine between them. Several other
researchers have shown that LSA can approach the per-
formance of humans in domains such as the TOEFL
synonym test (Landauer & Dumais 1997), grading col-
lege essays (Foltz, Kintsch, & Landauer 1998), and lex-
ical acquisition (Landauer & Dumais 1997). We claim
that LSA captures the latent semantic information in
the co-occurrence of similar words in similar contexts
in a corpus.

AutoTutor
Among ITS’s, AutoTutor is rather strange. The pri-
mary goal of the project is not to demonstrate impres-
sive learning gains in students (although we hope that
it will). Instead it is meant as a research tool for ex-
ploring the types of knowledge and processing that are
necessary to produce smooth dialogue interaction in a
tutoring environment.

The domain that we chose for AutoTutor was com-
puter literacy. There were several reasons for this
choice. On the practical side, it is a required course at
the University of Memphis, and several members of the
Tutoring Research Group had experience teaching the
class. More importantly, we chose this domain because
it is unlike the more scientific domains described ear-
lier. The computer literacy class does not focus on the
details of computer design and programming. Rather it
deals with the high-level issues involved in using com-
puters and the role of computers in society. Within
computer literacy, we chose a topics that would exhibit
a range of specificity: computer hardware, software,
and the internet.

The basic mode of operation for AutoTutor is very

much like that between a human tutor and a human stu-
dent. The participants interact through conversation.
Thus, the primary interface consists of a “talking head”
that produces the tutor’s speech with facial expressions
and gestures, and a window into which the student can
type her response (We will explore speech input in a
later phase of the project.) The flow of the tutoring
session is simple: the tutor chooses a topic, option-
ally presents textual and/or graphical information, and
asks a question – not a yes-or-no or single-word-answer
question, but a deep reasoning question intended to el-
licit explanatory reasoning from the student (Graesser,
Baggett, & Williams 1996). Such “how”, “what”, or
“why” questions prompt the student to construct the
types of causal explanations or logical justifications that
are required in less cut-and-dried domains. We use
these types of questions in our curriculum script:

Question answer A question with an expected an-
swer

Didactic content A question that is preceded by an
information delivery item

Picture question answer Like question-answer, but
includes a graphic

Problem solution A problem scenario for which the
student should find a solution

An example of an easy question-answer item from the
hardware portion of our computer literacy curriculum
script is:

What does the CPU do in the computer?

A moderately difficult didactic content question from
the software topic with its information delivery content
is:

Most of the time the operating system works be-
hind the scenes, taking care of business without the
knowledge or intervention of the user. But some-
times it is necessary for the user to communicate
directly with an operating system in order to help
run a program. How is the operating system used
when a person opens an application program?

This difficult picture question answer item from the
software topic is accompanied by an animation that
shows motion between computer components as the in-
formation delivery content is presented:

When the user turns on the computer, the oper-
ating system is booted into RAM. The operating
system provides services to application programs
that the user wants to run. For example, suppose
that the user wanted to use a word processing pro-
gram to create a document. How does the operat-
ing system interact with the word processing pro-
gram when the user wants to create a document?

Finally, here is a moderate problem solution item
from the internet area:



During the cold war, US military strategists were
concerned that an enemy attack would cripple the
US government’s ability to communicate. The De-
partment of Defense wanted a network that could
function even if some connections were destroyed.
Imagine that you are a computer engineer during
that time and have been asked to help build a small
experimental network. How will you design a net-
work that will still function even if some connec-
tions are destroyed by an enemy?

After the student hears the information delivery
(if it exists for this question), watches the anima-
tion (likewise), and hears AutoTutor ask the ques-
tion, she types in her response and pushes the return
key. Then the tutor evaluates the response with re-
spect to how well it covers the expected answer to
the question. Based on this evaluation, AutoTutor
picks its next dialogue move from a set of moves ob-
served in human tutoring sessions (Person et al. 1994;
Hume et al. 1996). Example dialogue moves are pumps
for more information, elaborations which trigger related
information, hints, and summaries. The dialogue moves
and the rules which produce them are described else-
where (Graesser et al. 1998; Wiemer-Hastings et al.
1998). When the topic has been sufficiently covered,
AutoTutor chooses a new question, and the procedure
is repeated. In short, the tutoring session resembles a
human-to-human tutoring session.

AutoTutor’s language analysis consists of segment-
ing the student’s response into speech acts (sentences,
initially), classifying them, and then evaluating them,
primarily with LSA, but also with other text evaluation
mechanisms. We focus on the LSA evaluations in this
paper, and describe them in the next section. The basic
knowledge representation structure for AutoTutor is a
curriculum script (Putnam 1987), a declarative struc-
ture which holds the questions that the tutor can ask in
the tutoring domain. As mentioned earlier, each ques-
tion is a deep reasoning or problem-solving question,
and an ideal answer to the question will cover many
different aspects of the topic. For each aspect, there is
a prototype good answer, and a set of associated dia-
logue moves. For each question, there is also a set of
bad aspects, or common misconceptions, and associated
dialogue moves. The next section describes how LSA
evaluates the similarity between a student answer and
these aspects. Based on these similarity judgments, Au-
toTutor makes its decision about what dialogue move
to use next.

AutoTutor takes a Vygotskyan zone-of-proximal-
development approach by focussing on the aspect of
the current topic which has the highest LSA rating that
is below an empirically determined threshold (more on
this below). Thus, AutoTutor steers the conversation
toward those aspects of the topic which don’t have a
high enough similarity to what the student has typed
in. If a student answer has a high similarity to one
of the bad aspects for the current question, AutoTutor

may choose a splice, as human tutors do, substitut-
ing the correct information for the erroneous answer.
When enough of the aspects of the current question
have achieved an LSA rating over the threshold, Auto-
Tutor chooses the next topic, using the difficulty ratings
in the curriculum script, and its assessment of the over-
all ability of the student.

Evaluation of student contributions
We trained LSA on a corpus of 2 computer literacy
textbooks and 10 articles or book chapters from each of
our three topic areas. As the textual units for training
LSA, we used the paragraphs of this corpus, because
paragraphs tend to hold a semantically unified, well-
encapsulated idea. We also included the items from
our curriculum script in the corpus. The resulting cor-
pus contained approximately 8100 documents, and 8400
terms that occurred in more than one document. We
chose 200 dimensions as the target dimensionality of
the SVD process, and a cosine threshold of 0.5. (Sub-
sequent analyses will empirically determine the optimal
number of dimensions and threshold to use.) When Au-
toTutor receives a student response to a question, LSA
derives the vector of each content-related speech act by
adding the vectors of the terms therein. Then it calcu-
lates the cosine between these vectors and the vectors
of the documents corresponding to the set of good and
bad aspects for the current question. If the cosine is
above the threshold, that particular aspect of the ques-
tion is counted as “covered”. If not, it is a candidate
for further discussion in the session.

This approach led to the definition of two measures
of the quality of a student contribution:

Completeness The percentage of the good aspects of
a question which achieved an above-threshold LSA
cosine with a student speech act. In other words,
this is the amount of the expected ideal answer that
has been covered in this tutoring session.

Compatibility The percentage of the speech acts of
a student contribution which achieved an above-
threshold LSA cosine with one of the good aspects.
This is the amount of the student’s response which
matches the expected answer.

In addition to allowing AutoTutor to determine what
dialogue move to employ next, these measures are used
to calculate an overall assessment of the student’s abil-
ity, and they were used in the comparison with human
ratings described in the next section.

Evaluation of LSA in AutoTutor
To evaluate the performance of LSA’s assessment of stu-
dent contributions, we presented eight of the questions
from each topic of the curriculum script to the students
in the computer literacy class. The questions were pre-
sented in a word processing document because the Au-
toTutor interface was not yet completed. To earn extra
credit for the class, each student was asked to provide



complete answers for twelve of the questions which were
randomly assigned. This data collection yielded ap-
proximately 30 answers per question. From this set,
we randomly selected eight answers for each of the 24
questions for our test set. For example, here are three
student answers for the internet question, “How is an
operating system like a communications coordinator?”

1. It controls the use of the hardware.

2. It communicates with the peripherals.

3. It coordinates processing of programs.

4. Makes it possible to run programs simultaneously by
switching back and forth between them.

5. It finds a program on disk or in memory and loads
into main memory.

Four human raters evaluated these answers. Two
raters were subject area experts: a graduate student
and a postdoc in computer science. The other two
raters were a graduate student and a professor in psy-
chology. They had intermediate level knowledge of the
domain; they had read all of the related information
from the computer literacy course and participated in
the development of AutoTutor. These raters were asked
to break down each of the student answers and each
of the curriculum script’s ideal answers for the ques-
tions into propositions, i.e. information that could stand
alone in a sentence. Then they were asked to compute
the compatibility measure by calculating the percentage
of the propositions in a student answer that matched
one of the propositions in the ideal answer. They calcu-
lated the completeness score by taking the percentage
of ideal answer propositions that were matched by a
student answer proposition.

Note that the raters did not use the good aspects of
the ideal answer mentioned above. At the time of this
rating exercise, the good aspects had not been added
to the curriculum script. They were added before the
LSA ratings were calculated, and this mechanism used
the number of good aspects as the denominator of its
completeness measure. Because there was very low cor-
relation between the number of propositions our raters
found in the ideal answers and the number of good as-
pects, there was a corresponding low correlation be-
tween the completeness measures of LSA and the hu-
man raters. The compatibility scores were based on the
same measure of LSA “matching” a student answer, and
so we report the correlations between the compatibility
scores here.

The correlation between average intermediate rater
score and the average expert rater score on the compat-
ibility measure was r = 0.76. The correlation between
the two expert raters was r = 0.78. The correlation
between the two intermediate raters was r = 0.52.

To demonstrate how LSA computes the compatibil-
ity score, we continue with the previous example. The
three good aspects for the question presented above are:

1. Some of the most complex tasks performed by a com-
puter involve communicating with screens, printers,
disk drives, and other peripheral devices

2. A computer’s operating system includes programs
that take care of the details of communication with
peripherals.

3. Communications with peripherals require memory re-
sources, therefore, to continuously run programs, re-
spond to the user’s commands, and operate periph-
erals all at the same time, the operating system must
coordinate all operations so that they all run effi-
ciently.

The cosines between the previously presented student
answer sentences and these good aspects are shown in
table 1. Because only one of the cosine values exceeded
the threshold of 0.5, the compatibility score for this stu-
dent answer was 0.2. This rating seems intuitively rea-
sonable; although the student answer covered a range
of aspects of the question, it was rather vague. Note
that this set of maximum cosines would lead AutoTu-
tor to focus on aspect 2, because it has the highest
sub-threshold value. AutoTutor would chose the cor-
responding elaboration, hint, or prompt to attempt to
get the student to say more about this aspect.

Table 1: Cosines between speech acts and ideal answer
aspects

Sentence Aspect1 Aspect2 Aspect3 Max

1 0.04 -0.01 -0.01 0.04
2 0.15 0.46 0.51 0.51
3 0.05 0.11 0.14 0.14
4 0.03 0.14 0.29 0.29
5 0.13 0.05 0.13 0.13

The correlation between the LSA compatibility scores
and the average human compatibility scores was r =
0.47, virtually equivalent to the correlation between the
human raters. For us, this is very good news. Most hu-
man tutors are not domain experts. They are classroom
peers, who know the material only slightly better than
their tutees (Cohen, Kulik, & Kulik 1982). Yet they
still produce significant learning gains. The first ver-
sion of AutoTutor simulates a normal, untrained tutor.
In the last phase of the project, we will focus on imple-
menting sophisticated tutoring strategies like modeling,
scaffolding, fading, and a socratic tutor.

Conclusions
ITS’s have a proven record of supporting learning in
certain scientific or engineering domains. They have
not been extended to more theoretical domains at least
in part because of the difficult of understanding stu-
dent responses to questions. We believe that LSA is a
mechanism that can robustly, and with relatively low
training costs, provide the needed assessments. With



this capability, AutoTutor can carry on an extended
conversation, fostering student construction of knowl-
edge and enabling richer evaluation of that knowledge.
We believe that this is a critical step in the evolution of
intelligent tutoring, a step that is necessary for increas-
ing the range of domains that ITS’s can handle.

In this work we have chosen computer literacy as the
tutoring domain on practical and theoretical grounds.
Our approach is not limited to this domain, however,
and future work on the project will stress the develop-
ment of tools for porting AutoTutor to other areas in
which “how”, “what”, and “why” questions are central.
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