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Abstract

This paper describes a method for linear text seg-
mentation that is more accurate or at least as accu-
rate as state-of-the-art methods (Utiyama and Isa-
hara, 2001; Choi, 2000a). Inter-sentence similarity is
estimated by latent semantic analysis (LSA). Bound-
ary locations are discovered by divisive clustering.
Test results show LSA is a more accurate similar-
ity measure than the cosine metric (van Rijsbergen,
1979).

1 Introduction

The aim of linear text segmentation is to partition
a document into blocks, such that each segment is
coherent, and consecutive segments are about differ-
ent topics. This procedure is useful in information
retrieval (Hearst and Plaunt, 1993; Hearst, 1994;
Yaari, 1997; Reynar, 1999), summarisation (Rey-
nar, 1998), text understanding, anaphora resolution
(Kozima, 1993), language modelling (Morris and
Hirst, 1991; Beeferman et al., 1997) and text navi-
gation (Choi, 2000Db).

This paper presents a new algorithm for segment-
ing written text. The method builds on previous
work by Choi (2000a). The primary distinction is
the use of latent semantic analysis (LSA) in formu-
lating the similarity matrix. We discovered that (1)
LSA is a more accurate measure of similarity than
the cosine metric, (2) stemming does not always im-
prove segmentation accuracy and (3) ranking is cru-
cial to cosine but not LSA.

2 Background

A text segmentation algorithm has three main parts.
First, the input text is divided into elementary
blocks. Second, a similarity metric identifies blocks
that are about the same topic. Finally, topic bound-
aries are discovered by a clustering algorithm.

2.1 Elementary block

An elementary block is the smallest text seg-
ment that can describe an entire topic, e.g. sen-
tences (Ponte and Croft, 1997), paragraphs (Yaari,
1997) and arbitrary-sized segments (Hearst, 1994).
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Linguistic theories (Chafe, 1979; Longacre, 1979;
Kieras, 1982) and work in information retrieval
(Salton et al., 1993; Kaszkiel and Zobel, 1997) sug-
gest a coherent text segment is represented by para-
graphs. We argue that a paragraph can address
multiple topics and is motivated by content, writ-
ing style and presentation. Thus, a topic segment
is a collection of sentences. This view is supported
by previous work in text segmentation (Ponte and
Croft, 1997; Choi, 2000a).

2.2 Similarity metric

A similarity metric estimates the likelihood of two
segments describing the same topic. Existing meth-
ods fall into one of two categories. Lexical cohesion
methods stem from the work of Halliday and Hasan
(1976), in which a coherent topic segment is believed
to contain parts with similar vocabulary. Implemen-
tations of this use word stem repetition (Youmans,
1991; Reynar, 1994; Ponte and Croft, 1997), context
vectors (Hearst, 1994; Yaari, 1997; Kaufmann, 1999;
Eichmann et al., 1999; Choi, 2000a), entity repeti-
tion (Kan et al., 1998), thesaurus relations (Morris
and Hirst, 1991), spread activation over dictionary
(Kozima, 1993), word distance model (Beeferman
et al., 1997) and word frequency model (Reynar,
1999; Utiyama and Isahara, 2001) to detect cohe-
sion. These methods are typically applied in infor-
mation retrieval (Hearst, 1994; Reynar, 1998) to seg-
ment written text.

Multi-source methods use cue phrases, prosodic
features, ellipsis, anaphora, syntactic features, lan-
guage models and lexical cohesion metrics to detect
topic boundaries. Features are combined using deci-
sion trees (Miike et al., 1994; Kurohashi and Nagao,
1994; Litman and Passonneau, 1995), probabilistic
models (Hajime et al., 1998) and maximum entropy
models (Beeferman et al., 1997; Reynar, 1998). The
aim is to improve segmentation accuracy by combin-
ing multiple indicators of topic shift. These methods
are typically applied in topic detection and tracking
(Allan et al., 1998) to segment transcribed text and
broadcast news stories.



2.3 Clustering

Topic boundaries are discovered by merging consec-
utive elementary blocks that are about the same
topic. Existing algorithms used a sliding window
(Hearst, 1994), lexical chains (Morris, 1988; Kan et
al., 1998), dynamic programming (Ponte and Croft,
1997; Heinonen, 1998; Utiyama and Isahara, 2001),
agglomerative clustering (Yaari, 1997) and divisive
clustering (Reynar, 1994; Choi, 2000a) to determine
the optimal segmentation. The main difficulty in
clustering is automatic termination, i.e. determin-
ing the number of topic boundaries in a document.

3 A new method

The input to our algorithm is a list of tokenised sen-
tences S = {s1,.., Sn}. Content words are identified
by removing punctuation marks and stopwords from
S. A term frequency vector f; is then constructed
for each sentence i. f;; denotes the number of times
content word j occurs in s;.

3.1 Inter-sentence similarity in C99

The C99 algorithm (Choi, 2000a) uses the cosine
metric (van Rijsbergen, 1979) (eq. 1) to compute
a n x n similarity matrix M for S. M;; represent
the similarity between s; and s;. The assumption
is, two sentences with similar word usage are likely
to be about the same topic. This idea has two main
problems. First, the estimate is inaccurate for short
passages. Second, synonyms are considered negative
evidence, e.g. car € s; and automobile € s; implies
s; and s; are dissimilar.
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The first problem was addressed by replacing M;;
with its rank R;; (eq. 2, r defines the local context).
The idea is, the difference in magnitude is inaccu-
rate, thus one can only use the order as evidence
for segmentation. Lets consider X = {z1,22,23} =
{1,3,6} as the length of three objects. If X was
measured with an ordinary ruler, one can conclude
that x, is three times longer than x;. This is a quan-
titative analysis of X, i.e. the quantity is significant.
However, if the ruler was warped, but the order of
the markings is preserved, one can only conclude
that 1 < xo < x3. This is a qualitative analysis of
X, i.e. the order is significant but the relative value
has no meaning. This is a more robust interpreta-
tion of X.

Mz] = cos fz;f]

IVp,q € {—r,...,r} : Mi; > M|
: (2)
(2r +1)2

The second problem was addressed by applying
a stemming algorithm (Porter, 1980) to S, such

Rij =

that syntactically motivated inflections are placed
in an equivalent class. For example, cooking, cooked,
cooks, cooker are all instances of the class cook. Un-
like morphological analysers (Koskenniemi, 1983, for
example), a stemming algorithm does not identify
the morphemes. Its simply removes common affixes
from a word, e.g. combines, combine — combin, de-
part, department — depart. Thus, similar surface
forms are considered positive evidence in the sim-
ilarity estimate. We propose that latent semantic
analysis offers a better solution to the term match-
ing problem.

3.2 Latent semantic analysis

LSA (Deerwester et al., 1990) stems from work in in-
formation retrieval, where the main difficulty is for-
mulating a similarity metric that associates a user
query with the relevant documents in a database.
The basic keyword search approach retrieves all doc-
uments which contain some or all of the query terms.
This is inaccurate since the same concept may be
described using different terms. To circumvent this,
Jing and Croft (1994) developed an association the-
saurus for matching semantically related words.

Xu and Croft (1996) offered a train-able method
call local context analysis (LCA) which replaces
each query term with frequently co-occurring words.
Roughly speaking, LCA computes a word co-
occurrence matrix C for a training corpus. A thresh-
old is then applied such that large values in C are
replaced by 1 and other values become 0. Each row
C; can be considered as a feature vector for word 1.
The meaning of a text is approximated by the sum
of the word feature vectors. Similarity between two
texts is estimated by the distance between the cor-
responding feature vectors (Ponte and Croft, 1997,
for details).

LSA is a classification approach to query expan-
sion. The method is similar to LCA in that the
“meaning” of a word w is represented by its relation
to other words. The primary distinction is, LSA
applies principle component analysis to a word sim-
ilarity matrix to identify the best features for distin-
guishing dissimilar words. Like LCA, the meaning
of a text is computed as the sum of the word feature
vectors. Text similarity is measured by the cosine
of the corresponding feature vectors. Although LSA
is not necessarily the most effective similarity met-
ric for information retrieval, it remains of interest
since it has been shown to match human similarity
judgements on a wide range of tasks (Landauer and
Dumais, 1997; Wolfe et al., 1998; Wiemer-Hastings
et al., 1999, for example).

3.2.1 Training LSA

LSA is trained on a set of texts A = {d1,...,0m}
with vocabulary {w1,...,wp}. A n x m matrix A is
calculated, in which, A4;; is the number of times w;



occurs in 0;. The values are scaled according to a
general form of inverse document frequency,

m
|Vk S {1, ,m} A > 0|

Bij = Aij X

Singular value decomposition, or SVD (Golub and
van Loan, 1989) is then applied to yield B = USV?T,
where X7 denotes the transposed matrix of X. The
columns of U and V are the eigenvectors of BBT and
BT B, respectively. The diagonal values of ¥ are the
corresponding singular values, i.e. the non-negative
square roots of the eigenvalues of BBT. These are
sorted in descending order.

W = BBT is a word similarity matrix, where W;;
is the dot-product of rows B; and Bj, i.e. an es-
timate of the similarity between w; and w;. Lets
consider each column in W as a feature. The “mean-
ing” of w; is expressed in terms of its similarity to
{wy,..,w,}, i.e. row i of W is a feature vector for
w;. As a classification problem, the eigenvectors of
W are the principle axis for distinguishing the fea-
ture vectors. In another word, a n x k matrix Ay
which consists of the first k£ columns of U is the best
approximation of W in k—dimensional space. Ay is
referred to as the k—dimensional LSA space for A.
A (7) is the LSA feature vector for word w;, i.e. the
i—th row in Ay.

Applying SVD to W has three main benefits.
First, Ay is a concise representation of W. Thus,
storage and computational complexity of the simi-
larity metric is reduced. Second, words which occur
in similar contexts are represented by similar feature
vectors in Ag. Finally, noise in W are removed by
simply omitting the less salient dimensions in U.
3.2.2 Applying LSA
A sentence s; is represented by its term frequency
vector f;, where f;; is the frequency of term j in
s;. Given Ag, the “meaning” of s; is computed by
eq. 3. Informally, s; is represented by the sum of
the LSA feature vectors. Inter-sentence similarity is
estimated by the cosine of the corresponding A (eq.
4, \ii, is the k—th element in \;).

A=Y i x M) ®)
J
2o Aik X Aji
M;; = cos(Xi, Aj) = (4)
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3.2.3 LSA parameters

Since Aj is derived from the co-occurrence matrix
A, the size of each training text §; € A is crucial to
its performance. Work in information retrieval uses
0; = document since the aim is to distinguish entire
texts. §; = paragraph is popular in psychology exper-
iments. However, we suspect the segmentation task

may benefit from §; = sentence. Thus, two training
corpora were derived from the Brown Corpus (Mar-
cus et al., 1993). Annotations were first removed
to leave a set of tokenised raw text (1.2 million to-
kens). This was partitioned into 35,000 paragraphs
or 104,000 sentences, as two training corpora.

The parameter k adjusts the accuracy of Ag. A
large k implies minor differences in the feature space
are significant. Thus, they should be taken into ac-
count in the formulation of Ay. This is appropriate
when the vocabulary is small and there is sufficient
training data. A small k is used when A is sparse
and the values in A are inaccurate.

3.3 Image ranking

Once the similarity matrix M is calculated for the
input text S, the image ranking procedure in C99 is
then applied to obtain a rank matrix R. R;; is the
proportion of neighbours of M;; (11 x 11 grid) with
a lower value than M;;.

The motivation for applying image ranking in the
new algorithm is to test whether a quantitative or
qualitative interpretation of the similarity values has
any impact on segmentation accuracy. The hypoth-
esis is LSA similarity values are more accurate than
cosine similarity values. Thus, image ranking should
have a smaller impact on LSA than the cosine met-
ric.

3.4 Clustering

The input matrix X can either be the similarity ma-
trix M or the rank matrix R, depending on whether
ranking is applied to M. Topic boundaries are iden-
tified by the divisive clustering procedure in C99.
A topic segment tj is defined by its start and end
sentences, s; and s;, or its range t; = [i,j]. The
number of inter-sentence similarity values in tj is
a(ty) = |te|?. The sum of the values in #;, is B(t;) =

ity 2o jet, Xij- Thus, the average inter-sentence
similarity value for a segmentation T' = {t1,...,tn}
is defined as,

pr = 2221 IB(tk)
>k o(tk)

The divisive clustering algorithm begins by con-
sidering the entire input document S as a coherent
topic segment. This is partitioned into two segments
T = {t1,t2} at a sentence boundary that maximises
pr, i.e. the most prominent topic boundary. The re-
cursive procedure proceeds until S can no longer be
subdivided. The optimal segmentation is signalled
by a sharp change in pr. For implementation details
and optimisations, see (Choi, 2000a).

4 Evaluation

The following experiments aim to establish the re-
lationship between linguistic processes (stemming,



ranking, cosine metric, LSA) and segmentation error
rate. The test procedure is based on that presented
in (Choi, 2000a) which was derived from work in
TDT (Allan et al., 1998) and previous experiments
in text segmentation (Reynar, 1998, 71-73). The
task is to find the most prominent topic boundaries
in a concatenated text.

4.1 Experiment procedure

The accuracy of a segmentation algorithm is assessed
by the experiment package! described in (Choi,
2000a). A test sample is a concatenation of ten text
segments. Each segment is the first n sentences of a
randomly selected document from a subset? of the
Brown corpus (Marcus et al., 1993). Table 1 presents
the corpus statistics. A sample is characterised by
the range of n. T ; is a set of samples withi < n < j.
T is the union of the other four test sets.

T511 T35 Tes Toun T
Samples 400 100 100 100 | 700

Table 1: Test corpus statistics.

Segmentation accuracy is measured by the metric
proposed in (Beeferman et al., 1999). Let T, and
T}, be the reference segmentation and that proposed
by an automatic procedure. k is the average seg-
ment length in T,.. p(same|T,, k) and p(diff|T;, k)
refer to the likelihood of sentence s; and s;;j be-
longing to the same and different topic segment(s)
in Ty. p(same|T,,T,, diff, k) is the probability of a
miss, i.e. s; and s;yp are about different topics in
T} but they belong to the same topic segment in
T,. p(diff|T,,T,,same, k) is the probability of false
alarm, i.e. two sentences are about the same topic
in T, but they belong to different segments in T},.
Equation 5 combines these four measures to calcu-
late p(error|T;,Tp, k), the probability of segmenta-
tion errors. The error rate of an algorithm is com-
puted as the average of p(error|T;, Ty, k) for a test
set. A low error rate implies high segmentation ac-
curacy.

plerror|T,, Ty, k) =
p(same|T,, T, diff, k)p(diff| T}, k)+ (5)
p(diff|T}., T, same, k)p(same|Ty., k)

This test procedure is not perfect. First, assess-
ing the accuracy of an algorithm in an artificial
task is inferior to a test that uses human segmented
text. However, this approach does allow us to con-
duct a large-scale comparative study on similarity
metrics which focuses on text similarity rather than

lhttp://www.cs.man.ac.uk/~choif/software
Package name : C99-1.2-release.tgz
2News articles cax*.pos and informative text cj**.pos.

topic boundary detection. Second, the error metric
favours texts with short topic segments. Segmenta-
tion errors within a segment which is smaller than
k are not always detected correctly. Thus, an algo-
rithm is assessed using texts with different ranges
of segment length. Although the metric is not per-
fect, it is significantly more accurate than the popu-
lar precision/recall metric which ignores near misses.
Furthermore, the method is sufficiently accurate for
this comparative study.

4.2 Experiment 1 — Baseline

Five degenerate algorithms define the baseline for
the experiments. B, partitions a document into
e = 10 segments of equal length. B, does not
propose any boundaries. B, assumes all potential
boundaries are topic boundaries. Bj randomly se-
lects b = 10 boundaries. B- randomly selects any
number of boundaries as real boundaries. Details
about By and B- are described in (Choi, 2000a).

T511 T3 Tess Ty T
45% 38% 39% 36% | 42%
46% 47% 4T% 4% | 4%
54% 53% 53% 53% | 53%
46% 4% 4% 47% | 47%
54% 53% 53% 53% | 53%

(4

3

=3
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Table 2: Error rate: baseline algorithms.

Table 2 shows B, performed best with an average
error rate of 42%. This is the baseline for algorithms
that find the e most prominent topic boundaries. B~
serves as the baseline for methods that determines
the optimal segmentation, i.e. the number of topic
segments in a text.

4.3 Experiment 2 — An analysis of C99

The aim is to relate stemming, ranking and the ter-
mination procedure in C99 with segmentation ac-
curacy. The algorithm used in this experiment is
identical to that presented in (Choi, 2000a) except
tokens such as -- and - are recognised as punctua-
tion marks and removed during pre-processing. Test
results show this modification reduces error rate by
1%. An analysis of the original algorithm reveals
that non-word tokens introduce errors since they are
converted into a null string by the stemming algo-
rithm (Porter, 1980).

This implementation of C99 has three parameters.
+r implies ranking is applied to the similarity matrix
prior to divisive clustering. +s shows the stemming
algorithm is used in pre-processing. +b means the
algorithm finds the 10 most prominent topic bound-
aries, i.e. the automatic termination procedure is
inactive.

Test results (table 3) show ranking is crucial to
C99. There is a 10% difference between row 3 and 6



r s b |T311 T35 Tes Toa1 T
+ + + 12% 11% 9% 9% | 11%
+ + - 13% 1% 10% 10% | 12%
+ - + 13% 10% 10% 10% | 12%
+ - - 13% 18% 10% 12% | 13%
- 4+ 4+ 21% 18% 1% 18% | 20%
- -+ 23% 19% 21%  20% | 22%

Table 3: Error rate: variants of C99.

for T'. This confirms the cosine metric is inaccurate
for short text segments but the order between val-
ues, or rank, is significant. Future experiments will
establish the relationship between segment size and
accuracy.

Stemming is generally believed to improve seg-
mentation accuracy. This is confirmed by the ex-
periment results. However, we discovered that the
process can introduce errors when segmenting short
segments. There is a 0.7% difference between row 1
and 3 for T3,5.

Finally, the termination strategy in C99 is not ef-
fective for short topic segments. There is a 6.3% im-
provement between row 1 and 2 for T3 5. However,
its performance for larger segments is exceptional
(0.6% difference between row 1 and 2 for T').

4.4 Experiment 3 — Latent semantic
analysis

The aim is to establish the relationship between LSA
dimensionality, training data and accuracy. Our
new algorithm, CWM, was used in this experiment.
The method is identical to C99 except the stem-
ming algorithm has been disabled and LSA is used
in the formulation of the similarity matrix. Ten LSA
spaces were examined. Each space is characterised
by the training data and its dimensionality. s and p
imply the LSA space was trained on sentences and
paragraphs, respectively. [100,500] represent the
dimensionality of the trained space. For instance,
(p,400) is a 400-dimensional space that was trained
on paragraphs. Like C99, +r implies ranking is ap-
plied to the similarity matrix. +b means CWM finds
the ten most prominent boundaries.

Let p be the column average. Test results (table
4) show ranked LSA (column 4) has the lowest error
rate. The raw values (column 1 and 3) performed
well. The 1% difference in accuracy implies the ter-
mination strategy works well with LSA. However,
the same method is not applicable to the ranked
LSA values (See column 2).

The results in column 3 highlights the relation-
ship between LSA space and error rate. On aver-
age, a LSA space that was trained on paragraphs
(u(p) = 11.8%) out-performed one that was trained
on sentences (u(s) = 15.6%). This shows similar-
ity is well modelled by word co-occurrence in para-

r - + - +

b - - + +

s,100 | 16% 35% 15% 15%
5,200 | 17% 40% 15% 13%
5,300 | 17% 42% 16% 12%
5,400 | 18% 43% 16% 11%
5,500 | 18% 44% 16% 10%
p,100 | 12% 34% 11% 10%
p,200 | 13% 40% 11% 10%

p,300 | 13% 41% 12% 9%
p,400 | 14% 42% 12% 8%
p,500 | 14% 43% 13% &%
m 15% 40% 14% 11%

Table 4: Error rate: LSA parameters and CWM.

graphs. It also suggests that although sentences are
good for identifying words about the same topic,
paragraphs are better for finding dissimilar words.
Intuitively speaking, large feature vectors are ex-
pected to generate more accurate similarity values.
Thus, segmentation accuracy should improve with
dimensionality. The figures in column 3 show high
dimensionality increases error rate. However, the
figures in column 4 suggest the contrary. This im-
plies high dimensionality improves the ranking of
LSA values but is detrimental to value accuracy.

4.5 Experiment 4 — A comparative study

Ts11 T35 Tes Tonn T
CWMsoors | 9% 10% 7% 5% | 8%
U00 10% 9% ™% 5% | 9%
CWM(100,5) 12% 10% 9% 8% | 11%
ng(s,r,b) 12% 11% 9% 9% | 11%
U007 2% 9% 10% 11% | 11%
C99(s,r) 13% 17% 10% 10% | 12%
CWMesoosy | 14% 10% 11%  12% | 13%
C99» 23% 19% 21% 20% | 22%

Table 5: Error rate: a comparative study.

Table 5 presents a summary of experiment results.
All variants of CWM uses a LSA space that was
trained on paragraphs. CWDMsg0,,5) is the new
algorithm that uses Asgp for similarity estimates.
CWM500,6) is the same algorithm except ranking
has been disabled. CWM 19,5y uses A1oo. C99,,5)
is the same as CWM 10,5 and CWM500,5), except
stemming is applied during pre-processing and it
uses the cosine metric to measure similarity. U00
is the method proposed in (Utiyama and Isahara,
2001).

Test results show CWM(500,r,4) is more accurate
than previous algorithms. The two-fold increase in
accuracy between CWM(ip95) and C99(;) implies



LSA is a more accurate similarity measure than
the cosine metric. Finally, the difference between
CWMs00,r5) and CWDM(500,5) shows ranking im-
proves segmentation accuracy. The significance of
our results has been confirmed by both t-test and
KS-test (Press et al., 1992).

5 Conclusions

A series of experiments were conducted to estab-
lish the relationship between linguistic processes and
segmentation accuracy. C99 (Choi, 2000a) was used
as the test bench. In the first set of experiments, its
stemming algorithm, ranking procedure and auto-
matic termination method were systematically dis-
abled to determine the contribution of each process
to overall performance. We discovered that, first,
stemming generally improves accuracy unless the
topic segments are short (3 to 5 sentences). Second,
ranking plays a vital role in C99. It reduces error
rate by half (22% to 10%). Finally, the termina-
tion procedure in C99 is effective (0.6% difference).
The method works particularly well on long topic
segments (> 6 sentences).

The second set of experiments focused on LSA as
a similarity metric. The cosine metric in C99 was re-
placed by LSA. Ten different LSA spaces were exam-
ined. We discovered that LSA is twice as accurate as
the cosine metric. The results also showed vocabu-
lary difference between paragraphs is a good feature
for training a similarity metric. Further investiga-
tion into the relationship between ranking, LSA di-
mensionality and error rate revealed that LSA values
become less accurate as more dimensions are incor-
porated into the feature vectors. This implies the
training data is noisy. However, with ranking, error
rate decreases. This shows the order of LSA values
becomes more accurate when more features are used.

Future work will focus on document specific LSA
and the termination strategy of the new algorithm.
Test results have shown the termination procedure
in C99 works well on LSA similarity values but not
on the ranked values. We suspect the threshold se-
lection method has to be modified. In terms of clus-
tering, dynamic programming approaches (Ponte
and Croft, 1997; Utiyama and Isahara, 2001, for
example) will be examined. Finally, a LSA proce-
dure for computing document specific similarity val-
ues will be evaluated.
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