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Abstract

We present a computer-based model of acquisition of
word meaning from context. The model uses semantic
role assignments to search through a hierarchy of con-
ceptual information for an appropriate meaning for an
unknown word. The implementation of this approach
has led to many surprising similarities with work in
modelling human language acquisition. We describe the
learning task and the model, then present an empirical
test and discuss the relationships between this approach
and the work in psycholinguistics.

Introduction

This paper describes a computational model of acqui-
sition of lexical items from context. The learning task
is defined as follows: given a set of natural language
sentences in which a previously unknown lexical item
appears, infer the syntactic class and the meaning (or
meanings) of the word. We assume that the vast major-
ity of other words appearing in the set of sentences are
already known.

Our approach has been implemented as part of a
unification-based natural language processing system
called LINK [Lytinen, 1990]. LINK’s grammar rules are
quite similar in form to those used in PATR-II [Shieber,
1986]. We have incorporated semantic information into
LINK’s grammar, along the lines of HPSG [Pollard and
Sag, 1987]. The integration of syntactic and semantic
knowledge into the same grammar formalism is key to
our system’s ability to infer information about unknown
words.

We are using LINK in two prototype applications in-
volving relatively narrow domains (i.e. the necessary
domain knowledge can be described fairly completely),
but the textual input is entered by a large number of
users and is therefore subject to wide variations in the
terminology used. Our system is able to infer the mean-
ings of many unknown words in these applications. The
examples in this paper will be taken from one of these
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applications. The texts in this application describe se-
quences of actions to be performed on an assembly line.

In this paper, we will provide a sketch of our word-
learning approach. In particular, we will focus on the
acquisition of word meanings. The reader is referred to
[Lytinen and Roberts, 1989] for a more detailed discus-
sion of syntactic learning in LINK. We also present the
results of an empirical test, in which our approach was
used to learn the meanings of 22 undefined verbs from
a corpus of 100 inputs from one of our application do-
mains.

Our approach to the word-learning task was not de-
veloped with the modeling of human behavior in mind.
The constraints of the learning task, however, guided the
implementation to a state that closely resembles theoret-
ical and empirical linguistic explanations of language ac-
quisition in humans. We will discuss these relationships
after the presentation of the empirical test.

The Learning Task

The LINK parser is often able to infer the syntactic cate-
gory of an unknown word using grammatical constraints.
Knowledge of the syntactic category allows LINK to
make certain inferences about the semantic connections
between the unknown word and other constituents of the
sentence. This role-filling information is used in conjunc-
tion with a simple IS-A hierarchy in order to formulate
hypotheses about the meaning of an undefined word. All
of the semantic predicates defined in LINK’s knowledge
base are included in the hierarchy. Each concept defini-
tion includes a set of thematic roles or “slots” that can be
(optionally or obligatorily) attached to the concept, as
well as the type of concept which can fill each slot. The
set of restrictions on fillers of slots for a concept must
be at least as specific as the restrictions for its ances-
tors in the hierarchy (i.e. more general concepts). The
ordering on generality of slot-filler constraints as well as
other semantic information determines the structure of
the semantic hierarchy.

Figure 1 presents a portion of the IS-A hierarchy for
actions that is used in describing our assembly-line do-
main. Constraints on fillers of slots for actions are also
represented in this figure. Slot-filling constraints on a



concept are inherited from the concept’s ancestors in
the tree. For example, since GENERAL-FACTORY-
ACTION requires an OBJECT that is a *FACTORY-
OBJECT*, this restriction also implicitly holds for
actions like *GET* and *INSPECT*. *RECORD-
ACTION* is an example of a concept which makes
a further restriction on a previously constrained slot.
*RECORD*, the OBJECT of this action, must be a de-
scendant of *FACTORY-OBJECT*.

LINK’s concept hierarchy guides the process of learn-
ing word meanings. Initially, it is assumed that every
concept in the hierarchy is a candidate hypothesis for
the meaning of an unknown word. Example sentences
can provide two types of restrictions on the set of candi-
date hypotheses. First, the unknown word may appear
as the filler of a thematic role of another word, as in
Secure the flarge. Because flarge is assigned as the di-
rect object of secure, LINK’s grammar suggests that it
is the semantic OBJECT of *SECURE*. This condition
places an upper bound on the generality of the word’s
meaning: flarge must be an AUTO-PART or one of its
descendants in the hierarchy.

The second type of restriction that context may sug-
gest is a filler for a thematic role of the unknown word,
as in Flarge the door. In this case, LINK’s unification
grammar suggests that *DOOR* is the semantic OB-
JECT of flarge. Information about role-fillers of an un-
known concept place a lower bound on the specificity
of the concept: given that *DOOR* is the OBJECT,
flarge can refer to concepts like *GENERAL-FACTORY-
ACTION* and *ASSEMBLE*, but not to concepts like
*FASTEN*, *REFILL*, or *TAPE-ACTION* (or any
of its descendants) since a *DOOR* violates the restric-
tions that these concepts place on their OBJECTs.

Thus, two types of information are supplied by ex-
ample sentences: information which provides a lower
bound on the level in the hierarchy of the meaning of
an unknown word, and information which provides an
upper bound. This would suggest a least-commitment
approach to learning, such as Mitchell’s candidate-
elimination algorithm [Mitchell, 1977]. Mitchell’s algo-
rithm used version spaces to represent the set of candi-
date hypotheses, and slowly narrowed the version space
depending on the additional constraints provided by new
examples. Unfortunately, in our word-learning task, of-
ten it is the case that particular kinds of words only
appear in examples that provide one of the two types
of restrictions. Nouns, which usually refer to things, al-
most always appear as role-fillers of actions or states;
thus, examples only serve to limit the upper bound of
the candidate hypotheses. Verbs, on the other hand,
usually appear with role-fillers attached to them, and
not as role-fillers themselves, since they refer to actions
or states. Thus, examples only serve to place a lower
bound on their candidate hypotheses. Thus, since exam-

ples only provide one of the two kinds of restrictions for
many word classes, a least-commitment algorithm would
not converge on a single hypothesis for the meaning of
most unknown words.

Because of this, our algorithm is not a least-
commitment algorithm. For nouns, we assume the most
general candidate hypothesis is the correct one. Thus,
the hypothesis for Secure the flarge is that flarge means
*AUTO-PART*. In the case of verbs, the most spe-
cific candidate hypotheses are kept. From flarge the nut,
then, flarge is assumed to mean *FASTEN* (since this
concept requires a *NUT* as its OBJECT). A later ex-
ample like flarge the door would eliminate the hypothesis
*FASTEN*, since a *DOOR* cannot be its OBJECT.
This would result in a generalization procedure which
ascends the hierarchy and branches out until a concept
(or concepts) whose constraints are satisfied by this set of
slot-fillers (*DOOR* and *NUT*). The resulting set of
hypotheses would then be *INSTALL*, *POSITION*,
and *SECURE* since *DOOR* and *NUT* are both
*AUTO-PART*s.

Limitations of This Technique

Several artifacts of the learning mechanism limit the sort
of word definitions that can be learned. The first is the
assumption that the representation of the ontology is
complete, i.e. that every concept which is part of the
domain is a priori represented by some node in the se-
mantic hierarchy. This clearly limits the range of con-
cepts which can be learned.

In addition, this technique relies solely on one type
of information, the semantic constraints of role-fillers.
While this information is sufficient to differentiate be-
tween many of the word meanings, large classes of words
exist that require additional information to distinguish
the members of the class from one another.

As mentioned above, the learning algorithm can not
handle ambiguous words. In such cases, an apparent
contradiction is found between competing hypotheses,
and an over-general concept is then chosen. Some sort
of mechanism is needed to determine whether a more
general concept or a disjunctive mapping is justified in
specific situations.

Finally, the learning algorithm (as we have described it
so far) often does not converge on a single hypothesis for
the meaning of a word, especially in the case of verbs. To
see why this is true, consider again the example Flarge
the nut. Intuitively it seems that the best hypothesis
for the meaning of flarge is *FASTEN*, since only nuts
can be fastened, and *FASTEN* is the only action in
the hierarchy which can be done to only nuts. However,
many other hypotheses cannot be eliminated as possi-
bilities: flarge might mean *INSTALL*, since according
to our hierarchy nuts can be installed, too. Given the
hierarchy as it stands, no examples can be given which



Figure 1: A portion of the action concept hierarchy

will eliminate all other candidate hypotheses (assuming
flarge really does mean *FASTEN*), since nothing which
meets the restrictions on the slots of *FASTEN* will vi-
olate any of the restrictions on the slots of these other
candidates.

To remedy this problem, our algorithm ranks the list
of candidate hypotheses according to how tightly each
candidate’s constraints on slots match with the actual
slot fillers found in the examples. For the example flarge
the nut, *FASTEN* is the highest-ranked candidate hy-
pothesis for the meaning of flarge, since its restriction
on the OBJECT slot exactly matches the OBJECT of
flarge in the example sentence.

In addition, the final set of meaning hypotheses for an
unknown word is checked at the end of the parse to see if
all of the required slots for each hypothesis is present in
the parse. Thus for an example like flarge the door han-
dle, where *INSTALL*, *POSITION*, and *SECURE*
would be hypotheses based on the filler of the OBJECT
slot, *SECURE* would be eliminated from considera-
tion because its required instrument slot is missing in
the sentence.

The Empirical Test

To evaluate the effectiveness of our approach, an empiri-
cal test was conducted. In the test, a set of 100 example
inputs from one of our application corpora was chosen at

random. The test corpus consisted of short descriptions
of sequences of actions to be performed on an assembly
line. This corpus was chosen for the test because we had
already developed extensive sets of grammar rules and
lexical entries for it.

We were particularly interested in evaluating our al-
gorithm’s performance on learning verbs, since they pre-
sented the largest challenge. For the test, we removed
the definitions of all of the verbs that appeared in the
100 examples from LINK’s lexicon. There were 22 verbs
in this set of examples. We then ran the system on the
100 examples and inspected the definitions of the verbs
to see whether the system had inferred their meanings
correctly. Table 1 presents 2 typical verbs from the set
of examples as well as the sentences in which they ap-
peared.

A representative set of verbs along with their in-
ferred meanings is presented in table 2. In table 3, the
verbs are grouped according the quality of the result
achieved. The 17 verbs in group 1 (77% of the total set)
were learned to the maximum extent possible given the
amount of knowledge that exists in the system. For 7 of
these words, the correct meaning was the top-ranked hy-
pothesis. For the others, the correct meaning is included
among a set of hypotheses that are indistinguishable us-
ing only the role-filler constraints. For example, the ac-
tions *INSTALL* and *POSITION* are both defined



Table 1: Typical verbs and example sentences
secure Secure rr/dr hndl w/2 nuts

(secure right-rear door handle ...)
Secure hrns to rsb w/2 int clips
(Secure harness to right-side
bolster with 2 int-clips)

get Get inspection record
At bench, get manifest
Get lock cylinder kit
Get driver

as requiring an *AUTO-PART* for an object. Without
additional information, there is no way to distinguish be-
tween these concepts. Thus, both of the concepts remain
as hypotheses for the meanings of install and position at
the end of the test run. Verbs of this type are counted
as having been successfully learned in our test results.

Group 2 contains verbs that were ambiguous, i.e. that
referred to two or more nodes in the semantic hierarchy.
As stated above, the algorithm currently has no way of
successfully handling such words.

The verbs in group 3 were the victims of shortcom-
ings in the implementation. Allow always occurs with a
sentential object, e.g. Allow to load paper to printers.
This causes difficulty for the learning algorithm since it
can only handle one word at a time (notice that load
doesn’t show up in the results). The word preload was
only found in one sentence in this test set, so the hy-
pothesis was overly specific.

The results of this test suggest that a large portion
of the meaning of unknown words can be inferred auto-
matically using only very basic conceptual information
about the domain.

Table 2: Sample results of test run
Verb Ordered meaning hypotheses
check *ASIDE* *CHECK-OBJECT* *GET*

*INSPECT* *LOAD* *LUBRICATE*
*OPEN* *PLACE* *REMOVE*
*REPAIR* *RESTOCK* *ROUTE*
*TOSS*

crumple *BREAK* *CRUMPLE*
fasten *FASTEN*
install *INSTALL* *POSITION*
preload *SECURE*
reach *REACH*
uncoil *UNCOIL*

Related Computer Models

Similar efforts at using machine learning techniques
in lexical acquisition were reported in [Zernik, 1987].
Zernik described his approach as using a version space
technique to learn phrasal lexicon rules. However,
Zernik’s system receives feedback from a teacher in the

Table 3: Grouping of verbs in test results
Group 1 aside, break, crumple, fasten,

fold, get, install, position,
reach, remove, return, route,
secure, step, toss, uncoil, walk

Group 2 apply, check, place
Group 3 allow, preload

form of user-supplied “contexts” that explain what the
input means. It is not clear if Zernik’s approach can be
adapted to a situation in which feedback is not available.

Selfridge’s CHILD program [1986] used contextual in-
formation to provide constraints on definitions of unde-
fined words in much the same way as our system does
for nouns. However, CHILD learned from only one ex-
ample, and could not further refine meanings based on
subsequent examples.

Jacobs and Zernik [1988] describe the RINA system,
in which a task very similar to our word-learning task
is performed. RINA examines large corpora, extracting
many examples of a given unknown word. Although they
do not describe their algorithm in detail, it appears from
examples discussed in the paper that word meaning ac-
quisition in RINA is driven more heavily by discourse
context than in LINK.

Relationships to Developmental
Psycholinguistics

Although this model was developed solely to allow effi-
cient use of the limited information available to the nat-
ural language processing system, some of the challenges
we faced in the development of the system bear a striking
resemblance to issues brought up in the psycholinguistic
literature. This suggests that these challenges are not
unique to computational models but are inherent diffi-
culties in language learning in general. Some of these
issues are discussed below.

The No-Negative-Evidence Problem
When children learn language, they must induce the
structure of the language and the meanings of the words
relying almost entirely on examples of utterances which
are within the language. They don’t have the benefit
of negative evidence to help them in their learning task.
This lack of discriminating information makes the learn-
ing process computationally very complex, yet children
do learn language. The Subset Principle was described
in [Berwick, 1985] as one way that children could re-
duce the complexity of the learning task. This principle
suggests that children have a hierarchical mental repre-
sentation of languages ordered on the specificity of the
grammars. When learning syntax, children first hypoth-
esize the most specific grammar that accounts for the
input in order to avoid over-generalization.



We are faced with a similar problem in our model
of meaning acquisition. The lack of negative evidence
about word meanings as well as the nature of the role-
filler constraints provides a lower bound on the set of
hypotheses, but no upper bound. Thus we are forced to
choose the most specific hypotheses to be able to learn
from a training set consisting of only positive examples.

Bowerman [1983] presents a model of how children
deal with the no-negative-evidence problem in learning
verb meanings. She describes a method in which children
could use syntactic information to, in effect, subcatego-
rize verbs according to aspects of their meanings (e.g.
causation). Bowerman suggests that additional discrim-
inatory information such as this can be used as pseudo-
negative evidence in that children can make predictions
about word usage from syntactic clues. The violation
of their assumptions provides the negative evidence that
makes the learning process less computationally over-
whelming.

In our model, we try to find the most specific, falsifi-
able hypotheses. If a later example has a slot-filler that
violates our original hypothesis, we choose one that can
accommodate both the old and the new slot-fillers.

Syntactic and Semantic Bootstrapping
Gleitman [1990] detailed a mechanism called “syntactic
bootstrapping” that children might use to guide their
search for meanings of verbs through the space of pos-
sible meanings that could be inferred from the immedi-
ate context. She suggested that children as young as 17
months have strong capabilities for recognizing syntactic
distinctions and using them to constrain the meanings
of verbs they are learning. For example, children who
had no prior knowledge of the word flex were shown two
videos, one of Big Bird and the Cookie Monster cross-
ing and uncrossing their own arms, and another with
one of them crossing the arms of the other. When the
sentences Big Bird is flexing with the Cookie Monster
and Big Bird is flexing Cookie Monster were broadcast
through a speaker, the children showed a definite pref-
erence for the “syntactically congruent screen”, i.e. the
video that was showing the action that was being de-
scribed, even though they had no semantic knowledge
of the meaning of flex. Gleitman argued that without
such a constraining mechanism, the task of word learn-
ing would be computationally infeasible. But while her
approach relies solely on the syntactic structure of the
sentence to yield semantic clues, our approach combines
use of syntactic and semantic information (but no exter-
nal context) to generate hypotheses.

In Shatz’ [1987] description of a similar bootstrapping
mechanism, she gives an example of a 4-year-old who
said “I pricked my finger” after she had stuck herself
with a needle, and then asked, “What does prick mean?”
This suggests that children learning language can use
their limited knowledge of the context in which a word

is used to develop a partial hypothesis for the meaning
of that word, just as our system incrementally refines
inferred meanings over multiple examples.

Later Language Acquisition
Although our approach presents many similar proper-
ties to some aspects of children’s language acquisition,
it cannot be seriously considered a model of the learning
process of children because of the assumption that the
system’s domain knowledge is complete at the time of
word meaning acquisition. In this sense, the model is
more similar to human language acquisition that is done
later in life. Two examples of this are Genie and second
language learners.

As Curtiss explains [Curtiss, 1982], Genie, during her
developmental years, was deprived of all of the linguistic
input that children usually receive. She was also par-
tially deprived of information about the world. She still
had information about her own surroundings, however,
and presumably the maturation of her cognitive abilities
gave her a much more developed (though still quite lim-
ited) conceptual representation for the world than, say, a
2-year-old would have. But Genie didn’t know the words
that went with the concepts she knew. Because of this,
Genie’s task of learning language is very similar to the
one that our model is faced with. Unfortunately, Ge-
nie’s linguistic deprivation during her ”sensitive years”
appears to have rendered her syntactic ability perma-
nently limited. Although Genie has done quite well in
acquiring the meanings of words, there are still notice-
able deficits. In the face of this computer model and the
work on syntactic bootstrapping, it is easy to see why she
would have difficulties in learning. A large part of the
information that constrains the word-learning process is
unavailable to her.

The learning of a second language is another case
where a fully developed conceptual representation ex-
ists when word learning takes place. Unfortunately, the
second language acquisition literature tends to concen-
trate on teaching methods and problems, and not on
psychological or linguistic theories of the processes in-
volved. One example of the former that leans toward
the latter is Cornell’s description [1985] of the difficul-
ties of teaching second-language learners the meanings
of phrasal verbs (verb-particle pairs). He cites many
reasons for these difficulties, among them the subtle dif-
ferences between meanings for these verbs, and varying
syntactic constraints. Unfortunately, our model doesn’t
contain the answers to these problems either, since we’re
still trying to learn the gross differences in meanings of
words in our limited domain. Cornell does give us moti-
vation, however, stating, “Presumably what is needed is
a computer intelligent enough to scan a corpus and rec-
ognize phrasal groupings and assign meanings to them.”

As mentioned above, our model of language learning
was not developed for the purpose of simulating lan-



guage acquisition in humans. If the similarities found
between our model and the psycholinguistic models are
more than coincidence, however, then our model will pro-
vide a valuable testbed for the computational evaluation
of language theories.

Future Work

There are many ways in which our algorithm can be ex-
tended. First, the algorithm as it currently stands uses
only information about semantic dependencies that the
parser is able to identify between words in example sen-
tences. It should be able take advantage of other infor-
mation available from the examples, such as the syntac-
tic constructions used with an unknown word, additional
semantic contextual information, and so on. The use of
such additional information would enhance the similarity
between this approach and syntactic bootstrapping.

Second, the assumption that a word must map directly
to a unique concept in the hierarchy is not a realistic
one. Many words are ambiguous, and thus refer to two
or more nodes in the hierarchy. Even an unambiguous
word’s meaning may not correspond exactly to an al-
ready existing node in the hierarchy. In fact the mutual
exclusivity (contrast) assumption, described in [Mark-
man, 1991; Clark, 1989], suggests that children learning
word meanings are biased against two words having the
same meaning. Our system should be able to use a sim-
ilar bias by entertaining disjunctive hypotheses for word
meanings, and should also be able to consider “split-
ting” a node in the hierarchy (similar to the approach
in [Winston, 1975]), so that a word can refer to a new
subconcept. In addition, a mechanism could be added
to the system to check for words that refer to particular
concepts. If a concept already has a referent word, it can
be skipped when looking for a meaning for an unknown
word.

Finally, we will continue to examine the related is-
sues found in the psycholinguistic literature and explore
methods of incorporating these theoretical and experi-
mental results into our computational model. Hopefully
these relationships will allow us to make our model more
efficient and more relevant to human learning.
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