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Abstract

Previous research has shown the inadequacy of models
for computing similarity that rely on any type of simple
combination of features. Human similarity judgments
are sensitive to the structure of the items being com-
pared. For visual stimuli, the spatial arrangement of
the items provides an obvious structure. For textual
stimuli, however, the structure of the items must be in-
ferred. Prior research on textual similarity has shown
the dominant effect of relational features. We extend
that research by looking at human judgments of the sim-
ilarity of sentence pairs within the framework set out by
Goldstone’s (1994) STAM model, which calculates corre-
spondences between objects and their features. We show
that although the simple SIAM-based model fails to ac-
count well for the human judgments, a modified version
which gives different weights to different semantic roles
provides a strong match with human ratings.

Introduction

The ability to assess the similarity of objects in the world
is fundamentally important to our survival. A variety of
theories have been proposed for modeling human similar-
ity judgments. Most of these theories involve comparing
the sets of features of the compared items to determine
the overlap between them. Many of the theories also ig-
nore the structure of the objects and the relationships
between the parts. Goldstone (Goldstone, 1994) showed
that such systems fail to account for human similarity
ratings of structured data. His SIAM system used a
(non-learning) connectionist architecture to create cor-
respondences between objects and their features in dif-
ferent scenes. Excitatory connections reinforced coher-
ent mappings between objects (e.g. ObjectA to ObjectC
and ObjectB to ObjectD). Inhibitory connections fought
against redundant or contradictory mappings. Likewise,
connections between the features of objects either sup-
ported or inhibited each other and the corresponding
object—object connections. STAM’s connectionist archi-
tecture allowed it to take into account the structure of
the scenes and the objects as well as the similarity of the
features.

While we are interested in comparison of texts, Gold-
stone examined similarity ratings of visual scenes. His
approach represented a scene as a spatially related set
of objects (for example, pairs of schematic butterflies).
Each object has a set of parts each of which has some
value. For example, one of Goldstone’s butterflies could
be represented as:

(objectl (head square)
(tail zig-zag)
(body-shading white)
(wing-shading checkered))

To map this approach to sentences, we broke the in-
puts into subject, verb, object, and indirect object parts.
Thus, a simple representation of the sentence “The dog
bit a man” as an object would be:

(objectl (verb "bit")
(subject "The dog")
(object "a man"))

Goldstone compared his approach to other models
which used simpler combinations of features in the
scenes, such as multidimensional scaling (Shepard, 1962)
and Tversky’s (1977) Contrast Model, and showed that
SIAM accounted better for human judgments which were
affected by the structure of the inputs. Bassok and
Medin (1997) showed that in some cases, humans will
make thematic inferences when rating the similarity of
contextually related sentence pairs. While the stimuli
that we use here are related, they are unlikely to be
viewed as thematically connected.

The analyses describe here use Latent Semantic Anal-
ysis (LSA) as a basic technique for computing the simi-
larity of texts. LSA was originally developed for the task
of information retrieval (Deerwester, Dumais, Furnas,
Landauer, & Harshman, 1990), but has recently been
shown to provide interesting correspondences with hu-
man language understanding on a variety of tasks (Lan-
dauer & Dumais, 1997; Foltz, 1996; Wiemer-Hastings,
Wiemer-Hastings, & Graesser, 1999, for example). LSA
often matches human similarity judgments well, but does
not do well on single-sentence comparisons (Wiemer-
Hastings & Zipitria, 2001). A likely culprit is its com-
plete ignorance of syntax. This paper describes our ap-
plication of Goldstone’s SIAM model to attempt to ac-
count for human similarity judgments on pairs of sen-
tences. We are interested in the extent to which simi-
larity between textual components affects overall simi-
larity judgments. More broadly, we want to explore the
processes by which we derive sentence meanings compo-
sitionally from the meanings of the words.

Human sentence similarity ratings

In support of our research on Intelligent Tutoring Sys-
tems, we have developed LSA spaces for the domains of



Computer Literacy and Psychological Research Meth-
ods. Previous research has shown that human raters
with expert domain knowledge achieved an inter-rater
correlation of up to r = 0.78 when rating sentence simi-
larities (Wiemer-Hastings et al., 1999) using real student
answers in Computer Literacy. Raters with intermediate
domain knowledge (the same level that many real-life tu-
tors have) had correlations of up to r = 0.52. LSA cosine
measures of sentence similarity correlated with the hu-
man judgments r = 0.48. Because the LSA representa-
tion ignores word order altogether, an obvious potential
direction for improvement is to add structural knowledge
to the technique. In the current experiment, we collected
human ratings of sentence similarities where the struc-
tural and semantic overlap between the sentences was
controlled. This section describes how these materials
were created, the ratings that were collected, and what
they suggest about the nature of similarity processes for
texts.

Materials

To measure the structural overlap of the test items, we
used Goldstone’s (1994) approach which measures the
Matches In Place (MIPs) and Matches Out of Place
(MOPs) between the compared scenes. The basic idea is
that when comparing scenes (or other complex, struc-
tured items), humans determine correspondences be-
tween objects and their component items. Their overall
similarity judgments are affected more by feature sim-
ilarities on corresponding components (MIPs) than on
non-corresponding components (MOPs). Goldstone’s re-
search confirmed this hypothesis and showed how other
models of similarity including multi-dimensional scaling
(Shepard, 1962) and the Contrast Model (Tversky, 1977)
failed to account for these effects.

Following Goldstone’s approach, we generated pairs of
items for comparison that had differing numbers of MIPs
and MOPs. Goldstone’s test items were schematic draw-
ings with features that either matched or did not. When
dealing with textual comparison items, we treat the main
phrases within a sentence (subject, verb, object, and
indirect object!) as features, and these can match to
some extent, based on the similarity of those phrases.
Thus, for a pair of sentences, MIPs measure the extent
to which corresponding component phrases are similar.
MOPs measure the extent to which non-corresponding
component phrases (e.g. the subject of one sentence and
the object of the other) are similar. We generated a test
set of 50 sentence pairs (25 from each domain) using the
following procedure.

Two sentence cores were created in both test domains.
The sentence cores started with simple sentences broken
down into subject, verb, object and (optionally) indirect
object parts. These original features were augmented
with additional noun phrases, verbs, and prepositional
phrases that had similar or related meanings. For ex-

"We use these terms to describe the semantic roles within
the sentence instead of more technical linguistic terms like
Agent and Patient because we are interested in semantic in-
formation that can be derived from syntax alone.

ample, some of the candidate subjects in one template
were: “the researcher,” “the experimenter,” and “a par-
ticipant.”

Next, 20 sentences were generated with each sentence
core using this process:

1. Randomly select a subject, verb, object, and option-
ally an indirect object from the feature candidates.
Also randomly choose if the sentence should be active
or passive. If it is passive, randomly choose whether
or not the subject should be dropped.

2. Set nMOPs (the number of MOPs) to a random num-
ber from 0 to 3. Set nMIPs to a random number
between 0 and (4 - nMOPs).

3. Generate the second sentence as follows:

(a) To make a MIP, choose any one of the values from
the same slot in the same item.

(b) To make a MOP, choose one of the values in the
source slot, and put it in another slot in the second
sentence (while maintaining syntactic coherence).

(¢) For the rest of the unfilled slots in the second sen-
tence, choose some value from the corresponding
slot of the other item in that topic. Presumably they
will not match significantly, although they may to
some extent.

4. Filter out the sentences that are obviously really un-
interpretable (due to major violations of selectional
constraints, for example).

5. Generate two booklets with 25 items chosen randomly
from each topic. The order of the sentences was ran-
domized, and the items were the same in the second
booklet, but the order of the topics was switched and
the order of the items within each topic was random-
ized.

One example sentence pair from Computer Literacy
was:

Bits can be written.
Random access devices can be written.

These items are both passive and have their subjects
dropped, and they have a MIP on the verb phrase.
Although some of the resulting sentences were quite
sensible (e.g. “The CPU writes information to the pe-
ripherals.”), it must be noted that others were a bit
bizarre, e.g. “Causality retains causality,” and “Corre-
lation is caused.” Some participants also reported diffi-
culty with trying to compare the meanings of the sen-
tences because they couldn’t figure out what one or the
other or both meant. Nonetheless, the similarity ratings
showed some striking patterns, as described below.

Procedure

The participants were 14 Computer Science and Human-
Computer Interaction graduate students studying Cog-
nitive Science. The ratings task was given out during a



break in class and was completely voluntary. The partici-
pants rated each of the 50 sentence pairs on a Likert scale
from 1 (completely dissimilar) to 6 (completely similar).
The participants were instructed to rate the similarity of
the meanings of the sentence pairs, but were not given
further instruction on how to determine the similarity.

Results

The average of the 14 participants’ ratings were used as
the gold standard for comparison of the other measures.
There were no significant differences between the mean
ratings for the two topics (3.171 and 3.170) or between
the two booklets.

We calculated the Pearson’s correlation between each
participant’s ratings and the target (average) rating.
The range was r = 0.08 to r = 0.678, with a mean
of r = 0.463. This is slightly below the level of our
previous results where participants compared real-world
sentences collected in a tutoring task. The inter-rater
reliability here is also lower than for many similiarity-
rating tasks. The task of comparing sentence meanings
is a difficult one.

In Goldstone’s STAM model, the match between fea-
tures was boolean — no partial credit was given. (The
SIAM model includes a salience factor between each pair
of features which was set by default to 1. More about
this later.) To determine the effects of exact matches
on human similarity judgments, we analyzed the simi-
larity ratings for sentence pairs with exact MIPs?, and
performed a t-test to determine if there were differences.
The similarity scores for sentence pairs with verb MIPs
(z = 4.12) was significantly higher than for subject and
object MIPs (¢(100) = 2.71,p < 0.01,Z = 3.39 and
t(28) = 2.52,p < 0.01,Z = 3.29 respectively), but there
was no significant difference between subject MIPs and
object MIPs.

To look for interactive effects of exact MIPs and MOPs
on similarity ratings, we did an ANOVA where the de-
pendent variable was the average human rating, and
the independent variables were the number of exact
MIPs, the number of exact MOPs, and ActiveMatch,
defined as 1 if both sentences were active or passive,
and 0 otherwise. There was a main effect of exact MIPs
F(2,10) = 13.12,p < 0.001,7% = .40, but no other sig-
nificant effects.

To account for partial matches between phrases, we
used the LSA cosine metric.® For each sentence pair, we
computed the sum of the partial MIPs (XMIPs), and the
sum of the partial MOPs (XMOPs), and used a multiple
regression analysis to determine the effects of these on
the similarity ratings. XMIPs was a significant indicator
of the similarity ratings p < 0.005,3 = 0.436. XMOPs

2Although the materials were generated with a specific
manipulated target number of MIPs and MOPs, the random
combination of items allowed for different numbers of MIPs
and MOPs in the resulting sentence pairs.

3A number of other text similarity metrics are available,
for example, Resnik’s information theoretic measure which
uses WordNet as its underlying ontological basis (Resnik &
Diab, 2000). Analysis with other metrics is left for future
research.

was not a significant predictor of the similarity ratings.

We also computed the individual effects of MIPs and
MOPs for the different semantic slots, actor, object, di-
rect object, and indirect object with a multiple regres-
sion analysis. (This is analogous to the feature corre-
spondence aspect of STAM, but in Goldstone’s analyses,
the feature values were randomly interchanged, so there
was no differentiating effect of the features.) There were
significant effects of Verb MIPs (p < 0.005,5 = 0.433),
Object MIPs (p < 0.05,8 = 0.347), and indirect object
MIPs (p < 0.05,8 = 0.324). None of the other MIP
measures or the MOPs had a significant effect. Table 1
shows the [ weights and the significance level for all of
the MIP and MOP variables.

Table 1: MIP and MOP g weights.

Model 15} Sig.
VMIP 0.433 | 0.002
OMIP 0.347 | 0.016
IOMIP | 0.324 | 0.028
VMOP | 0.212 | 0.116
SMOP | 0.168 | 0.667
IOMOP | 0.047 | 0.773
SMIP -0.067 | 0.649
OMOP | -0.372 | 0.348

So far in this paper, we have been assuming that the
Place in Matches In Place and Matches Out of Place is
based on the semantic role of the phrase with respect
to the head verb in the sentence. This assumption im-
plies that the participants process the sentences enough
to reach some sort of deep-level representation of the
sentences which they use to make their similarity judg-
ments. As mentioned above, the similarity judgments
were not affected by the presence or lack of a match on
the active/passive dimension.

It could still be the case, however, that the partic-
ipants based their judgments on the surface syntactic
features of the sentences which were spatially presented
one over the other.* For example, the sentence pair,
<“ROM stores data.” “ROM is erased by the CPU” >
could be rated as more similar because the syntactic sub-
jects match, despite the fact that in the second sentence,
“ROM?” is the semantic object.

We calculated surface MIPs by measuring the LSA
match values between the corresponding surface syntac-
tic components of the sentences and did a regression
analysis as before. The only surface MIPs which were
significant indicators of the similarity rating were the
verb and indirect object variables. These two are not af-
fected by the passive — active transformation, and thus
their surface role is the same as their deep role.

4This analysis is also consistent with two other hypothe-
ses: the participants are affected by the order in which the
words are presented, or by the order of the phrases.



Discussion

As mentioned above, the overall agreement between par-
ticipants on the similarity ratings for these materials was
not especially high, indicating that this is quite a diffi-
cult task. Nevertheless, clear effects of structure were
evident in the ratings. MIPs were shown to be good
predictors of the similarity ratings. In particular, verb
MIPs had the strongest effect. This is consistent with
the large body of prior research on the effects of struc-
ture on similarity ratings which shows that similarity of
relational elements has a stronger influence than similar-
ity of objects (Falkenhainer, Forbus, & Gentner, 1989;
Medin, Goldstone, & Gentner, 1993; Forbus, Gentner, &
Law, 1995; Bassok & Medin, 1997, for example).

In contrast with Goldstone’s results, however, MOPs
were not predictive of the overall similarity ratings. It is
possible that this is primarily due to the difference in the
stimulus set. Goldstone’s schematic butterfly images im-
posed a spatial structure, but the features did not have
functional significance. For example, the raters would
probably not think that wavy-patterned wings would
help the butterflies fly better or worse than solid pat-
tern wings. When determining the similarity of texts,
human raters apparently tend to ignore similarities be-
tween segments with different functional roles.

An alternative hypothesis (offered by a partici-
pant/student) is that MOPs were viewed by participants
as dissimilarities between the sentences. In other words,
the participants may have been searching for positive
or negative evidence about similarity, and interpreted a
match on a different role as evidence that the sentences
had different meanings.

Another significant implication of these results is the
fact that similarity ratings are sensitive to the “deep
structure” semantic roles as opposed to the order of
phrases or the shallow syntactic structure of the sen-
tences. This limits the power of bag-of-words techniques
like LSA for comparing single-sentence items.

A more puzzling result is the lack of predictive power
of subject MIPs. One possible interpretation is that we
tend to focus on the predicative aspects of a sentence
rather than the object that the predicate applies to. In
previous research, we showed that averaging across sub-
ject, verb, and object similarities of sentence pairs led to
better similarity judgments than by just averaging sub-
ject and predicate (verb and object combined) segments
(Wiemer-Hastings & Zipitria, 2001). As we will explore
below, there may be an alternative explanation for this
difference.

STAM-LSA

We originally re-implemented the STAM model as a web-
based demonstration for a class in Cognitive Science
(written in Allegro Common Lisp and available by re-
quest). Our implementation follows the specifications of
the STAM model, and allows users to specify features
of the butterfly images and see the results of running
SIAM to compare them. This section describes how we
extended that model to work with textual stimuli, and
our evaluations of the model which we call STAM-LSA.

Implementation

SIAM-LSA is a fairly trivial extension of SIAM. As
mentioned above, the STAM model allowed real-valued
matches between features, but was primarily evaluated
using binary match values. We extended our SIAM im-
plementation to determine the match value between two
text segments by simply calculating the LSA cosine be-
tween the segments. Everything else in the computation
of the activations and overall similarity ratings was the
same as for the image stimuli. The conceptually chal-
lenging task was to map the objects, features and rela-
tionships of the original stimuli to the textual stimuli.

Our first thought was to treat sentences as objects
(analogous to Goldstone’s butterflies), with subject,
verb, object, and indirect object features, the values
of which were the associated text segments. This is a
straightforward mapping, but does not work well with
the SIAM approach for two reasons. First, each scene
has only one object, so there is no need for using the re-
lations and determining correspondences. Second, STAM
never compares values of different features. For example,
it would pay no attention to the fact that one butterfly’s
wings are checked and another’s body is checked.

Another approach is to treat sentences as scenes. The
verbs can be thought of as supplying relational informa-
tion, so they could map to the spatial relations that were
used in STAM. The subject, object, and indirect objects
were mapped to the STAM objects, each of which had
one feature that was the corresponding text segment.

The third approach was to treat the verb as an ob-
ject as well, but to use relationships between the verb
and the other phrases as the relational information in
STAM. Pilot testing on the model showed that this third
approach performed best (although not especially well)
in matching human similarity judgments, so that is the
model that we evaluate here. The mappings are summa-
rized in Table 2.

Table 2: SIAM to SIAM-LSA mappings.

SIAM STAM-LSA
Scene Sentence
Object Phrase
Feature/Dimension ~ Head (constant)
Value Text of phrase

(spatial) relationship  Slot-filler roles, e.g.

(subject-of <verb> <subj>)

Results

The overall similarity for STAM-LSA was calculated us-
ing the same formula as the STAM model: the normalized
ratio between the sum of the products of the match val-
ues and the activations of the nodes over the sum of the
activations of the nodes. For each of the sentence pairs,
we created the STAM network and ran the network for
20 cycles as in (Goldstone, 1994), recording the overall
similarity result after each cycle. The Pearson correla-
tion between SIAM-LSA and the average of the human



ratings was r = 0.327 after the first cycle (where there
is no effect whatsoever of spreading activation), and de-
creased gradually but monotonically to r = 0.273 after
20 cycles. Thus, not only did STAM-LSA fail to reliably
predict the human similarity rating, the interactions be-
tween the nodes which allow it to establish correspon-
dences actually made the similarity ratings worse with
respect to human ratings.

SIAM-LSA-3

As described above, our analyses of the human similarity
judgments showed that different features have different
effects. Specifically, the similarity of the sentences’ main
verbs plays a large role, followed by that of their objects.
Somewhat surprisingly, the similarities of the actors in
the sentences played almost no role in this experiment.

The STAM model allows for a Salience parameter be-
tween each two dimensions (or features). Ignoring the
normally unused term which allows a non-normalized
component, the formula for computing similarity in

SIAM is:

o, Matchvalue; A; S;
iy AiS;

where 7 ranges over the feature nodes and M atchvalue;
is 1 (by default) if the corresponding features match and
0 otherwise. The A; are the activation levels of the fea-
ture correspondence nodes. The activations are initially
set to 0.5 and are modified each cycle as they receive
excitation from coherent correspondence nodes and in-
hibition from conflicting correspondence nodes. The S;
parameters are defined as “S; = S;q, + Sip, Siq is the
salience of Scene A’s dimension 7, and S;; is the salience
of the other scene’s dimension i.” (Goldstone, 1994, p.
15) By default, the .S; are all set to 1.

STAM-LSA networks use only one feature, essentially
a dummy feature whose value is the text segment of the
semantic role. The functional semantic distinctions oc-
cur between the subject, verb, object and indirect object
roles, as we used in our analyses of MIPs and MOPs in
the human data. In the Siam-LSA-3 model, we assigned
values to the S; values based on the § values in the mul-
tiple regression for MIPs and MOPs as shown in Tablel.
For matching semantic roles (e.g. verb—verb), we use the
corresponding MIP 3 value. For non-matching roles, we
took the average of the two corresponding MOP [ val-
ues. For example, Syerp object = (Bvmop + Bomor)/2.°

SIAM-LSA-( results

As above we ran the network for 20 cycles, recorded the
overall similarity rating after each cycle, and compared it
the human ratings. The Pearson correlation after cycle
1 was r = 0.589, increased slightly to r = 0.591 after 3
cycles, and then decreased to r = 0.543 after the 20"

stmilarity =

"We also explored the transformation of the (non-
learning) SIAM model into a hybrid connectionist model
which would learn weights on connections from the feature
nodes to a single output node which would give the similar-
ity value. An analysis of this approach was left to future
research.

cycle. This correlation is higher than any other LSA-
based analysis on sentence pairs that we have seen, and
is 30% higher than the average inter-rater correlation.

Discussion

Somewhat surprisingly, the STAM-LSA model did not
produce a strong correlation with the human similarity
ratings on this task. As we will discuss in more detail
below, this may have been due to the relative lack of
structure in our textual stimuli. More surprising was
the subsequent strong performance of the SIAM-LSA-
£ model. On second thought, however, this might have
been expected, since the regression 3 weights give the lin-
ear contribution of each factor. On the other hand, Gold-
stone’s analyses showed that simple combinations of fea-
ture matches could not account for structure-dependent
aspects of human similarity judgments.

SIAM I am not

Because there was such a small difference between the
correlations between the STAM-LSA-S ratings through-
out the different cycles, we created two models which
use the STAM similarity metric without the connection-
ist part of the STAM model. The first, which we call the
Non-interactive MIP and MOP Model (NM?), is equiva-
lent to the STAM model on its first cycle. As mentioned
above, the A; start with the value of 0.5. Thus, they
cancel each other out, and can be dropped from the for-
mula. Using the default value of 1 for the S; allows us
to drop that from the formula as well, giving:

i, Matchvalue;
2l

or simply: similarity = average(M atchvalue;). For the
Matchvalue;, we use the LSA cosine metric.

The Non-interactive MIP and MOP Model with 3
weights (NM3(3) calculates salience (.S;) values based on
the 8 weights from the linear regression analysis of the
human rating data using the same method as STAM-
LSA-3.6

We also computed similarities with three simple LSA-
based models. The first (LSA) measured the cosine be-
tween the entire sentences. The second, SLSA, compared
the corresponding phrases separately with LSA, and av-
eraged the cosines as reported in (Wiemer-Hastings &
Zipitria, 2001). In other words, the SLSA similarity
value was the average of the subject—subject, verb—verb,
object-object, and (if applicable) indirect object — indi-
rect object LSA cosines for the two sentences. Finally,
the weighted LSA model (WLSA) used the same ap-
proach as SLSA, but multiplied each component cosine
by the corresponding MIP 3 weight above. The correla-
tions between these 5 models and the human ratings are
shown in Table 3.

stmilarity =

5The use of the regression weights in the SIAM-LSA-3 did
not reek too strongly of circularity because the weights were
fed into the network. Here, however, they are fed directly into
a linear weighting formula. Additional testing is required to
determine if these weights generalize to other texts.



Table 3: Non-interactive model correlations.

Human | NM33 | NM? | LSA | SLSA

Human 1.000

NM?3j3 0.592 | 1.000

NM?3 0.237 0.311 | 1.000

LSA 0.109 0.055 | 0.807 | 1.000
SLSA 0.445 0.692 | 0.467 | 0.209 | 1.000
WSLSA 0.408 0.624 | 0.422 | 0.179 | 0.825
Discussion

One moral of the modeling story here is that the inter-
active determination of the one-to-one correspondence
mapping which distinguishes STAM does not have much
of an effect here. Although SIAM-LSA calculates the
correspondences of MIPs and MOPs, it does not assign
different weights to MIPs and MOPs on different fea-
tures. When this is added to the model (albeit in an ad
hoc manner), the model’s ratings come much closer to
those of the human raters.

These findings extend significantly beyond the simple
SLSA model of averaging LSA matches between seman-
tic roles. First, human similarity ratings are strongly
affected by verb (relational) similarity and somewhat so
by object and indirect object similarity. The similarity
of the subjects has a non-significant effect. Second, as
indicated by the WLSA results above, MOPs also have
an effect. By including the MIP and MOP similarities,
the STAM-LSA-3 and NM?3 models match human judg-
ments relatively well.

Conclusions

In this research, we have examined how matches between
and within semantic roles affect human similarity judg-
ments for textual stimuli. We have replicated previous
research results that show the strong effect of relational
similarity on overall similarity judgments. We have also
found that different semantic roles affect these judgments
to different extents. Using a computational model that
gives differentiated sensitivity to structural matches and
calculates text segment similarity using LSA, we were
able to produce similarity judgments which correspond
well with human ratings.

The simplicity of the structural analysis that we have
used here will make it possible to use this technique for
natural language understanding in constrained tasks like
dialog-based intelligent tutoring systems. In such situ-
ations, the system has an expectation of what the stu-
dent might answer to a given question. An off-the-shelf
syntactic parser can segment a student’s response, and
then it can be compared to the expected answers us-
ing this technique. Because it is much easier to develop
than a traditional natural language understanding mech-
anism, this technique can facilitate the delivery of such
language-critical applications.
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