
ABSTRACT

AUTOMATIC ACQUISITION OF WORD MEANING FROM CONTEXT
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Peter Mark Hastings

Chair: Assistant Professor Steven Lytinen

This thesis presents an automatic, incremental lexical acquisition mechanism that
uses the context of example sentences to guide inference of the meanings of unknown words.
The goal of this line of research is to allow a Natural Language Processing (NLP) system to

cope with words that it does not know | not just to gloss over them, but to try to infer
what they mean. The environment within which this system operates is epitomized by the
information extraction task: from virtually unconstrained text, elicit certain information that
is deemed interesting. The knowledge acquisition bottleneck inherent in this task imposes

constraints on the type of knowledge available for lexical inference. The main objective in this
work is to infer as much information as possible about unknown words from context without
requiring special-purpose knowledge. This was accomplished by extending the underlying

NLP system to search its domain-speci�c concept representation for an appropriate concept
to denote the meaning of the unknown word. The learning method is incremental, so every
time the system encounters an example of an unfamiliar word, it adjusts its hypotheses. The
basic system evolved through several di�erent stages in order to improve its inferences. Then

several variations to the basic system were made to capture especially di�cult aspects of the
acquisition task and to take advantage of discourse context. The approach was tested in two
di�erent domains. Target words were removed from the lexica and sentences containing them
were processed by the system. The results were evaluated using measures taken from the �eld

of Information Retrieval.
When humans learn language, they are faced with a similar task: from a set of ex-

amples of a word's use, they must infer what that word means and how it is used. Not only

is the task similar, but many of the behaviors and di�culties that the computational acquisi-
tion mechanism have encountered have also been described in the psycholinguistic literature.
Although the system was not intended as a cognitive model, these parallels indicate strong con-
straints from the task itself, and therefore lend credence to viewing the system as a cognitive

model.
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Before my teacher came to me, I did not know that I am. I lived in a world that was a
no-world. I cannot hope to describe adequately that unconscious, yet conscious time of noth-
ingness. . . . Since I had no power of thought, I did not compare one mental state with another.

Helen Keller

The World I Live In

Century Company, New York, New York (1908), pages 113, 116.

One might learn as much of value to psychology or epistemology from a particular but highly

unrealistic AI model as one could learn from a detailed psychology of, say, Martians. A
good psychology of Martians, however unlike us they might be, would certainly yield general
principles of psychology or epistemology applicable to human beings.

Daniel Dennett

Brainstorms

MIT Press, Cambridge, Massachusetts (1978), page 113.
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CHAPTER 1

THE LEXICAL ACQUISITION TASK

This thesis describes a mechanism for learning word meanings and lexical categories.

From the context of example sentences containing one or more unknown words, the mechanism
uses what it knows about other constituents of the sentences to constrain interpretations of
unknown words. It is an incremental learning mechanism, so each time it encounters an
example of an unfamiliar word, it re�nes its hypotheses. Thus it is able to (and often does)

make an incorrect initial guess about the meaning of the word and then recover based on
additional examples of the word's use.

The mechanism is implemented as an extension of the LINK Natural Language Pro-
cessing (NLP) system [Lytinen and Roberts, 1989b; Lytinen, 1991]. The speci�cs of LINK

which relate to the lexical acquisition task are described in the next chapter. LINK has been

applied to a wide variety of tasks, and it is particularly well-suited to the information ex-
traction task, in which text is processed with the goal of pulling out speci�c \interesting"
pieces of the text or concepts derived from it.1 This type of task provides both one of the

basic motivations for this thesis and one of the constraints for its implementation. The most
time-consuming aspect of developing an information extraction system is giving it all of the
linguistic knowledge that is unique to a particular domain. Another complicating factor is that
because the input text is unconstrained, the NLP system is virtually guaranteed to encounter

linguistic formulations that are not in its knowledge base. Therefore, in order to perform the
information extraction task robustly, an NLP system must contain some mechanism to handle
unexpected input.

Furthermore, because the knowledge acquisition problem for any domain is so large,
it is important to limit the depth of knowledge that the system requires. Moreover, it is not

clear that adding some types of domain knowledge would further increase the power of an
information extraction system. For example, the system need not know the motivations of the
agent that performed a particular action, only that the action has occurred. Therefore, it is a

speci�c goal of the word-learning mechanism that it rely primarily on the linguistic information
required for standard processing, that is, basic knowledge about words, syntax, basic domain

knowledge. Requiring signi�cant additional domain knowledge would, in essence, make the
lexical acquisition task infeasible.

There have been several other implementations of word-learning mechanisms built in

the last 15 years. The approach described here di�ers from them in the depth of knowledge
used and the extent to which it is used. On the lowest end of the knowledge-use spectrum are
the statistics-based methods described in [Brent, 1991; Brent, 1993a; Brent, 1993b; Church and

1For a general description of an information extraction task, see [Sundheim, 1992]. For a description of the
LINK implementation for MUC, see [Lytinen et al., 1992a; Lytinen et al., 1992b; Lytinen et al., in press].
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Hanks, 1990; Hindle, 1990; Resnik, 1992; Yarowsky, 1992; Zernik, 1991]. These use virtually no

world knowledge whatsoever and instead rely on large corpora to allow them to categorize words
into broad classes. Although this categorization could be construed as semantic information,
it does not constitute word meaning as it is used in this thesis, therefore these systems will
not be further addressed herein.

Another set of systems, [Salveter, 1979; Cardie, 1993; Rilo�, 1993; Selfridge, 1986;

Siskind, 1990; Siskind, 1991], uses slightly more complex concept representations. These sys-
tems have rudimentary concept classes, like Physical-Object, Human, andMove. Such categories
allow the systems to make broad constraints, for example that the actor of an action must be

Human, and to learn the meanings of words as mappings to these categories or to speci�c
instances of the categories. These systems use a variety of mechanisms to infer the meanings.
One is case-based, one uses a graph construction method, and one proposes patterns that a
human must check.

Some researchers have taken a knowledge-intensive approach to lexical acquisition
[Granger, 1977; Zernik, 1987a]. These systems have somewhat coarse-grained semantic hier-
archies along with additional information regarding causes and motives behind actions. This
allows these systems to make powerful inferences about word meanings. Because there is so

much knowledge required, however, these approaches have only been applied to very limited
domains and tasks.

The system described in this thesis, Camille (Contextual Acquisition Mechanism
for Incremental Lexeme Learning), takes a middle ground on the depth of knowledge issue,
motivated in large part by the tasks for which it is intended. In fact, all of the decisions

about which objects to represent and how to structure them are based on task and linguistic
di�erentiability.2 Objects are broken into a rich hierarchy, based on their similarity and func-
tion. Actions have constraints on the constituents that can be attached to them as role-�llers.

These constraints determine the hierarchy for action concepts. This semantic information,
which is used by the NLP system, is also exactly the information which is used in inferring the
meanings of unknown words. This makes Camille ideally suited for the information extraction
task.3

Camille is further distinguished by the type of inference mechanism used. It is the only

non-trained, incremental word-learning system. Unlike some of the other systems [Salveter,
1979; Selfridge, 1986; Siskind, 1990], Camille does not rely on a trainer to feed it sentences
and give it a representation for the meanings of those sentences. It learns automatically, using
only the linguistic information that is found in the text.

Given the nature of the knowledge representation and the available evidence, Camille
makes the best hypotheses possible. The inference task can be naturally viewed as a graph-
search problem. To learn a word, the system must infer a mapping from the word to some node
in the concept representation structure. Many di�erent nodes are likely to provide reasonable

interpretations for the unknown word. Thus the lexical acquisition mechanism has a choice.
It can maintain a large set of possible meanings, or it can inductively choose a single node
or a small set from among the consistent concepts. Camille takes the latter approach and
prefers more speci�c nodes to general ones. This results in two advantages. First, because the

hypothesized meaning is more speci�c, it has more information content, that is it speci�es more

2Appendix A contains a discussion of the role of knowledge representation in lexical acquisition.

3Interestingly, none of the systems has a very deep knowledge representation. Without exception, the systems
use concepts like Block and Stack as atomic, and is there is no further delineation of their meaning.

2



precisely what the word means. If the hypothesis is correct, the system knows more about that

word. Second, the more speci�c a hypothesis is, the more falsi�able it is. Additional examples
are likely to either contradict the initial hypothesis (reinvoking the search for an appropriate
concept) or con�rm it.

Camille wasn't implemented in a day. It evolved through a series of stages. Learning

nouns was relatively easy. The constraints from the verbs on their slot �llers naturally limits
the interpretations of the nouns that �ll the slots. The verbs were more di�cult to pin down.
Initially, Camille considered each concept that was consistent with the evidence given it. A
second version of the system retained only the most speci�c consistent concepts in the hypoth-

esis sets. The �nal version of the basic system ranked the hypotheses and eliminated all but
the most falsi�able. It relied on multiple examples of the word's use to select the appropriate
candidate. Only at this point, after it had fully exploited all available information from within

a sentence to infer word meanings, was Camille extended to allow it to make conclusions based
on multiple sentences. A simple script mechanism was implemented that allows Camille to
further re�ne its hypotheses.

In order to ensure that Camille was performing adequately, empirical testing was

performed after each new addition. To test the system, some word de�nitions were removed,
and the system was given randomly chosen sentences from which to derive the meanings.
Details of the test procedures, the results, and some analyses are in Appendix B.

Camille was developed with the goal of automatically making the best inferences

possible about word meaning from context using the knowledge available for parsing. While
it was being developed, however, it became apparent that there were interesting similarities
between Camille's behavior and that of children when they learn language. Although the
system was never intended to model human behavior, it appeared to be learning in a similar

fashion. This is despite the fact that there are some major di�erences between a child's word-
learning task and Camille's. For one thing, children are not limited to linguistic input. They
receive visual and other sensory information to help them interpret an utterance. So the fact
that these parallels were found led to the hypothesis that the constraints of the word-learning

task were so strict that they would force any reasonable implementation into similar behavior.
Given this possibility, there are interesting implications for using Camille to predict particular
behaviors of children when they face the same task.

The evolution of Camille, testing results, and its implications for cognitive modelling

are presented in this thesis as follows:

� Chapter 2 gives a brief description of the LINK system which forms the foundation
upon which Camille is built. The basic knowledge bases that it uses will be described

along with the parsing mechanism.

� Chapter 3 presents the lexical acquisition mechanism. First the basic mechanism will

be described, and then the evolution of the mechanism to enable it to make use of various

knowledge sources. The chapter includes an analysis of the limitations of this mechanism
and ways that it could be extended.

� Chapter 4 describes the variations that were implemented on top of Camille's basic
graph-search mechanism. One was a technique taken from psycholinguistic theory. An-
other used scripts to enable Camille to use context from multiple sentences. A third

allowed the system to recognize ambiguous words. The �nal variation allowed Camille
to add concepts to its knowledge representation. The chapter ends with analyses of the

3



system's evolution and of the aspects of the tested domains which made them more or

less amenable to lexical acquisition.

� Chapter 5 examines previous learning programs and how they relate to Camille. A
framework is built for categorizing the di�erent methods of learning. The systems are
then organized according to that framework so that they can be easily compared with

each other and with Camille.

� Chapter 6 analyzes the connections between the lexical acquisition mechanism and
research in how humans learn language. The extent to which the constraints of the task
a�ect the solutions (human or computer) is also addressed.

� Chapter 7 contains the conclusions drawn from this work. It also includes a summary

of the cognitive implications of this work and some ways in which the model could be
extended.
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CHAPTER 2

THE FOUNDATION { LINK

The lexical acquisition techniques described herein have been implemented as an
extension of the LINK NLP system [Lytinen, 1990; Lytinen, 1991]. LINK uses a uni�cation
grammar (described later in this section) and extends the mechanism of chart parsing1 by
integrating syntactic and semantic processing. LINK has been used in many di�erent prototype

domains in which the conceptual knowledge can be fairly completely speci�ed, but the textual
input is entered by a large number of users and is therefore subject to wide variations in
terminology. The examples in this thesis come from one of these domains, in which the texts

consist of newswire reports of terrorist activity.2 This chapter contains a description of the
knowledge bases and process involved in normal parsing where all the input words are known
to the system.

2.1 Domain knowledge

The domain knowledge for LINK consists of a hierarchy of nodes which are the atomic

meaning units. The de�nition:

(define-sem school

is-a (building))

speci�es that there is a semantic node called School3 which is a type of Building. Figure 2.1

gives a sampling of the 156 object concepts that are de�ned in the terrorism domain and their
relations to each other.

Semantic nodes can also specify constraints on relationships between nodes. For
example, the de�nition:

(define-sem Arson

is-a (Terrorist-Act)

formulae (((Object) = Building)))

speci�es that Arson is a type of Terrorist-Act, and constrains itsObject to be a type of Building.

1See [Winograd, 1987] for a description of chart parsing.

2Appendix B contains a description of a second domain and complete testing results for cross-domain
veri�cation.

3Throughout this document, the Sans Serif type style will be used to display the names of concepts. The
Small Caps type style will be used to display grammar literals, syntactic markers, and function names.
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Figure 2.1: An object concept hierarchy for LINK
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Verbs normally act as the head (center of the representation) of sentences and the

parsing process attaches slot-�llers (e.g. Object) to them. Because of this, the semantic con-
straints occur almost entirely on the nodes which represent actions. There are many di�erent
slot �llers that can be �lled by a parse. The de�nition for the Bombing act includes constraints
not only on the Object of the action, but on the Actor and Instrument as well.

(define-sem Bombing

is-a (Nasty-Action)

formulae (((Actor) = Human-or-Org

(Object) = Human-or-Place

(Instrument) = Explosive)))

Figure 2.2 displays the portion of the semantic hierarchy that represents the actions
in the domain. Each node includes its slot-�ller constraints. The constraints are inherited by
the descendants of each node, and any constraint on a child must be at least as speci�c as the
constraints of its ancestors. For example, because Attack takes an Object that is a Human-or-

Place, this restriction also implicitly holds for actions like Terrorist-Act and Robbery. Destroy

is an example of a concept which makes a further restriction on a previously constrained slot.
Phys-Targ, the Object of this action, must be a descendant of Human-or-Place.

The structure of the object hierarchy is fairly obvious. It is based on a hierarchy of
subsumption categories, for example, a Phys-Targ is a type of Place, a Building is a type of
Phys-Targ, and a School is a type of Building. The ordering of the nodes in the action hierarchy

is somewhat more complicated (as will be further discussed in Chapter 6). The organization
is mostly determined by the generality of the slot-�ller constraints, but a grouping of similar
concepts (e.g. Strans and its descendants) also comes into play. This structure is crucial for

the word learning mechanism and will be further explored later.

2.2 Grammar

Three di�erent ways of constructing a verb phrase are speci�ed in the following por-
tion of the VP rule:

(define-gram VP ; 1

(((1) = Verb ; 2

(Head) = (1 Head) ; 3

(Head Syn Vtype) = Intrans) ; 4

((1) = Verb ; 5

(2) = NP ; 6

(Head) = (1 Head) ; 7

(Head Syn Vtype) = Trans ; 8

(Head Syn Vform) = Simple-Past ; 9

(Head Sem Object) = (2 Head Sem)) ; 10

((1) = VP ; 11

(2) = Particle ; 12

(Head) = (1 Head) ; 13

(Head Part) = (2 Head)))) ; 14

7
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Figure 2.2: An action concept hierarchy for LINK
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The numbered equations at the beginning of each of the three segments specify (in order) the

constituents of the phrase. The �rst segment makes a verb phrase out of a single verb and
speci�es that the type of the verb is intransitive. The second segment has two constituents, a
verb and a noun phrase. The equation in line 7 speci�es that the head (again, the central point
of the representation) of the verb phrase comes from the head of the verb. Line 8 speci�es

that the type of the verb is transitive, line 9 states that the form of the verb is simple past,
and line 10 states that the semantic object of the verb phrase is the semantics of the head of
the noun phrase. The third segment is for verb/particle combinations like, \take the lid o�".

Two types of equations are shown in this rule. \Labelling equations" in lines 2, 4 { 6,
8, 9, 11, and 12 specify the label of the constituent to which they refer. Intrans and Trans
are literals that specify the transitivity of the verb phrase. Verb, NP, VP, and Particle

refer to other constituents that are either lexical entries or built up by other grammar rules.

The other equations are called Unifying Equations. They link together two di�erent parts of
the structures that are created during the parsing process. These structures are de�ned more
completely in section 2.4.

2.3 Lexicon

(define-word torched ; 1

(Verb (Head Sem) = Arson ; 2

(Head Syn Vform) = Simple-Past ; 3

(Head Syn Vtype) = Trans)) ; 4

The preceding de�nition shows the dictionary entry for the word \torched". The
syntax of lexical entries is roughly the same as that for grammar rules. The translation of this

dictionary entry to English is:

The meaning representation (Sem) for the word \torched" is the concept Arson.
The syntactic verb form is simple past and the syntactic verb type is transitive.

There is a spelling checker and morphology component in LINK that �nds the root of each
word in the input sentence. It returns the de�nition for the root as well as any a�xes the word

might have.

This uniformity of representation of the constraint de�nitions across the semantics,
grammar, and lexicon enables the integrated application of a wide variety of constraints as
described in the next section.

2.4 Parsing

The basic mechanism underlying processing in LINK is a bottom-up chart parser.
The chart is simply a repository for storing the partial parses of subconstituents. This allows
the parser to avoid redundant processing. As a parse progresses, the parser can use the stored
constituent representations instead of starting from scratch. The goal of the parser is to

combine the word constituents into phrase constituents and then into a sentence constituent
which will include the entire parse tree for that sentence.

As mentioned above, one of LINK's strengths is its use of a uniform representation
format for all of its information. The de�nitions, such as those that have been seen earlier in

this chapter, are all translated into the form of a directed acyclic graph, or DAG. Figure 2.3
shows a simple lexical de�nition with the corresponding DAG structure.
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Mary

Mary

Noun

ProperSingle

Head

Sem Syn

Word

Agr Det

(define-word Mary
    (Noun  (Head Sem) = Mary
                 (Head Syn Agr) = Single
                 (Head Syn Det) = Proper))

Figure 2.3: A lexical de�nition and its DAG

(define-word torched
    (V  (Head Sem) = Arson
          (Head Syn Vform) = Simple-Past
          (Head Syn Vtype) = Trans))

TransSimple-Past

Arson

torched

V

Head Word

Sem Syn

Vform Vtype

Figure 2.4: Another lexical de�nition and its DAG

Figure 2.4 shows the lexical de�nition for the verb, \torched". At the start of the
parsing process, LINK enters all the de�nitions for the input words into the chart (graphically
represented in the following �gures by a box). Figure 2.5 depicts the chart as it would stand

after lexical de�nitions are entered for the sentence, \Mary torched the headquarters."

Mary

Mary

Noun

ProperSingle

Head

Sem Syn

Word

Agr Det

Specific

the

Det

Head Word

Syn

Type

Headquarters

headquarters

Noun

CommonSingle

Head

Sem Syn

Agr Det

Word

"Mary torched the headquarters"

TransSimple-Past

Arson

torched

Verb

Head Word

Sem Syn

Vform Vtype

Figure 2.5: The chart with lexical de�nitions

When the words are added, the parser also brings in any associated semantic con-
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straints. Because the Sem node of \torched" is the Arson concept, the parser brings in its

constraints, namely ((Object) = Building) and ((Actor) = Terrorist) (inherited from
Terrorist-Act). The DAG form of these constraints is uni�ed with the corresponding node
of the DAG for \torched", leaving the chart as shown in �gure 2.6.

Mary

Mary

Noun

ProperSingle

Head

Sem Syn

Word

Agr Det

Specific

the

Det

Head Word

Syn

Type

Buildin gTerrorist

Object
Actor

TransSimple-Past

Arson

torched

Verb

Head Word

Sem Syn

Vform Vtype

Headquarters

headquarters

Noun

CommonSingle

Head

Sem Syn

Agr Det

Word

Figure 2.6: The chart with semantic information

At this point, the parsing process starts. LINK repeatedly examines the constituents

in the chart to see which can be combined using the grammar rules to make larger constituents.
(Only the successful rule applications will be described here.) The �rst step for the parser will
be to apply the NP rules to create two new noun phrases, one from the single proper noun,
\Mary", and the other from the determiner and noun, \the headquarters". The portion of the

NP rule that covers these situations is:

(define-gram NP

((1) = Noun

(Head) = (1 Head)

(Head Syn Det) = Proper)

((1) = Det

(2) = Noun

(Head) = (2 Head)

(Head Syn Det) = Common)))

After the structures from the NP rules are uni�ed into the chart, the result is as shown in
�gure 2.7. Note that the Head arcs of the NP rules link to the Heads of the nouns.

Next, the parser applies the verb phrase rule described in section 2.2 to the verb and
the new NP constituent. Several important things happen at this point. The head of the verb
phrase is linked to the head of the verb in the structure which represents \torched". Also, the
Object arc from the Arson node, which pointed to a DAG labelled Building before, is now

uni�ed with the semantic node for the object NP, Headquarters. (If the object was of a type
that was incompatible with Building, the uni�cation would have failed, and therefore, the rule
would not have �red.) The results of these latest additions are shown in �gure 2.8.

Now that the chart contains an NP followed by a VP, this S rule can �re:

(define-gram S

((1) = NP
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Word

Agr Det
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Head Word

Syn
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NP
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Head
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Arson

torched

Verb

Head Word

Sem Syn
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Head
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Agr Det

Word

Figure 2.7: The chart after the �ring of Noun Phrase rules
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Head Word

Syn

Type
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NP NP
1 2

Head

1Head

Head
1

2

Terrorist

Actor

TransSimple-Past
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torched

Verb
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Headquarters
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Noun

CommonSingle

Head
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Word
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Figure 2.8: The chart after the �ring of the Verb Phrase rule
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(2) = VP

(Head) = (2 Head)

(Head Sem Actor) = (1 Head Sem)

(Head Syn Agr) = (1 Head Syn Agr)))

This links the head of the sentence to the head of the VP (which is also the head of the
verb). Now the semantics of the completed sentence parse will come from the semantics of the

verb. Firing the S rule also causes uni�cation of the Terrorist node on the Actor arc with the
semantics of \Mary" and the linking of the Agr (agreement) nodes of the subject and verb.
The �nal structure is shown in �gure 2.9. The semantic representation of this sentence is taken
from the (Head Sem) path, namely that there was an Arson action and the actor was Mary

and the object was Headquarters.

Mary

Mary

Noun

ProperSingle

Head

Sem Syn

Word

Agr Det

Specific

the

Det

Head Word

Syn

Type

S

VP

NP NP
1 2

Head
Head

Head
1

2

1
2

Head

Agr
TransSimple-Past

Arson

torched

Verb

Head Word

Sem Syn

Vform Vtype

Headquarters

headquarters

Noun

CommonSingle

Head

Sem Syn

Agr Det

Word

ObjectActor

1

Figure 2.9: The complete parse

The main advantage of the LINK parsing mechanism over traditional parsing is that

it integrates the application of syntactic and semantic constraints. For example, consider the
creation of a verb phrase from the verb \torched" and the noun phrase \the headquarters".
The grammar rule speci�es the syntactic category for each constituent. The syntactic con-
straints within the VP grammar rule are used to ensure number and tense agreement between

constituents.4 At the same time, the semantic constraints are applied. The rule which creates
the verb phrase also links the semantic Object slot of the verb with the noun phrase's se-
mantics. The Object slot already contains the semantic constraint, Building. When the rule
�res, the uni�cation between Headquarters and Building (resulting in the more speci�c label,

Headquarters) takes place, ensuring that the semantic constraints are met. This integration of

4These syntactic constraints alone are normally su�cient to disambiguate between the various senses of a
word. If not, the semantic constraints provide further discriminating information.
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syntactic and semantic processing ensures that the constraints are brought to bear as soon as

possible, allowing the parser to avoid wasting time on dead-end parses.

2.5 Importance of the parser for lexical acquisition

There are several implications of the general parsing technology for lexical acquisition.
In the parsing example, it was the verb to which the semantic constraints were attached. As

will be discussed in the next chapter, verbs tend to play a central organizing role in both the
syntactic and semantic structure of sentences. The head of the verb phrase comes from the
head of the verb, and the head of the sentence comes from the head of the verb phrase. The

other constituents of the sentence are attached to the verb, and in so doing are added to the
sentence structure. Then, the semantic representation of the verb gives the overall meaning of
the sentence.

One speci�c advantage of LINK for lexical acquisition is its uniform representation

scheme. The basic unit of representation for syntactic, semantic, and pragmatic information
is the DAG. The next chapter describes how the lexical acquisition mechanism exploits this
uniformity to infer word meanings within the scope of normal processing.

Finally, the integration of syntactic and semantic constraints is important in that it

allows for incremental inference of word meaning. As each constituent is attached during the
parse, all of its syntactic and semantic components are already complete, and the additional
evidence can be used by the inference procedure. Thus, the same mechanism that performs

the inference when new slots are �lled in the parse applies to re�ning the inferred meaning
when new examples of a given word's use are encountered.
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CHAPTER 3

CAMILLE: A LEXICAL ACQUISITION MECHANISM

This chapter describes the basic lexical acquisition mechanism. It starts with an
examination of logical properties of the acquisition task and how these theoretical constraints
inuenced Camille's architecture. The rest of the chapter lays out the evolution of the basic

word-learning mechanism and the empirical testing that was performed. The chapter ends

with an analysis of the strengths and weaknesses of the approach.

In Chapter 4, variations on the Camille's basic graph search mechanism will be pre-
sented. Each of the variations explores a particular aspect of the lexical acquisition task.

In order to improve the readability of the thesis, the details of all of the tests and

their results are presented in Appendix B. Brief summaries of the tests are included here with
analyses of their signi�cance for lexical acquisition.

3.1 The nature of the knowledge

There is much discussion in the Philosophy literature about the essence of conceptual
knowledge. These issues will be discussed in Appendix A because although they provide the

underlying foundation of the research, they are not the main focus of the research. One
general point about knowledge representation, however, serves as an important introduction
to this chapter. Intuitively it is clear (and it has been addressed by [Katz and Fodor, 1963]

among others) that there are many di�erent aspects of conceptual knowledge. Consider what
the word \Arson" brings to mind: techniques, instruments, likely targets, motivations of the
actors. LINK, on the other hand, knows only this about the concept called Arson1: that it is

an action, speci�cally, a Terrorist-Act, and that it is perpetrated by a Terrorist on a Building.

Any additional information is implicit, and it is left to the application to decide the rest of the
meaning of this concept.

This fundamental limitation2 has strong implications for what type of inference is
possible without relying on additional information. In particular, inferences based on results,

preconditions, and goals are not possible because the system knows nothing about them.
Within the con�nes of a system that learns automatically using no special-purpose knowledge,
only certain types of knowledge can be acquired. The remainder of this section addresses

abstractly the boundaries of learning circumscribed by LINK's concept representation.

1Figure 2.2 displays this concept and other actions in LINK's domain knowledge for the Terrorism domain.

2It is clear that every computer implementation must have this limitation to some extent because computers
lack humans' sensory apparatus. Even the CYC project [Lenat, 1990], which attempts to build a huge knowledge
base of common sense information, cannot hope to represent low-level \features" that are very salient to humans
like the sound of a robin's song or the color of a sunrise.
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The nodes in LINK's concept hierarchy serve as its basic units of meaning. With the

assumption of a static, complete knowledge base,3 learning the meaning of an unknown word
reduces to �nding the appropriate node in the domain representation | in other words, a
search problem.4 The constraints of known constituents in a sentence de�ne a subspace of the
semantic knowledge base within which the referent of an unknown word must lie. Although

the concepts within this space each constitute a plausible de�nition for the word, a space of
possible meanings is of limited use for an NLP system. A useful hypothesis5 would contain
very few nodes, preferably one. Thus the interesting part of this problem is how to inductively

select a part of the consistent space as a guess for what the unknown word can mean. The
structure of the knowledge representation prescribes the manner in which that can be done.

LINK's semantic constraints are used primarily to limit the ways that parses can
be formed. For example, in the sentence, \John made a deposit at the bank," the semantic

constraint on \deposit" that the destination be a Financial-Institution disallows the construction
of a parse with River-Edge sense of \bank". Camille uses these same constraints to direct the
inference of unknown words.

The context of example sentences can provide two types of restrictions on the set
of candidate hypotheses for an unknown word's meaning. First, the word may appear as
the �ller of a thematic role of another word, as in, \Terrorists destroyed a arge." Because
\arge" is assigned as the direct object of \destroy", LINK's grammar suggests that it is

the semantic Object of Destroy. This condition places an upper bound on the generality of
the word's meaning: \arge" must be a Phys-Targ or one of its descendants in the concept
hierarchy. Figure 3.1 shows the set of concepts in the hierarchy which the role-�ller constraints
for Destroy will allow as the Object. The shaded concepts cannot represent the meaning of

\arge".

The second type of restriction that context may suggest is a �ller for a thematic role
of the unknown word, as in, \Frooble the building." In this case, LINK's uni�cation grammar

suggests that Building is the semanticObject of \frooble." Information about role-�llers of an
unknown concept places a lower bound on the speci�city of the concept: given that Building is

the Object, \frooble" can refer to concepts like Destroy and Robbery, but not to concepts like
Detonate, Die, or STrans (or any of their descendants) because Building violates the restrictions

that these concepts place on their Objects. Figure 3.2 shows which concepts in the action
hierarchy are allowed to take Buildings as Objects .

Thus, two types of information are supplied by example sentences: information which
provides a lower bound on the level in the hierarchy of the meaning of an unknown word,

and information which provides an upper bound. One might think that a least-commitment
approach to learning, like Mitchell's candidate-elimination algorithm [Mitchell, 1977], would be
the best way to approach this task. Mitchell's algorithm used version spaces to represent the set

of candidate hypotheses, and slowly narrowed the version space depending on the additional
constraints provided by new examples. Negative examples lowered the upper bound, and
positive examples raised the lower bound.

3The completeness assumption will be addressed in section 4.4.

4As described in the previous chapter, the structure of the action concept hierarchy, which organizes the
search space, is constructed in an ad hoc fashion from an analysis of the texts. The structure and the semantic
constraints which partially determine the organization are not, however, constructed for the lexical acquisition
task, they are constructed for semantic disambiguation in parsing for the information extraction task.

5Throughout this thesis, the term \hypothesis" will be used to refer to a disjunctive set of concepts that
represents Camille's guess at the meaning of a word.
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Figure 3.1: The pruned object tree
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Action

Leave
obj != Anything
inst != Anything

Strans Detonate
obj = Bomb

Nasty
Action

act = Human

Die
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obj = Death

inst != Anything

Think
obj = Action

State
Belief

Request

Threat

Attack
obj = Human-or-place
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Hijacking
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Kidnapping
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Murder
obj = Human

Arson
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obj = HumanExplode
act = Explosive
obj != Anything

Admit
obj = Action

Accuse
obj = Human

Suspect
obj = Human

Claim
obj = Responsibility

Report
obj = Action

Carry Out
obj = Action

Fight

Figure 3.2: The pruned action tree

Because of the structure of the constraints, however, this approach would fail. In

the word-learning task, it is usually the case that particular kinds of words only appear in

examples that provide one of the two types of restrictions. Nouns, which usually refer to
objects, almost always appear as role-�llers of actions or states. Thus examples of the noun in
context serve only to limit the upper bound of the candidate hypotheses. Verbs, on the other

hand, usually appear with role-�llers attached to them, and not as role-�llers themselves,
because they refer to actions or states. For new verbs then, examples place a lower bound
on their candidate hypotheses. Thus, because examples only provide one of the two kinds of
restrictions for signi�cant word classes, a least-commitment algorithm would not converge on

a single hypothesis for the meaning of most unknown words.

Besides the graph-search implications of this dichotomy, there are practical ones as
well, which can be seen from a pair of examples. From a sentence like, \Mary will detonate the
arge," an agent could deductively infer that \arge" must refer to a type of Bomb. That is,

the concept Bomb serves as the upper bound of the space of possible interpretations. Although
there may be many di�erent types of bombs within this space, this hypothesis has signi�cant
information content. All descendants of Bomb share certain features that an agent might like
to know.

On the other hand, from a sentence like, \John froobled the pedestrian," one could
deduce that \frooble" does not mean Hijack or Detonate, for example. The Object constraints
on these concepts are contradictory with the type of the Object of the sentence. Thus, they
form part of the lower bound of the possible interpretation for the unknown verb. If an agent

only has this knowledge about a verb, however, it does not know much. The members of the
space that is delineated by this lower bound might not share any attributes other than that
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they are all Actions.6 Thus, this upper bound / lower bound distinction makes a big di�erence

in the inferable information content.
The distinction also makes it more important to learn verb meanings. The semantic

constraints that serve as the leverage for learning word meaning are attached to the action
concepts. If the system does not know a verb, it cannot know which constraints apply. In

order to o�set this lack of evidence, Camille does not use a least-commitment approach like
Mitchell's. Instead it uses a simple, but critically important, rule to limit the hypothesis space:

For nouns, choose the most general consistent hypothesis.

For verbs, choose the most specific hypothesis.

Thus, Camille actually makes guesses about what the word means | guesses that, because
they are extreme, are easily falsi�able. Thus additional examples of the word's use are quite

likely to contradict the initial hypothesis, unless, of course, it was correct.
As previously mentioned, learning nouns is much easier than learning verbs. Some

early work in learning nouns with LINK is described in [Lytinen and Roberts, 1989a]. Additions

to the noun-learning mechanism are described in section 4.3.1. Because semantic constraints
are attached to the verbs, it is more di�cult to learn unknown verbs, therefore verb acquisition
is the primary focus of this thesis. The next section describes the implementation of the initial
lexical acquisition mechanism.

3.2 Camille 1.0

As described in the previous section, the meaning-inference procedure in LINK con-
sists of a search through the concept hierarchy for the appropriate concept to represent the
meaning for an unde�ned word. This section describes the details of this search process and

how Camille limits the hypothesis set by choosing the most speci�c applicable concepts.

3.2.1 Enter Generic De�nition for Unknown Word

As LINK parses a sentence, if it �nds a word that is not in the dictionary, it looks up

a special \default" de�nition instead. Figure 3.3 shows this special word de�nition which is
entered into the chart like that for any other word. Several points should be noted regarding

this de�nition. The name of the word in the de�nition, \unde�ned" (from line 1), is replaced by
the actual word as it appears in the sentence. This allows Camille to posit a new meaning for
the word after it processes the sentence. Lines 2{6 contain the default de�nition for the active
transitive verb sense of an unknown word. Lines 7{10 have the corresponding intransitive

description, and lines 11{13 contain the de�nition for the stative sense (e.g. \The bomb
exploded"). Lines 15{18 contain default de�nitions for adjectives and nouns.

The Type speci�cations in lines 6, 10, and 14 restrict the sort of syntactic construc-
tions that these de�nitions can occur in. The two latter senses require intransitive sentences.

The grammar rules that create verb phrases ensure that when a noun phrase follows the verb
phrase, the verb is marked as transitive. Otherwise it is marked as intransitive. Because the
markers Trans and Intrans cannot unify, the parser will never attach a noun phrase as the

6The only type of input that could help solve this problem would be negative input like, \You can't say `Mary
tossed the arge.' " Unfortunately, this does not occur in normal text. This \no-negative-evidence problem"
limits what a lexical acquisition mechanism could deduce from context. It is also a problem for human language
learners as discussed in section 6.2.
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(define-word undefined ; 1

(Verb (Head Rep) = (Action) ; 2

(Head Undef) = (Head Rep) ; 3

(Head Subj Rep) = (Head Rep Actor) ; 4

(Head Obj Rep) = (Head Rep Object) ; 5

(Head Type) = Trans) ; 6

(Verb (Head Rep) = (Action) ; 7

(Head Undef) = (Head Rep) ; 8

(Head Subj Rep) = (Head Rep Actor) ; 9

(Head Type) = Intrans) ; 10

(Verb (Head Rep) = (State) ; 11

(Head Undef) = (Head Rep) ; 12

(Head Subj Rep) = (Head Rep Object) ; 13

(Head Type) = Intrans) ; 14

(Adj (Head Rep Mod) = (Modifier) ; 15

(Head Undef) = (Head Rep Mod)) ; 16

(Noun (Head Rep) = Phys-Obj ; 17

(Head Undef) = (Head Rep)) ; 18

Figure 3.3: Default de�nition for unknown words

object of an intransitive verb. In this way, the parser eliminates the de�nitions that are not

consistent with the syntax of the input sentence.

Line 3 serves as a hook which allows Camille to easily access the inferred meaning

hypothesis for the unde�ned word. Lines 4 and 5 specify that the syntactic subject of the
sentence will become the semantic actor in the �nal meaning representation for the sentence
and that the syntactic object will be the semantic object as well. These connections are crucial
in inferring the meaning for an unknown word. When a phrase is attached to the verb as the

syntactic object, for example, this rule also causes the representation of the syntactic object
to serve as the semantic Object of the verb. The �lling of any such slot of an unknown verb

triggers the learning mechanism. The actual operation of this mechanism is described below.

Line 2 speci�es the initial set of hypotheses for the meaning node for an unknown verb, namely
the single concept Action. This is the only di�erence between the representation in the chart
for known words and the representation for unknown words. Entries for de�ned words refer to
a single concept in the hierarchy. Unde�ned word entries have a set of labels which correspond

to the active hypotheses for the meaning of that word.

3.2.2 The Re�nement Tree

When the set of concepts that comprise the domain knowledge (part of which was
displayed in �gures 2.1 and 2.2) is loaded into the parser, the resulting network is processed
into an additional structure called the Re�nement Tree. This structure facilitates the �rst

stage of the inference mechanism. It is basically a discrimination net that has pointers from
general nodes in the semantic hierarchy to more speci�c nodes based on the slot �ller that is
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Figure 3.4: Partial discrimination net
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attached to the verb.7

Figure 3.4 gives an overall idea of the structure of the Re�nement Tree (for clarity, a
portion of this tree has been extracted and displayed in more detail in �gure 3.5). The portion
of the RT that applies to Object slot �llers is superimposed over the action hierarchy (which
also displays Object constraints). The RT is used to suggest inductive leaps. It says, for

example, if the current verb meaning hypothesis is Action, and the Object is a Transport-

Vehicle, then replace Action with Hijacking as the new hypothesis.

An example will help illustrate the use of the RT. Assume the parser is processing the
sentence, \Terrorists froobled a bus yesterday in Geneva." As soon as the parser attaches the

noun phrase \a bus" as the Object of \froobled", Camille is triggered. It takes the current
hypothesis for \frooble" (which will be Action if it has not been encountered before), and checks
the RT to see if there is a pointer for the Object slot for a �ller of type Bus. Because Bus

is-a Transport-Vehicle, the link to Hijacking is found. This becomes the starting point for the

search for the meaning of \frooble". The search will be further described in the next section.

Action

Nasty
Action Attack

human-
or-place

Terrorist
Act

Hijacking
transport-

vehicle

human-or-place

transport-vehicle

transport-vehicle
transport-vehicle

transport-vehicle

human-
or-place

Injure
human

human
human

human

Figure 3.5: A smaller portion of the re�nement tree

Camille uses the Re�nement Tree for two reasons. First, it reduces search through the
space of semantic nodes. The second reason relates to the nature of the information provided
by the semantic constraints as discussed in section 3.1. Because there is no upper bound on

the search space for a verb's meaning given one of its slot �llers, the RT allows Camille to
inductively set a working upper bound. The location in the semantic hierarchy that an RT
link points to is the starting place for the search for a meaning hypothesis. If Camille does not
�nd a descendant of this node whose constraints match the slot �llers, then the upper bound

will be lifted and the search expanded.

Although the Re�nement Tree helps Camille reduce the hypothesis set, the use of the
structure is not crucial, only the function it performs is. That same function could be served
by search. An alternative mechanism would search through the Action hierarchy and select

nodes whose constraints matched the type of the slot �ller. Such a search would be expensive,

7This produces a reinterpretation of the domain knowledge, focusing not on the is-a relationships, but on
the relationships de�ned by the semantic slot-�ller constraints.
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however, to perform every time a slot �ller is attached. The Re�nement Tree allows Camille

to compile out that search process.

3.2.3 The Algorithm

In this section, the basic learning system is described. The presentation of Camille's

learning algorithm is followed by examples of its use.

Figure 3.6 shows a ow chart that describes the operation of the basic word-learning
mechanism for verbs. (As previously mentioned, learning nouns comes as a natural by-product
of applying semantic constraints. Therefore, no additional mechanism is required.) An im-

portant point about this procedure is that instead of using a single concept to represent the
meaning of a word, Camille maintains a set of hypotheses that are consistent with the slot
�llers. This set does not comprise the entire space of consistent hypotheses. Initially, it is the

subset indicated by the Re�nement Tree. If there are consistent descendants of these concepts,
they replace their ancestors. If not, the Generalize procedure is invoked to �nd a set of

hypotheses that is consistent with the slot �llers.

As previously mentioned, the learning method is triggered by the attachment of a

new slot �ller to an unknown word. This is done by checking the current set of slot �llers for
the new word to see if they have changed. If there is a change, then for each of the current
hypotheses, the re�nement tree is checked using the new slot �ller to see if any more speci�c
concepts are suggested. If so, the set of new, more speci�c hypotheses replaces the original set.

Consider the sentence, \Terrorists froobled the building." The parser starts with a
chart very much like the one shown in �gure 2.5. Instead of just one entry in the second
position, however, the chart will contain a di�erent entry for each portion of the unde�ned
word de�nition in �gure 3.3. The non-verb de�nitions will be eliminated eventually because a

sentence must have a verb to be grammatical. The intransitive de�nition will be eliminated

because it won't be able to combine with the following noun phrase. This elimination process
is part of the standard parsing mechanism and happens with all ambiguous words. Figure 3.7

shows the chart with the portion of the unde�ned word de�nition that will eventually be
successful.

The parser realizes that it has an unknown word in the chart and every time it �res
a grammar rule checks to see if the unde�ned word's slot �llers have changed. When the verb

phrase rule attaches the succeeding noun phrase to the dag representing \froobled" (�gure 3.8),
the Building is attached as the Object of the unde�ned action, and Camille is triggered.

After applying the re�nement procedure to the initial Action hypothesis with the
attachment of the Object Building, the set of remaining hypotheses is: (Attack Bombing

Destroy Arson). Next, from this set, all ancestors are eliminated. That is, if the set contains
both an ancestor and one or more of its descendants, the more general concept is removed. This
is another way of pushing the hypotheses down the tree. In this example, Attack is eliminated
because Bombing and Arson are its descendants.8

From the reduced hypothesis set, Camille attempts to force the hypotheses even
further down the tree by selecting the leaf nodes under the current hypotheses for which no
other constraints are violated. Each current hypothesis is checked to see if it has any leaf-

node descendants whose constraints are not violated by the accumulated slot-�llers. If so, it

8Note that this is a very important step because the most general action node, Action, can accept any Object

as its semantic object. If Camille did not eliminate ancestors, it would end up with a search that was virtually
unconstrained in the upper bound.
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For each slot filler as it is attached to an unknown verb:

If no previous hypothesis set exists,
assign the default hypothesis set, (Action)

Attempt to induce a more specific
hypothesis set using Refinement Tree

Eliminate from the hypothesis
set concepts which have a
descendent in the set

For each concept in the hypothesis set:

Are there descendants whose
constraints are satisfied by

current slot fillers?

Are the constraints of this
concept satisfied by
current slot fillers?

Replace the ancestor
with the descendants

Delete the concept from
the hypothesis set

Are there any concepts left
in the hypothesis set?

Generalize from previous
hypothesis set to parents

Yes
No

No

No

Yes

Yes

Figure 3.6: The basic word learning algorithm
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Figure 3.8: The chart after attaching \the building" to \froobled"

is replaced by those leaves. If not, it is checked to see if it has additional constraints that are
violated and in that case, it is eliminated from the hypothesis set.

The �nal parse is shown in �gure 3.9. Note that the semantic node for the head of the
sentence has the label (Arson Attack Bombing Destroy). This set is the �nal set of hypotheses
for the meaning of \frooble" inferred by Camille from the sentence.

After parsing a sentence with an unknown word in it, the system stores the word's

inferred meaning hypotheses in the lexicon. The de�nition is similar to that for any other
word, with the exception that, again, instead of specifying a single concept for the meaning of
the word, the de�nition speci�es a list of concepts. This signals Camille that the de�nition is

tentative and can be further re�ned.

If additional sentences using the word are parsed, the re�nement process continues,
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Figure 3.9: The chart after attaching \Terrorists" to \froobled the building"

starting with the stored hypotheses. In some cases, all of the original hypotheses may turn out

to be too speci�c; that is, the set of constraints on the hypothesized concepts are violated by
the current slot �llers. The appropriate meaning for the unknown word must be somewhere
else in the concept hierarchy. When this happens, the Generalize procedure (Generalize is
schematically depicted in �gure 3.10) is called to travel up the tree, gradually expanding the

search space starting from the original hypotheses. The set of former slot-�llers is combined
with the new ones, so that the constraints of new hypotheses will be met by all of the available
evidence.

For example, assume the system has already processed the sentence described above,

\Terrorists froobled the building." It has reached the hypothesis that \frooble" means Arson.
Now it gets another sentence, \Terrorists froobled the pedestrians." When \pedestrians"
(with semantic representation Civilian) gets attached as the Object of \frooble", the inference

process begins anew. There are no re�nements from Arson, so we go to the next step. Camille
checks for more speci�c concepts. There are no consistent descendants of Arson either. So
Camille checks the constraints of Arson itself. Because Civilian is not a Building, this node is not
legal either, so Generalize is called. Generalize checks the parents of the current hypotheses

and collects constraints as it ascends. The parent of Arson is Terrorist-Act, so Generalize

checks to see if there are any concepts under Terrorist-Act whose constraints accept the current
slot �ller, (Object = Civilian), as well as the previous constraint, (Object = Building). In

this case, the node Robbery, because it has no additional constraints, inherits the Object

constraint from Attack, Human-or-Place. Both Civilian and Building satisfy this constraint, so
Robbery becomes the new hypothesis for the meaning of frooble.

If no legal node were found at this point, Generalize would be recursively called,

expanding the search to larger and larger portions of the tree. There are two important
consequences of this approach. First, the learning mechanism is incremental. Instead of
starting over from the default every time new information is found, Camille takes up the search
from the point of its previous hypotheses. As far as computational e�ciency is concerned, this

approach is better than the alternative because the search is more limited and the system need
not store all the previous information.
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For each concept in the hypothesis set:

Are the constraints of
this concept consistent

with the slot fillers?

Delete the concept from
the hypothesis set

Do any concepts remain
in the hypothesis set?

Return the hypothesis set Return
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  ( original hypothesis set)))

No

Yes No

Generalize

Figure 3.10: The Generalize function

The second consequence is a comment on the e�cacy of this approach. In general, this
procedure is e�ective because of the nature of verbs and the frequency with which they occur.

The more general verbs, that is those which can take many di�erent types of slot-�llers, tend to

occur more frequently than speci�c verbs. Thus with a \speci�c" unknown verb, Camille wins
even if it is encountered only once or twice because it chooses the most speci�c hypothesis.
When Camille encounters a verb with many di�erent types of slot-�llers, the generalization
procedure infers a more general hypothesis.

In summary, the learning procedure attempts to counteract the one-way-constraint

problem described in section 3.1 by constantly trying to �nd the most speci�c hypotheses

possible. This has two advantages. First, a speci�c inferred meaning is inherently more
useful than a general one because it contains more information. Second, the more speci�c
the hypothesis is, the more falsi�able it is. The incremental nature of the learning process is

exploited to ensure that even if Camille initially infers a hypothesis that is too speci�c, later
evidence can disprove that hypothesis and allow the system to make another, better-informed
guess.

3.2.4 Empirical Evaluation

In order to evaluate Camille's learning abilities, a series of tests was performed. The
�rst domain in which Camille was tested was the Assembly Line domain. A description of the
task and knowledge representation for this domain is in Appendix B. In order to improve the

ow of the thesis, the speci�c details of the test results have also been placed in the appendix.
Summaries of the evaluation will be included in this chapter and the next to aid in the analysis
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of Camille's strengths and weaknesses.

In the test of the initial Camille implementation, a set of 100 sentences from the
Assembly Line corpus and 50 sentences from the Terrorism domain were chosen at random.9

The de�nitions of all of the verbs that appeared in the test sentences were removed from

LINK's lexicon. The sentences were then processed in turn by Camille, and the resulting word
de�nitions written to a �le. Camille 1.0 hypothesized 22 verb de�nitions in the Assembly Line
domain and 17 in the Terrorism domain.

For 18 of the verbs (82% of the set of 22) in the Assembly Line corpus, the appropriate
concept was included in the hypothesis set that Camille inferred. In the Terrorism domain,
8 of the 17 verb meanings, or 47%, were correctly inferred. These results were encouraging10

and led to several conclusions about the nature of the learning mechanism.

The �rst conclusion was that the system seemed to be learning quite well. This was
emphasized by an analysis of the corpora that were tested. Because Camille learns incremen-

tally, the number of instances of a word in example sentences is an important factor in the
system's performance. As detailed in section B.2.4, the mean number of occurrences of the
unknown verbs in the test sets was 3.7 and 2.7 for the di�erent domains. In both domains,
however, the median was 2 repetitions, and a large percentage of the verbs occurred only once.

This meant that Camille had little evidence on which to base its conclusions. Despite this
paucity of evidence, Camille still performed quite well.

Another attribute of the corpora, especially in the Terrorism domain, was the di�-
culty of the test sentences. LINK produced a complete parse in only 1 of the 50 test sentences
in this domain. Although Camille uses a post-parse analysis of the chart to extract useful
fragments, it is frequently unable to extract all of the verb's arguments and thus Camille has

limited evidence from which to make its inferences.

The second conclusion from the initial test was that the results were good but could
be better. There were only a small number cases in which Camille chose a single hypothesis for

the word's meaning. In the other instances, a set of hypotheses was chosen. For the Assembly
Line domain, there were on average 6.2 concepts per word, and 3.2 for the Terrorism domain.
So in a sense, this initial version of Camille caught a lot of �sh, but did it by throwing a very

big net.

Part of the reason for this behavior came from the fact that the domain knowledge
did not contain enough information to distinguish between many of the concepts. For example,

in �gure 3.2, the two concepts Murder and Kidnapping both take Human Objects and Terrorist

Actors. There is no additional discriminating information in the semantic representation
because it is not needed to parse the sentences in the domain. Unfortunately, this leaves
Camille unable to distinguish between these concepts. The ensuing enhancements to Camille

(which will be described in the rest of this chapter and the next) were primarily aimed at
exploiting more e�ciently the available knowledge or increasing the knowledge available.

9The test sets were kept relatively small to simulate a sparse-input learning task. The assumption is that
most of the lexical de�nitions have been entered as part of the knowledge engineering of the system. Words
that were overlooked in this process are not likely to be encountered frequently by the system, so the testing
set contains a small number of examples of each word. The evaluation of Camille's performance on larger test
sets is mentioned in section 3.4 and described completely in section B.2.5.

10Unfortunately, the only other lexical acquisition systems which were tested on real-world input, MayTag
and AutoSlog, did not learn verb meanings to the same extent that Camille did. Thus, the testing results of
these systems are not directly comparable. Chapter 5 contains a qualitative comparison of these systems with
Camille.
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The tradeo� between inferring correct hypotheses and limiting the number of hypothe-

ses generated also resulted in the use of a more discriminating scoring mechanism, adapted
from the MUC conferences [Chinchor, 1992]. These measures, Recall and Precision (originally
taken from the �eld of Information Retrieval), are de�ned below. Two other calculations,
Accuracy and Production, describe respectively the system's performance on the hypotheses

it made (as reported above), and the percentage of possible verbs for which it produced hy-
potheses. A �nal measure, Parsimony, shows the percentage of de�nitions Camille made that
were exactly right, i.e. where the correct concept was only concept generated.

� CONCEPT: a single concept from Link's domain representation

� HYPOTHESIS: a set of CONCEPTS that constitutes Camille's de�nition for an unknown
word

� CORRECT: the number of words for which a correct CONCEPT was included in the
HYPOTHESIS

� ONE-CONCEPT-CORRECT: the number of words for which the correct CONCEPT
was the only member of the HYPOTHESIS

� CONCEPT-SUM: the sum of the concepts generated for all of the words

� GUESSES: the number of HYPOTHESES generated

� POSSIBLE: the number of unde�ned words which could have been assigned HYPOTHE-

SES

� RECALL: CORRECT / POSSIBLE

� PRECISION: CORRECT / CONCEPT-SUM

� ACCURACY: CORRECT / GUESSES

� PRODUCTION: GUESSES / POSSIBLE

� PARSIMONY: ONE-CONCEPT-CORRECT / POSSIBLE

Recall is similar to the score described above, Accuracy, except that the denominator
is the total number of words that could have been hypothesized from the test set instead
of the number that were actually hypothesized. Precision scores increase as the number of
superuous hypotheses goes down. Production rates how well the system does at producing

some hypothesis from the test set.

In the Assembly Line test, Camille scored a Recall of 51%, a Precision of 13%, a
Production of 63%, (as reported above) an Accuracy of 82%, and a Parsimony of 9%. The
Terrorism test produced scores of 33% Recall, 15% Precision, 67% Production, and 6% Parsi-

mony. The low Precision scores reect the fact that Camille was producing a large number of
hypotheses per word.
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3.2.5 Assumptions and limitations: Camille 1.0

In the initial test, several of the words could not be correctly inferred because they
were ambiguous. Camille 1.0 had di�culty inferring the correct meanings of ambiguous words,

because it had no easy way of forming disjunctive hypotheses. Methods of addressing this

di�culty will be described in section 4.3.

Another obvious limitation of this initial system is that it assumed that every aspect
of meaning about the domain was a priori represented in the concept hierarchy. This has two

consequences: First, a new word could only be assigned to an existing node in the hierarchy.
There is no mechanism for adding new elements of meaning. Second, there was no way to
re�ne the meaning of a given node with additional information. These two factors limited the

type and value of the inferred meanings. Thus, although the system could learn the meanings
of words it didn't know, it couldn't learn new concepts. Within the context of the information
extraction task, where the type of knowledge about the domain is quite limited, this is not
critical. In order to apply the system to other tasks, concept learning would be useful, and it

is discussed in section 4.4.

Another limitation is the extent of the knowledge which is used to inuence the
learning process. The initial system used only information from within a sentence to make its

inferences. Chapter 4 describes the extensions made to utilize additional domain knowledge.

3.3 Camille 1.1: More speci�c concepts

As mentioned above, the initial system worked fairly well in that it found the ap-
propriate concepts for the words to map to, but it found many others as well. Thus, the
hypotheses that were produced were of little value. In order to reduce the number of hypothe-
ses, Camille was extended to make it rank the remaining set due to the tightness of �t between

the constraint of the hypothesized concept and the slot �ller in the example sentence. For
example, the concept Arson takes an object that is a Building, and the concept Bomb takes an
object that is a more general concept, Human-or-Place. Therefore, given an example sentence

with an instance of a building as the object, the system regards Arson as a \tighter �t" than
Bomb.

After measuring all the distances between the �llers and the constraints, Camille

removes from consideration all but the tightest matches. Note that this is another inductive
step. Either hypothesis in the example above is consistent given the evidence; consistent, but
not very useful. By eliminating lower-ranked hypotheses, the system induces meanings that
are more useful since they are more speci�c and therefore have a higher information content.

In general, more speci�c hypotheses are more falsi�able. In other words, because Building IS-A
Human-or-Place, there must be at least as many instances of Human-or-Place as of Building.
Therefore, future example sentences are more likely to violate Arson's constraints than Bomb's
| unless, of course, the hypothesis for the word is correct.

Because the testing protocol for Camille was developed after several of the versions
were completed, it was impossible to test this version independently of the next version of the
system, Camille 1.2. Thus the results shown in the next section reect improvements based

both on the elimination of less speci�c concepts and the improvement of the system's instance
memory.

Unfortunately, given the granularity of the semantic representation for text analysis

in these domains, many sets of concepts remain that are indistinguishable by their constraints.
Therefore, even this more particular version of the system infers many hypotheses for a word's
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meaning. Further e�orts to address this di�culty will be discussed in section 4.2.

The initial inferences that the Camille 1.1 made were good, but it was possible for
the inference process to become confused by multiple instances of a word's use. When Camille
infers a word meaning that is later proved to be incorrect, the initial inferred concept is taken

as the starting point of the search for a more suitable hypothesis. As described above, the
Generalize procedure ascends the tree11 to begin the search for a new concept to map the
word to. On its way up the tree, the initial version of this procedure collected the constraints
of the parent nodes. For example, if Camille 1.1 started with the Arson concept, and got a

sentence with an object that was a Person, the original hypothesis was no longer valid. The
system checked the parent of Arson, Terrorist-Act, to see if it had legal descendants. It took
the constraint from Arson, i.e. that the Object was a Building, to apply to future hypotheses.

At this point, Camille 1.1 examined the constraints of the parent node to see if its
constraints were violated by the accumulated evidence. If so, the Generalize procedure was
recursively called. If not, as it does normally for unknown words, the system tried to �nd any

more speci�c nodes whose constraints were not violated by the accumulated evidence. With
the current example, the system would �nd the Robbery node that can be applied to both
people and buildings.

The problem with this approach is that given another instance where constraints are
violated and Generalize must be called, the system lost information. The only constraint
on the Object of a Robbery is that it is a Human-or-Place, but this information is stored at
the Attack node. Generalize could select any of the siblings of Robbery since it no longer

remembered the previous examples of the word's Objects. Note that one alternative is to
collect the most speci�c constraints of all the parents using them to check new hypotheses, but
this would result in hypotheses that were too general | no concept more speci�c than the one
with the constraint for a slot �ller could be chosen. The other alternative is to change what

the system views as a hypothesis about a word's meaning. This approach is discussed in the
next section.

3.4 Camille 1.2: Remembering slot �llers

Camille 1.2 extended the hypothesis structure in the following way: Instead of just

saving the concept that the word refers to (as well as the associated syntactic information),
the structure of the hypotheses that the system keeps was extended to contain a record of the
speci�c slot �llers that it had encountered in example sentences. This allowed the Generalize

procedure to use its \memory" of the prior examples of the word's usage when searching for a
new hypothesis. Thus Camille 1.2 was assured of inferring a meaning that was consistent with
the current and prior evidence.12

Another potential approach to this problem would be to save more of the �nal struc-
ture of the parse rather than just saving the slot �llers. If the DAG:

11Because all descendants of a node inherit the parent's constraints, any example sentence that violates the
parent's constraints must also violate the descendant's.

12This reduces one of the advantages of having an incremental system: the saving of space. The algorithm
remains incremental, however, and saves search time. Furthermore, it saves space over an implementation that
stores every entire parse or example sentence for each word.
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were saved as the meaning of frooble for the sentence, \Terrorists froobled the building," then,

hypothetically, uni�cation could ensure that all the constraints were ful�lled. Although this

would be an elegant solution, it would not work. Extending the previous example with another
instance of an unknown word with a Civilian as its Object, the system would have to try to
unify Building and Civilian. Because neither is subsumed by the other, uni�cation would fail,
and the inference procedure could not continue. In e�ect, this would be applying the constraint

to the conjunction of the two slot �llers. Instead Camille will apply the constraints to each slot
�ller separately. If each one satis�es the constraint, then the current hypothesis is consistent

with the evidence that has been encountered.

This version of Camille achieved a Recall of 71%, a Precision of 22%, a Production
of 94%, an Accuracy of 76%, and a Parsimony of 14% in the Assembly Line domain. As
displayed in �gure 3.11, this represents a signi�cant increase in Camille's performance. Pro-

duction, Recall, Precision, and Parsimony all increased (by roughly 50%, 40%, 70%, and 56%
respectively).

In the Terrorism domain, the test results told a more complicated story as shown in

�gure 3.12.13 Camille's scores (41% Recall, 19% Precision, 99% Production, 47% Accuracy,
and 18%) showed an increase in Precision, but a slight decrease in the other measures. This is
a typical case of what the Information Retrieval �eld calls the Recall / Precision tradeo�. If a

system generated every possible concept as the meaning for each unknown word, it would be

13Section 4.6 contains an analysis of the di�erences between the domains and the e�ects that they had on the
hypotheses inferred by Camille.
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Figure 3.12: Cumulative Camille performance, Terrorism domain

bound to get 100% Recall | but very low Precision. By reducing the size of the hypothesis
sets, Precision (and Parsimony) increases. Sometimes, however, a correct concept is removed
from a hypothesis along with the incorrect ones. This results in reduced Recall (and Accuracy)

rates. The most straightforward method for Camille to increase its Recall (without decreasing
Precision), would be to obtain more instances of the example sentences. Because Camille is a

non-interactive system, however, it cannot control its input.

This version of Camille was also evaluated on larger tests with the expectation that
increasing the number of repetitions of each word would increase the likelihood that Camille
would correctly infer meanings. The results said more about the complexity of the domain
than the performance of the system however. After processing 100 sentences, Camille's scores

dropped signi�cantly, to 29% Recall and 16% Precision. After 150 sentences, the score was
down to 24% Recall and 13% Precision. At this point the score seemed to bottom out, with
50 more sentences producing no further decline.

The reason for this decline was the di�culty that the parser had in creating a suc-
cessful parse. The noise generated by incorrect parses not only hampered Camille's ability
to infer meanings, it seriously degraded it. For example, from a sentence like, \Authorities

have o�cially reported that several bank o�ces were adversely a�ected tonight in the . . . ,"
the parser attached \bank o�ces" as the Object of \reported". This caused Camille to infer
that \reported" meant Arson.

In order to isolate the e�ects of the parser on the learning mechanism, a set of
test sentences was \hand-parsed" to extract the correct slot �llers.14 The correct argument
structure for the previous example would be: (\reported" (OBJECT . IGNORE-ACTION)
(ACTOR . GOVERNMENT-OFFICIAL)). Testing on these structures showed the expected

increase in performance, from 59% Recall and 32% Precision for 50 sentences to 71% Recall

14The resulting structure was similar to those used by Salveter, Selfridge, and Siskind as described in the
chapter 6.7.
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and 43% Precision. Figure 3.13 compares the Recall and Precision for the \real" results (using
parses produced by LINK) and the ideal results (using the hand-parsed structures). The
reduction seen after 100 sentences in the ideal version is largely due to mismatches between
the expected argument structures and some actual usage. For example, the constraint on

the Actor of State-Belief is that it is a Human (including Organizations). A sentence like,
\The constitution stated that . . . " produces conicting evidence for Camille's hypothesis that
\stated" means State-Belief.

3.5 Analysis of Camille's basic implementation

The task of lexical acquisition for Camille reduces to searching for an appropriate node
in the domain representation. This abstraction of the task reveals an important distinction

between learning nouns and learning verbs. The constraints on actions provide a natural upper
bound on the interpretation of unknown object labels. For action labels, no such upper bound
exists. Thus, in order for Camille to make useful inferences about verb meanings, it must

inductively limit its search space. Camille does this by choosing the most readily falsi�able
hypotheses. This gives Camille the best chance for correcting its mistakes. Thus the system
can quickly converge on an appropriate hypothesis for many unknown words.

This approach to lexical acquisition is incremental so its processing and storage re-
quirements are minimized. The system learns automatically from example sentences so it does

not require guidance from a human trainer. Camille doesn't need additional knowledge sources.
It uses only the knowledge that is present for standard parsing.

Camille's implementation was an evolutionary process based on analyses of its per-
formance in empirical testing. The major steps in the evolution were:

� The initial system: The Re�nement Tree was used to inductively set an initial upper
bound on the interpretation of verb meanings. From the resulting subspace, the most
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speci�c concepts were chosen which had constraints that were satis�ed by the slot �llers.

If the initial guess was wrong, the Generalize procedure started the search anew, main-
taining the constraints for the previous hypothesis.

� Weak hypotheses removed: After the most speci�c consistent concepts were found, they
were ranked based on tightness of �t between the slot �ller and the constraint. Only the

tightest were kept.

� Improved memory: The hypotheses were extended to maintain the semantic types of the
slot �llers that were attached to them. This allowed the Generalize procedure to avoid
rechoosing previously rejected hypotheses and select ones that were consistent with all of
the examples of the word's use. The record of slot �llers was also crucial for the approach

to recognizing ambiguity that is described in the next chapter.

The basic Camille approach does have some weaknesses. The production of large

sets of concepts in hypotheses was not completely mitigated by the elimination of less-speci�c
concepts that was described in section 3.3. Many sets of concepts remain that are indistin-
guishable based only on the use of slot �llers. Section 4.2 describes one mechanism for further
re�ning hypotheses.

The learning procedure is sensitive to noisy input. Because it uses an inductive
procedure, Camille assumes that if one of its hypotheses conicts with subsequent evidence,
then the original guess was incorrect and the hypothesis should be altered. Noise can be

produced by a number of sources, most commonly incomplete parses and ungrammatical input.
The test domains in this thesis contained mostly grammatical text. The Terrorism corpus was
so complex, however, that it caused great di�culty for the parser, and incorrect or incomplete
parses were common. Noisy input can cause Camille to infer that a word takes a larger range

of slot-�llers. As a result, the system will make an overly general hypothesis for a word's
meaning. One approach to handling noise is suggested by the Camille variation for dealing
with ambiguous words which will be described in the next chapter. The implementation of
this addition is left to future research.

As just mentioned, Camille has di�culty learning ambiguous words. If a verb occurs
with two distinct types of slot �llers, the system will search for a concept that can accept the
least upper bound of the �llers for that slot. Section 4.3 describes a mechanism for recognizing

situations where �llers separate into two distinct classes, and then hypothesizing multiple
de�nitions. The section further describes a method of inferring meanings for ambiguous nouns.

Because Camille was implemented with the goal of using only the knowledge that
LINK requires for parsing, it is unable to make certain inferences about word meaning. The

representation for action concepts describes only their names, their IS-A relationships to each
other, and their constraints on slot �llers. Although the script mechanism described in sec-
tion 4.2 allows Camille to make inferences based on sequences of actions, the system has no

knowledge of the results of actions, their causes, or what goals they might achieve. The ad-
dition of such knowledge would enhance Camille's learning abilities, but it would also impose
an additional resource requirement.
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CHAPTER 4

CAMILLE 2: VARIATIONS

In the development of Camille, the initial emphasis was on exploiting the linguistic
constraints within a sentence and perfecting the search mechanism that relies on those con-

straints. The previous chapter described the initial implementation and the enhancements that
were made to Camille to fully exploit all of the available intra-sentence information.

This chapter describes variations on the basic graph search mechanism. The �rst

section describes the implementation of a technique taken from current Psycholinguistic theo-
ries, Mutual Exclusivity. This mechanism is proposed as a way that children can decrease the
complexity of their word-learning task, especially for learning object labels. Implementing it

within Camille allows examination of the technique as applied to labels for actions. Further-

more, because it requires a strict formalization of the theory, it brings up additional issues that
have not been addressed in the Psycholinguistic literature.

The next section describes enhancements which exploit the connections between sen-
tences in a dialogue. The use of scripts, which describe canonical sequences of actions, allows

NLP systems in general to infer missing information from default values. Scripts allow Camille
to make inferences based on the co-occurrence of actions in texts.

The third section describes the enhancements that were made to Camille to enable

it to deal with a problem described in the previous chapter: ambiguous words. These en-
hancements allow Camille to learn ambiguous words by splitting its hypotheses given su�cient
evidence that there are distinct senses of those words.

The fourth section describes a similar approach to expanding the concept hierarchy.

If learning a new word suggests to Camille that its domain representation is incomplete, an
additional concept can be added to the hierarchy.

The �nal section of this chapter contains an analysis of the advantages and disad-
vantages of these enhancements to Camille. It also describes the features of the di�erent test

domains that made them amenable to particular word-learning techniques.

4.1 Camille 2.0: Mutual Exclusivity

The Camille 1.2 implementation could be misled into inferring the same meaning
for many di�erent words. For example, if it processed a news story that chronicled a series
of attacks on a certain building, Camille, because its closest object constraint for Building is

Arson, would infer that all the actions were Arsons, even if there were bombings, machine-
gun attacks, etc. A similar problem occurs if there are few examples of a word's usage. For
example, if Camille processed only one example of the use of the word \rob", and that sentence
had a Building for an Object, then it would infer that \rob" meant Arson. In order to infer

the proper concept, Camille needs the additional evidence that \rob" can also be applied to
people.
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When children learn language, they are faced with a similar problem. They are

presented with a large number of words and a large number of possible referents of the words.
Psycholinguistic researchers have suggested one mechanism that children might use to overcome
this computational di�culty: the Mutual Exclusivity constraint [Markman, 1991]. The theory
behind this mechanism will be further addressed in section 6.6. The hypothesis is that when

young children are just starting to learn words, they assume that the meanings of words are
mutually exclusive; that is, that each word has a completely distinct meaning.1 Although
most of the Psycholinguistic work in this area has been in the application of this constraint to

noun/object learning, Camille was extended to incorporate Mutual Exclusivity to examine its
e�cacy for noun and verb learning.

The basic implementation of this constraint was fairly simple. Camille was extended

to keep track of the words that refer to each concept. During the acquisition process, Camille
2.0 would not consider concepts that were already the referent of another word. Mutual
Exclusivity was enabled by a switch to facilitate evaluation of the system with and without
this additional feature.2

One implementation decision had to be made that was not addressed in the Psy-
cholinguistic literature. The question was what to do with hypotheses that contained multiple

possible referents (as Camille's hypotheses often do). The work in children's language acqui-
sition assumes that a child maintains only one referent for each sense of a word. Thus when
another word is encountered that appears to refer to the same concept, Mutual Exclusivity can
be applied, resulting in the rejection of that hypothesis and a continued search for the referent

of the unknown word.

The approach taken in the Camille implementation was to store the mapping from a

concept to the word only if the system was \sure of itself", that is, if Camille inferred only one
possible concept as a referent for the unknown word. Thus, if Camille had produced multiple
concepts for the meaning of some word, this would not be used as evidence against assigning
another word to one of those concepts.

The results of testing Camille with the Mutual Exclusivity constraint active were
as follows: for the Assembly Line, Recall was 69%, Precision was 23%, Production was 94%,

Accuracy was 73%, and Parsimony was 14%. For the Terrorism domain, Camille achieved 24%
Recall, 21% Precision, 88% Production, 27% Accuracy, and 12% Parsimony. For the Assembly
Line test, the results (both overall and word-by-word) were quite close to those produced by
Camille 1.2. The Mutual Exclusivity system changed only two hypotheses. In one case, the

concept Uncoil was rejected as the meaning of \uncoil" because the word \route", which can
also take a Wiring-Harness as an object, was attached to the concept �rst. (\Route" later

1This hypothesis is clearly not true in general. It would imply, for example, that \dog" and \collie" could
not refer to the same object. Current Psycholinguistic theory suggests two resolutions: First, there are certain
conditions under which children will suspend the Mutual Exclusivity constraint. Second, this mechanism is used
only for a brief period during early linguistic development, and then discarded. Note that this is a clear contrast
to Camille's situation, especially in the Terrorism domain, in which a large number of lexical items have already
been de�ned.

2This is a simpli�cation of the Mutual Exclusivity constraint described in the Psycholinguistic literature.
As previously mentioned, the Psycholinguistic work has concentrated on object labels. The basic version of
the constraint has as many implications for concept creation as for object labeling (related Camille work is
discussed in section 4.4). For example, in the \dog" / \collie" example given above, Mutual Exclusivity would
suggest the creation of two (exclusive) concepts at the same level of the object hierarchy. Another formulation
of the Mutual Exclusivity constraint, however, speci�es that it applies only within a level of the knowledge
representation hiararchy. Thus it would distinguish \collie" and \poodle", but not \collie" and \dog".
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appeared in an example which caused the system to change its hypothesis for the meaning of

this word.)

In the Terrorism domain, the results were lower than for Camille 1.2. Because of the

range of expression in the texts and the coarse granularity of the required output, there were
many words that referred to the same concepts. There were 10 di�erent words that mapped to
the concept Attack. In general usage, these words (\club" and \torture", for example) mean

di�erent things, but for the purposes of the information extraction task, they were synonymous.
For the words meaning Attack then, there was only a one in ten chance that the appropriate
concept had not already been \claimed" (assuming Camille inferred only one concept per word).
Thus, a high number of correct hypotheses were rejected because a synonym had already been

de�ned.

This led to a general conclusion about this mechanism. Mutual Exclusivity seems
to work well for the early stages of learning, when the agent is learning a lot of new words.
Later, more of the words tend to overlap in meaning, and therefore, Mutual Exclusivity may
steer the learner away from a reasonable hypothesis. This is consonant with accounts of

the use of Mutual Exclusivity in children [Markman, 1991; Markman, 1990], which suggest
that children use this constraint for only a brief period in their development. Clark [1987]

maintains that language users always follow her more general Principle of Contrast, which
states that no two words are exact synonyms. This does not conict with the conclusion

about Mutual Exclusivity described above because LINK only represents gross features of
word meaning. Thus a maturing language learner can allow two words to be synonyms on the
level of representation that Camille uses, but allow that they are distinct at some more subtle

level (for example, Formality, as in \cop" versus \policeman"). Because Camille does not use
such a �ne-grained knowledge representation, its lower scores on the Terrorism domain tests

were not surprising.

The implementation of this constraint was interesting in that it seemed to raise more
questions than it answered (leading to speculation about the use of cognitive models which
will be taken up again in Chapter 6). The �rst problem was that of the multiple-concept

hypotheses as mentioned at the beginning of the section. It is unclear what humans do. Do
they never have multiple possibilities for the meanings of words? Do they have a threshold of
activation over which they assume that they have found the proper meaning?

The second di�culty could be called the Truth Maintenance problem. What should
the learner do if some mapping of a word to a concept rejects a later hypothesis, and then the

original mapping changes? Consider the case of the word \rob" as described at the beginning of
this section. Under the mutual exclusivity constraint, if the learner heard the sentence \Harry
torched the building", Arson would be ruled out as a possible meaning because the word \rob"

is already attached to it. But what if the system later corrected its hypothesis of the meaning
of \rob"? Is some sort of truth maintenance system necessary to track these mappings and
their dependencies?

The last question is, under what circumstances is the Mutual Exclusivity constraint
overridden? It is clear that people eventually learn that some words are very close synonyms,
and the meanings of some words overlap with each other. What type of evidence must the

learner receive to override this constraint? The discussion of the Psycholinguistic theory behind
Mutual Exclusivity and the analysis of its use in a cognitive model are carried on in Chapter 6.
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4.2 Camille 2.1: Scripts

The enhancements to Camille that were described in the previous chapter resulted
in a fairly powerful meaning-inference mechanism. Despite the promising results, however,

Camille was still incapable of making certain distinctions. Too many di�erent concepts were
indistinguishable on the basis of the intra-sentential knowledge that the system utilized to make
its hypotheses. As a result, many of the hypotheses contained a large number of concepts. For
example, Camille 1.2 inferred the set of hypotheses (Ambush Injure Kidnapping Murder Shoot)

for the word \kidnapped". Despite the fact that the system encountered several examples of
the word's use, in each, the Actor was a Terrorist and the Object was a Civilian. Using only
knowledge about role-�ller constraints on actions, Camille was unable to distinguish among the
members of the set of hypotheses. Additional discourse information, for example that there

was a ransom demanded, can steer Camille to the correct single hypothesis.

In order to extend the system's knowledge | and thereby extend the inferences that
it could make about unknown words | knowledge about sequences of actions was added to the
semantics in the form of scripts [Schank and Abelson, 1977; Cullingford, 1977]. Scripts specify

common sequences of events or scenes. The classic example of a script describes what happens
in a restaurant: the patron enters, is seated, gets a menu, orders, eats, pays, and leaves.

Cullingford's Script Applier Mechanism, SAM [1977], processed stories using scripts.
Each script had certain trigger words de�ned for it, many of which were verbs. For example,

trigger words for the restaurant script might be \went out", \dined", \restaurant", or \or-
dered". After a script was selected, SAM invoked a Conceptual Dependency [Schank, 1973]

analyzer on each sentence and matched the constituents of the sentence with the expectations

of one of the scenes in the script. The integration process �lled in the slots of the script and
created pointers between the sentences in a form of anaphora resolution. After all the sen-
tences of a story were processed, the script contained a cohesive account of the story. Because
scripts have expectations about the scenes and speci�c slot �llers in a scene (for example, the

restaurant customer pays the bill at the register), the script could use these expectations as
defaults for information which was left out of the story.

Scripts can be put to a di�erent use in the word-learning process: they constrain

which actions (and thus which word referents) are likely to co-occur. This provides a sort

of discourse-level knowledge that was missing in previous versions of the system. Thus the
context of surrounding sentences can be leveraged in the lexical acquisition task. This section
describes the implementation of Camille's script applier, its relationship to lexical acquisition,
and results of empirical testing.

4.2.1 The script structure

Camille's scripts are de�ned in the semantic knowledge base in a similar manner
to the basic domain knowledge. Figure 4.1 shows an example of a script from the terrorism
domain. This script de�nes a sequence of actions likely to be associated with a bombing.3 Line
1 gives the name of the script and its parent in the semantic hierarchy. The numbered arcs

in lines 2{4 specify the subevents that are expected, similar to the speci�cations in grammar

3Note that this type of script di�ers somewhat from the standard type mentioned above. Instead of describing
a sequence of actions that occur in a story, Camille's terrorism scripts describe actions that are likely to be
reported in newswire accounts. Thus, there is less of a connection between the scenes of the scripts.
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(define-sem bomb-script is-a (terrorist-action-script) ; 1

formulae (((1) = purchase ; 2

(2) = bombing ; 3

(3) = destroy ; 4

(1 actor) = (2 actor) ; 5

(1 object) = explosive ; 6

(1 object) = (2 instrument) ; 7

(2 object) = (3 object)))) ; 8

Figure 4.1: A simple terrorist script

rules of which constituents make up the particular phrase.4 Lines 5{8 specify constraints on

the scripts. 5, 7, and 8 provide links between slot �llers of the di�erent events. Line 6 speci�es
the type of a slot �ller for a particular subevent. As with regular concept de�nitions, the script
de�nitions are translated into DAG form so that they can be uni�ed with parse results.

Scripts can also represent more complicated situations. Figure 4.2 shows a set of

interrelated scripts. These scripts illustrate two additional mechanisms for representing se-
quences. The �rst is the use of subscripts. Line 4 speci�es that the third action of the
assassination-script is a script itself, investigation-script. This script has one child in the is-a

hierarchy, namely investigation-script-1. This representation allows a subscript to be included
in various other scripts.

The second advantage of this representation is that it allows for alternatives. The
de�nitions starting at lines 20 and 24 are both children of the trial-script node which is part

of investigation-script-1. These subscripts allow for two di�erent sequences of subevents to be
included in a script. Their application to lexical acquisition will be described below.

4.2.2 Camille's script applier

The most basic action involved in applying a script to a discourse is the same as
the basic action for parsing: uni�cation. Because the scripts are represented in the same

format as all the other information that LINK uses, it is possible to simply unify the semantic
representation of the parse with a scene of the script. However, since the \constituents" of the
scripts are not words as they are for the parser, a di�erent mechanism is needed to invoke the
uni�cation. Note that this mechanism is independent of the representation of the scripts, and

so there are many possible ways of applying the scripts to the discourse. Traditionally, key
words are used to \trigger" particular scripts. Because verbs provide the linguistic head for the
meaning of the sentence, the verbs usually serve as the script triggers. But it is precisely these

words that Camille is trying to learn, so the system can't use this type of script application.
The mechanism described here is appropriate to the lexical acquisition task.

The basic script applier started with a list of possible scripts that could be encountered
(or were de�ned as \interesting" by the MUC-type tasks). The script applier looped through

4Although the ordering of the subevents in the scripts is the standard ordering that occurs in the accom-
plishment of the action, the events in newswire corpora such as that used in the Terrorism domain are often
reported in a di�erent order. For this reason, di�erent versions of the application mechanism were tested, one
which required strict sequentiality and one which accepted the events in any order. The results of the evaluation
are described in section~refscript-eval.
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(define-sem assassination-script is-a (terrorist-action-script) ; 1

formulae (((1) = plan ; 2

(2) = murder ; 3

(3) = investigation-script ; 4

(4) = identification ; 5

(2 object) = human-or-official ; 6

(1 actor) = (2 actor) ; 7

(3 3 object) = (2 actor) ; 9

(4 object) = (2 actor)))) ; 10

(define-sem investigation-script-1 is-a (investigation-script) ; 11

formulae (((1) = investigation ; 12

(2) = questioning ; 13

(3) = charging ; 14

(4) = trial-script ; 15

(1 actor) = law-enforcement ; 16

(2 actor) = (1 actor) ; 17

(3 actor) = government-official ; 18

(4 object) = (3 object)))) ; 19

(define-sem acquittal-script is-a (trial-script) ; 20

formulae (((1) = acquittal ; 21

(2) = release ; 22

(1 object) = (2 object)))) ; 23

(define-sem conviction-script is-a (trial-script) ; 24

formulae (((1) = conviction ; 25

(2) = sentencing ; 26

(1 object) = (2 object)))) ; 27

Figure 4.2: A complex terrorist script
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the sentences in a text and ran the parser, including Camille's lexical inference procedure, on

each one. After each parse, the script applier attempted to unify the semantic representation
of the parse with one of the numbered scenes of any of the scripts. As a side e�ect of successful
uni�cation, the semantics of that parse were included into the script. If the uni�cation was
unsuccessful, nothing was added to the script. This process continued for each sentence,

attempting to unify its semantic representation with some scene of each script.

If the scene was �lled by the parent of some subscript, additional processing was

necessary. Since there could be multiple incompatible subscripts, a copy of the entire script
DAG was made for each subscript. Then the uni�cation process was attempted recursively on
these subscripts.

When all of the sentences were parsed and their parses merged into the scripts, the
script applier �ltered the set of scripts, keeping only the script with the highest percentage of

its scenes �lled. This remaining script was then the representation for the entire discourse.

An example will help illustrate the operation of the mechanism. Consider the short

text:

Terrorists bombed the Parliament building today with high explosives.

The attack destroyed the east wing of the building.

After parsing the �rst sentence, the script applier attempted to unify one of the scenes
of the various terrorist action scripts with the semantic representation of the parse. Because
the head of the parse was Bombing, the only script with an acceptable scene was the bomb-

script. Uni�cation �t the action into the second scene of the script and created links to the

�rst and third scenes. After parsing the second sentence, the Destroy action was �t into the
third scene of the script. Note that the �nished script supplied the default information that
the explosives were purchased somehow by the o�ending terrorists.

4.2.3 Scripts and lexical acquisition

The introduction of scripts into the parsing process is potentially quite bene�cial

for the lexical acquisition task. Given a sentence in isolation like, \The terrorists froobled
the senator," Camille could not distinguish between the various possible interpretations of
\froobled". If, however, the same message contained information about the senator being held
hostage, or the terrorists demanding random, then Camille would be able to instantiate the

kidnapping-script and uniquely infer the meaning of \frooble".

The method for doing this is basically the same as was described above. The key

though, is that if the main verb of the sentence is unknown, then Camille's lexical inference
mechanism will be invoked and propose a set of hypotheses for the word's meaning. Uni�cation
handles this event by eliminating those concepts from the set which do not unify. For example,

unifying Murder with (Murder Kidnapping Injure) returns (Murder). Because the scripts tend
to mention very speci�c concepts like Murder, the application of the scripts to the text can
quickly reduce the number of extraneous hypotheses.

A simple example will explain how this could work. Consider this slight alteration of
the previous example message (assuming the system does not know either verb):

Terrorists nuked the Parliament building today with high explosives.

The attack obliterated the east wing of the building.
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While processing the �rst sentence, Camille initially infers that \nuked" could mean

one of several di�erent concepts, (Arson Bombing Destroy). Because only Arson has a constraint
that the Object is a Building, the other concepts are eliminated from consideration. When
the script applier attempts to unify the parse result with the scripts, several are eliminated
because they deal with objects that are human. When attempting to unify the parse result

with the bomb-script, the script applier �nds that the slot �llers of the sentence match those in
the script, but the concept doesn't match. Because the meaning is just hypothesized, the script
applier starts searching for a concept that is legal for the particular slot �llers and �ts in the

script. Eventually it �nds the Bombing concept and enters it into the script. After processing
the next sentence (again Camille produces Arson as the possible meaning of \obliterate"),
the script applier �nds that by generalizing, it can �nd the concept Destroy which �ts into the
script. After processing the entire message, the resulting script is searched for word hypotheses,

and they are written to the lexicon.
In order to add the use of scripts to the Assembly Line domain (described in Ap-

pendix B), a di�erent approach to implementing the script applier was needed. Because the
\messages" in this domain describe sets of actions that an assembly line operator must per-

form, the sentences are inherently sequential. Furthermore, adjacent sentences often refer to
the same slot �llers, for example:

Get door handle from bench.

Position handle.

Secure handle with two nuts.

In order to �t this type of sequence into the Assembly Line scripts, another version

of the script applier was created that required sequentiality of the actions. In order to allow
for botched parses and unexpected operations, this script applier allowed some of the scenes
to be skipped. The script applier was also extended to allow iterations of actions, for example

allowing a Get followed by any number of Manipulations followed by an Assemble.

4.2.4 Empirical testing

The use of scripts promised to be a powerful mechanism for adding discourse infor-
mation to LINK and to Camille. The actual test results were somewhat equivocal, however.
In the Terrorism domain, Camille 2.1 scored Recall 30%, Precision 43%, Production 60%,
Accuracy 50%, and Parsimony 30%.5

The biggest success of the script mechanism was in increasing Precision. Camille
produced a total of only 7 concepts in its 6 hypotheses that it generated for the Terrorism
verbs. As hoped, the scripts succeeded in eliminating many of the extra concepts which could
not be ruled out based on intra-sentential information.

In some ways, however, the script mechanism did not meet expectations. In the
Terrorism domain, the nature of the texts was quite di�erent from the intuitive notion of
script structure. For example, in 100 messages, 9 mentioned kidnappings. Although the use of

a script to represent kidnapping seems appropriate (the victim is taken hostage, a ransom is
demanded and paid, and the victim is released), the articles as a rule did not refer to related

5These results are not directly comparable to the tests run on the basic system. The texts were complete
newswire messages instead of selected sentences. The communication verbs (\reported" for example) that were
learned by the basic Camille system did not appear in the scripts, so they were not counted in the calculations.
Nevertheless, a graph that combines all the test results is included in section 4.5.
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events. None of the 9 articles mentioned any ransom demands. One mentioned an escape from

an attempted kidnapping. Only one used the word \hostage" and that was as a noun referring
to the victims.

What did the messages include? All of the messages that mentioned the kidnapping
of a single person went into detail about who the person was and sometimes where he or she
was going when kidnapped.6 This is exactly the same type of information provided about the
victims of any terrorist attack. Thus, none of the concepts that one normally considers as

being part of a \standard" kidnapping sequence helped Camille learn meanings of unknown
words. In the end, a more general script form was used that allowed greater variation, for
example: Nasty-Action, Wound, Murder. This type of script outperformed the more speci�c

scripts de�ned above.

In the Assembly Line domain, the \stories" described repetitive sequences that the

operators would perform at their station. These also appeared, at �rst glance, to be well-suited
for representation with scripts. The sequences often could be described as:

Get a part. Maybe get a tool. Prepare the part in some way. Attach the part to
the car. Start over.

Unfortunately, the uniformity of this sequence was not maintained. For example, a
particular operator could Position a door handle that another operator several stations down
the line would Secure. Several di�erent scripts were applied to the example texts. As in the

Terrorism domain, the scripts for which lexical acquisition worked best were the most general:
\Do any number of Factory-Actions. Do any number of Finishing-Actions." As described in
Appendix B, the scores for the test were: 34% Recall, 18% Precision, 40% Accuracy, 86%

Production, and 6% Parsimony.

Although the use of scripts did help the lexical inference process, the mechanism

was not as useful as had been reported by other authors. As will be described in Chapter 5,
scripts were the primary knowledge source for lexical acquisition for two of the more prominent

earlier systems, Foul-Up and Rina [Granger, 1977; Zernik, 1987b]. Unfortunately, neither
Granger's work nor Zernik's was systematically applied to real-world texts. It is no surprise

that these systems performed well when the authors wrote the scripts and the texts that their
systems processed. Considering the results found here, there is little reason to believe that

their approaches would be as e�ective in more realistic circumstances.

Although scripts do serve to bring in more discourse level knowledge, they are limited
in the type of knowledge that they provide. Scripts only describe likely sequences of actions
and possible links between the slot �llers. They do not allow inferences based on goals or plans

of the agents involved. A more robust concept representation mechanism could encode, for
example, that the result of Getting an item is to have that item, and perhaps that the goal
is to use that item. Then the system would not have to rely on sequences like: Get Tool, Use

Tool, Discard Tool. It could use the fact that is has some Tool to predict that it will be used
for some later (but not necessarily immediate) action.

As suggested by the analysis of the kidnapping texts, there was one other action
that was associated with a kidnapping: Escape. This was quite rare, however, and was often
separated in time from the original event. In the other message where the word \hostage" was

6This is not really surprising for several reasons: many of the other actions would not be known at the time
of the report; the other actions might not be considered important enough to report; and unless the victim is
world-famous, the victims \importance" must be described.
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used, it was the Actor of the sentence. Thus a script mechanism which links series of actions

would not be able to make the connection. Hypothetically speaking, if the system's goal were
just to learn the meaning of the word \kidnap", a faster (although still rarely applicable)
mechanism would be to perform a keyword search through the message looking for related
words (similar to some Information Retrieval stu�). If certain trigger words were found, the

various concepts in the hypothesis could be disambiguated. Although such a mechanism could
work for particular cases, it would not be generally applicable. Very few of the other Terrorist
actions have such \partner" actions.

4.3 Camille 2.2: Learning ambiguous words

Lexical ambiguity has been a thorn in the side of NLP for a long time (for an overview
of the di�culties caused by ambiguous words, see [Lytinen, 1988]). Much research has been
devoted exclusively to this problem. The goal of most of this work, however, was to devise a

mechanism for choosing between word senses. In other words, if a system knew that it had
encountered a word for which it had multiple de�nitions, how could it determine which sense
of the word was appropriate?

Fortunately, LINK handles this problem quite elegantly. An appropriate example
was cited in Lebowitz' thesis [1980, p. 229] which presented a system which deliberately made
generalizations based on natural language input:

Terrorists sprayed a car . . . with automatic weapons fire . . .

Lebowitz' system used several di�erent heuristics to disambiguate between the di�er-
ent possible meanings of spray. In this case, the system had a heuristic that if the domain was

terrorism, then the appropriate sense must be Shoot.

LINK's word de�nitions, with their constraints on the slot �llers that can be attached,
handle this situation in a di�erent way. LINK's lexicon has multiple de�nitions for the various

senses of spray. They di�er in their semantic interpretation and in the slot �llers that they
take. For example, spray could be de�ned (in a simpli�ed way) like this:

(Define-Word Spray

(Verb (Head Rep) = Squirt-Liquid

(Head Rep Instrument) = Hose)

(Verb (Head Rep) = Shoot

(Head Rep Instrument) = Gunfire))

When LINK encounters the word \spray", both de�nitions are entered into the
chart. During the parsing process when the phrase \with automatic weapons �re" is attached,
\weapons �re" which is subsumed by Gun�re is attached as the instrument of the main verb,
\spray". This action rules out the interpretation of spraying with a hose, and that branch of

the parse is not continued.

While learning new words, however, a di�erent problem arises. If Camille does not
know a word and that word is ambiguous, Camille must recognize that fact and somehow

di�erentiate between the meanings. Failure to recognize ambiguity can result in overly general
hypotheses. For example the word \apply", in the Assembly Line domain, is used in two
slightly di�erent ways. In \Apply tape to manifest," the operator is being told to attach a
Fastener to a Record. \Apply manifest to door" means to attach a Record to an Auto-Part, and

implies the use of a Fastener. If Camille does not recognize this ambiguity, it will search for
a meaning for \apply" that can take Objects that are both Fasteners and Records. Because
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the least upper bound of these nodes in the concept hierarchy is Factory-Object, there are few

verbs which have such a general constraint. Moreover, once the system infers one of these verbs
as a potential meaning, it is di�cult to discon�rm. Only a sentence with an object that is
not a Factory-Object could provide the necessary negative evidence, and these are rare because
Factory-Object subsumes most of the object hierarchy. This section describes the variation

of the learning mechanism that allows Camille to recognize ambiguity and generate multiple
de�nitions.

4.3.1 Noun ambiguity

Because of the di�erences that were previously discussed between verbs and nouns, the
mechanisms to deal with ambiguity in these words di�ered signi�cantly. This section describes

Camille's method for processing ambiguous nouns. The problem of handling ambiguous verbs
is discussed in the following sections.

When Camille encounters a noun that is unde�ned, it creates a generic de�nition

with a general object concept. When the noun is attached to a verb, that verb's constraint, as
a by-product of uni�cation, limits the interpretation of the meaning of the noun. At the end
of the parse, Camille need only record that interpretation as the hypothesized meaning of the
word.

Using this method, Camille is not making inductive hypotheses about the word's
de�nition.7 It is only applying a constraint that it knows must be true. For example, the
object of Detonate must be some descendant of Bomb (barring non-literal usage which will be

left for someone else's dissertation). Thus, if Camille did not know the meaning of \charge", it
could infer from the sentence, \Terrorists exploded a charge under the bridge," that \charge"
was a type of Bomb. If the system later processed the sentence, \Terrorists assassinated the
charge d'a�aires of the embassy," the system could (somewhat ignorantly) realize that it had

a di�erent meaning for the same word and hypothesize two senses of \charge".

The actual implementation of this mechanism is along the lines described above. The

generic noun de�nition which is put into the chart for an unknown noun contains the marker
Undef-Noun. At the end of the parse, Camille searches for all words that are marked as
unde�ned. Any tentative de�nitions are saved to the lexicon. Further examples of the word's
use can either con�rm the hypothesis, or provide additional evidence. If the unknown noun

is used in a more restrictive setting, uni�cation will again narrow the interpretation of the
word. If the constraint on that noun is outside the subtree described by previous usage, the
system �nds itself trying to unify a marked de�nition with an incompatibly-labelled DAG. The
uni�cation procedure was extended to notice this event and to produce a disjunctive meaning

for the word. For \charge", this de�nition would be (Bomb _ Human).

In order to test the ambiguous noun de�nition mechanism, the de�nitions of the
following words were removed from the lexicon: branch, charge, lines, others, plant, post,

quarter, state, and system. Because the lexicon only included de�nitions for the words that
were likely to be found in this domain, and it only included senses which were relevant to the
domain, these were the only ambiguous words in the lexicon.8 Furthermore, many of these

words were not \targets" for the domain. That is, their contribution to the sentence was not

7A more liberal approach will be discussed in section 4.4.

8Like the word \others", some additional words in the lexicon were vague. (For a discussion of dealing
with vague versus ambiguous words, see [Lytinen, 1988].) \Others" was the only vague word tested because it
occurred prominently in such examples as, \11 others were wounded."

46



important to the information extraction task. Nevertheless, after processing 100 sentences

which contained this set of words, Camille 2.2 was able to create ambiguous de�nitions for
�ve of the nine words: lines, others, post, state, and system.9 The system hypothesized 5
out of 9 ambiguous de�nitions, for a Production score of 56%. Recall, counting the correct
de�nitions, was 8 of 18 possible de�nitions, or 44%. Precision and Accuracy were 8 out of

12, or 67%. Because the system created only one concept for each sense of the ambiguous
de�nitions, Parsimony was the same as Recall, 44%.

This mechanism also provided valuable leverage for the process of inferring additional

concepts for the system. This variation of the system will be discussed in section 4.4.

4.3.2 Verb ambiguity

The ambiguous verb problem was most evident while processing the Assembly Line
domain.10 Due to the telegraphic nature of the text in this corpus, several words referred to
di�erent actions if used in di�erent contexts. If the word \check" had some kind of Record as

its Object, the intended action was to examine the record, which contains the speci�cations

of the car, to see if a certain option was included. If \check" had some other Factory-Object as
its Object, then the intention was to examine the object for defects.

This situation could be interpreted in two ways. It could be seen as an indictment
of the concept representation. One could claim that in this example, there are not really two

di�erent senses of \check" being used, there is just one: to examine something. The only
di�erence is that in the �rst case, there is something speci�c to look for. Because the second
example of \check" does not specify something to look for, the default, Defects, is implied.11

The other interpretation is that there is a true ambiguity: two distinct senses of
\check". If the system does not know the meaning of \check", then it will have a di�cult
time inferring its meaning. Because \check" will be encountered with a variety of slot �llers,

it will look like a general verb. The key to recognizing that there should really be two speci�c

de�nitions is for the system to realize that the slot �llers fall into two neat groups. The rest
of this section describes Camille's implementation of this capability.

Because Camille only has its linguistic input and no external context to leverage

against the ambiguity problem, it was necessary to implement a heuristic that splits hypotheses

based on multiple examples. Two di�erent approaches are possible. One approach would be
something like this:

The Liberal Approach: If a new word is encountered with a di�erent slot �ller
than previously seen, split the de�nition into two senses. In order to reduce the
number of hypotheses, join new words that have been encountered enough times

and whose slot �llers do not �t into two obvious groups.

The other possibility, loosely stated, would be:

9It also created single de�nitions for many other words that had been overlooked in the system development.
For example the word \impunity" was inferred to be an Instrument-Object.

10Appendix B contains a description of this domain.

11Note that this is a relatively rare situation. As suggested in Lebowitz' \spray" example, words with multiple
senses can often be disambiguated by putting them in a larger context. The information extraction task is
inherently single-context and thus most (but not all) ambiguous words have only a single meaning within the
domain.
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The Conservative Approach: If a new word is encountered enough times and

its slot �llers break into two obvious groups, then try splitting it into two di�erent
senses.

Of course, this principle must be operationalized, and it was done (somewhat arbi-
trarily) as follows: \Enough times" is de�ned as four instances. This seemed like the least

number of occurrences that would be likely to limit the probability of the instances coinciden-
tally breaking into two groups. \Obvious groups" was de�ned along the lines of basic levels

(see, for example, [Waxman et al., 1991; Corter and Gluck, 1992]). The psychological litera-
ture suggests that these are sets of culture-speci�c concepts which people are likely to use to

name things, for example, Chair as opposed to Furniture and Lounge-Chair. For this task, the
basic levels are operationalized as the concepts which are most likely to be used in slot-�ller
constraints, for example, Tape and Record.

Although both approaches might yield the same result with a large number of exam-
ples of unknown words, the relative infrequency of ambiguous words within these domains and
the likelihood that an unknown word would be encountered rarely suggest that the conservative
approach is more suited to the information extraction task. Camille relies heavily on di�ering

slot-�llers to inform it that it has chosen an overly speci�c hypothesis for a word's meaning.
This allows Camille to settle on an appropriate hypothesis in a small number (usually two or
three) of examples of a word's use. The liberal approach would conict with this strategy and
result in a highly fractured set of hypotheses for unknown words.12

In order to implement the conservative approach, Camille 2.2 checked a new word's
de�nition before it was stored in the lexicon. If the word had been encountered four or more
times, the Camille performed the following steps on its record of slot �llers (as described in

section 3.4):

� Order the principal slot �llers by the importance of the slot (de�ned, from greatest to
least as: Object, Actor, Instrument, Destination, Purpose.

� Check each slot to see if its �llers fall into exactly two basic categories.

{ If so, break the slot �llers into two separate groups and attempt to �nd more speci�c
concepts that accept the di�erent slot-�ller groups.

� If that works, store the two di�erent de�nitions.

� If not, store the original de�nition.

{ If not, store the original de�nition.

This mechanism was run on the same set of 100 example sentences as was the original
test of the Assembly Line domain. Unfortunately, because of the small number of repetitions

of the words in the test set (median value 2), none of the ambiguous words in the corpus were
encountered enough times for the mechanism to be triggered. Of the three words that were
classi�ed in the initial results as being ambiguous, two of them occurred only twice in the
test set and the third occurred three times. In this limited test, none of the ambiguous words

occurred often enough to allow Camille to make an appropriate decision on whether or not it
was ambiguous.

12There might be some domain, however, in which ambiguous words are prevalent. In this case the liberal
approach might be indicated.
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Camille did split one de�nition, however, for the word \open". The test set contains

5 uses of \open", and in 4 of them, the object is a Box and in the other, a Door. Because Box
is a child of Container and Door is a child of Chassis-Component, the objects break into two
obvious groups, so Camille splits the de�nition. However, because Door and Container have
a common ancestor, Door-or-Container, and because this node is the Object constraint for

Open, both split concepts end up inferring that Open is still the most reasonable hypothesis
for the two senses of \open".

This unexpected state of a�airs led to the discovery of a di�erent method for handling

ambiguity. Instead of splitting the word's de�nition into two di�erent senses, an additional
concept could be created (as discussed in section 4.4) to make a disjunctive constraint on the
action concept. In the \apply" example, a concept, Tape-or-Record could be made a parent
of the two objects, and then could serve as the constraint for the concept Apply. Intuitively,

it seems that each solution would be appropriate in di�erent circumstances. Thus, in the
\apply" and \open" examples, the di�erent senses seem similar enough that it would be more
parsimonious to represent their meanings with only one node. In the \spray" example from
Lebowitz' thesis, however, the two senses are quite di�erent, and should be split.

4.3.3 Limitations

Camille cannot tease apart ambiguity if it already has some other de�nition for a
word. The system assumes that the de�nitions it was given are undisputable facts. The only

words it will learn are those that do not exist in any form in its lexicon. So if, for example, the
system already knew the Squirt-Liquid sense of \spray", and found it in the example sentence
above, it would simply fail to parse the sentence because gun�re would be an unacceptable

Instrument. The system could only learn the di�erent senses of \spray" if it knew neither of
them beforehand.

The most straightforward way of dealing with this limitation would require that LINK
treat all of its word de�nitions as tentative and to have a mechanism for overriding them. An

explanation-based method for accomplishing this would be for the system to realize that it
could have parsed the sentence, if the semantic component of the de�nition for \spray" had
been di�erent.

Another method would be to have some sort of preference system to \score" parsing

decisions instead of making them as all-or-nothing decisions. Thus, the system could allow the
combination of Gun�re as the Instrument of \spray", but give it a very low score. When
no other parse was available, it could use the fact that its only parse had a sub-threshold

score to signal the learning mechanism. Intuitively, this coincides with psychological theories
that suggest that learning is more likely to occur in humans when their expectations are not
met.[Kaplan et al., 1990]

4.4 Camille 2.3: Expanding the domain knowledge

The basic assumption of complete a priori concept knowledge is too restrictive. A
lexical acquisition system should be able to learn concepts as well as word meanings. In humans,
the concept acquisition task must rely to a large part on the various modes of perceptual input,
visual, aural, even tactile. Perception becomes codi�ed as concept knowledge. Psycholinguistic

evidence suggests that there is a linguistic role as well. A study by Carey and Bartlett [1978]

which will be further described in section 6.1 showed how children might use the presence of
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an unknown word as a signal that they should learn a concept.13

Unfortunately for Camille, it has no input mode other than its example sentences.
Learning concepts without these other modes is di�cult, but the Mutual Exclusivity constraint

provides one technique. Section 4.1 described the use of this constraint for inuencing the
inference of verb meaning. If a concept already had a word referring to to it, that concept
was prohibited from becoming the referent of any other word. The constraint could be turned
around, however, to signal a gap in concept knowledge. If the system is fairly sure that it

has made a correct meaning hypothesis for a word and that hypothesis is rejected by Mutual
Exclusivity, Camille can infer that a new concept should be formed. This technique will only
work for object labels for two reasons. First, Camille can only be \fairly sure" of a hypothesis

for a noun's meaning. As discussed in section 3.1, the constraints on action concepts place an
upper bound on the meaning of an unknown slot �ller. The referent concept for the noun must
be a descendant of the target node named by the constraint. Second, a new concept created to
be the referent of a noun can be located within the subtree underneath the constraint's target

node. For a verb, it would have to be above the target node, but Camille would not know
where exactly to locate it.

As in some of the other situations that Camille was confronted with, a conservative
approach and a liberal approach were both available. They can be described as follows:

The Conservative Approach: When creating a new node, place it immediately
under the node speci�ed by the constraint.

The Liberal Approach: When creating a new node, search under the node
speci�ed by the constraint. If a node without a label is found, attach the word to
that concept. If not, create a new node as described above.

When learning verb meanings, Camille must take a liberal approach, favoring the

most speci�c hypotheses, in order to get usable, falsi�able hypotheses. For recognizing am-
biguous verbs, Camille used the conservative approach. In order to maintain its ability to
learn ambiguous nouns, Camille uses the conservative approach here too. If the system used
the liberal approach, and later encountered a conicting use of the noun, Camille would not

know if it had found an ambiguous word, or if it had made a wrong initial guess about the
referent of the word. As discussed in section 3.1, taking this conservative approach to learning

noun meanings does not signi�cantly reduce the usability of the hypotheses.

The implementation of this technique required only a simple extension to the noun-
learning mechanism described in the previous section. As every word was de�ned (either from

the lexicon or from learning by Camille), Camille 2.3 kept track of the word or words that
referred to each concept (in the usual Mutual Exclusivity way). When the system inferred a
meaning for a new word, it checked to see if the concept to which it referred had already been
the referent of another word. If there was a conict and the new word was inferred to be a

noun (based on its morphology and position in the parse), then a new concept was created
under the original node. The unknown word was then mapped to this node.14

13Carey and Bartlett actually implied that the concept already existed and that the children mapped the
new word to it. The example that they used, however, was an olive color. Because there is a continuous range
of colors, it would be impossible to have a concept for each one, so it is likely that the children created the
appropriate concept \on the y".

14Ideally, the system would later attach additional information to this node to di�erentiate it from others.
Possible methods for augmenting a concept will be discussed below.
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Camille processed the sentence, \As a result of these attacks, several persons were

wounded and others died," without a de�nition for \others". Because the constraint on the
Actor of Die is Human, the word \others" was inferred to refer to the concept Human. Of
course, there were many other referents to this concept that had already been de�ned. Ca-
mille 2.3 then created a new node (labelled Other30078 for lack of a better name), made it a

descendant of Human, and made it the referent of \others".
Camille 2.3 was evaluated on the same test as the Camille 2.2 version for recognizing

ambiguous nouns. 100 sentences were processed with 9 target words. The Production score

was the same as for the ambiguous nouns test: 5 out of 9, or 56%. Because there were also 8
correct de�nitions, the Recall, Precision, Accuracy, and Parsimony scores were also the same as
for the ambiguity test: 44%, 67%, 67%, and 44%. Of the 12 de�nitions that Camille created,
only two did not result in the creation of a new concept. These two concepts, Place and

Human-or-Place were so general that there were no other words in the lexicon that referred to
them. As previously mentioned, the Terrorism domain contains a large number of words that
are de�ned as synonyms for the information extraction task. Because of this, all of the words
except these two general ones resulted in the creation of new nodes in the concept hierarchy.

Although this mechanism allows Camille to posit the existence of new concepts, the
system has little distinguishing information about the new nodes. The system only has a name
for the node (generated from the referring word), its approximate position in the hierarchy,

and a word that refers to it.15 Chapter 7 includes one suggestion for addressing this limitation
by integrating Camille with a vision processing system.

4.5 Analysis of the evolution

This section contains an analysis of the variations on Camille's basic implementation.
The major extensions to the initial Camille system were:

� Mutual exclusivity: This technique was taken from the psycholinguistic literature and
applied to Camille's lexical acquisition task. When the system inferred a meaning that
already was assigned to another word, it rejected that hypothesis and continued its search.

� Scripts: Often, there was not enough information to distinguish concepts based on the

evidence provided by one sentence. By encoding sequences of actions in the same format
as general domain knowledge, Camille 2.1 was able to increase its inference power beyond
sentence boundaries.

� Ambiguous words: Camille 2.2 analyzed its record of slot �llers for a word to infer
when the de�nition should be split into two separate de�nitions. This enabled it to

avoid overly general hypotheses for a word's meaning. It also included a mechanism for
inferring ambiguous noun meanings.

� Adding concepts: By applying the Mutual Exclusivity constraint, the system determined
when its concept knowledge was incomplete. Additional nodes were added to the hier-
archy based on the occurrence of unknown words.

A compilation of the test results is shown in �gure 4.3. The graph shows the initial
and improved basic systems, and the Mutual Exclusivity, Script, Noun Ambiguity, and Node

15In fact, this is the only explicit information that Camille has for any object node. It is assumed, however,
that the underlying task has additional information about the domain-speci�c objects.
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Figure 4.3: Overall Camille performance

Creation scores. As previously mentioned, the results are not directly comparable, but this
graph does show some of the basic strengths and weaknesses of the system.

The major bene�t of the implementation of the Mutual Exclusivity mechanism was to
provide a formal setting in which aspects of the theory can be tested. One such aspect was the

application of the constraint to verb learning in addition to noun learning. Although the results
of empirical testing on Camille 2.0 were somewhat equivocal in regards to its broad application
to verb learning, some interesting issues were raised. In accord with psycholinguistic theories,

the application of Mutual Exclusivity appeared best suited for the early stages of word learning.
This constraint can be applied to de�ne a mapping quickly between a set of unknown words

and their referent concepts. In future research, this ability could be better tested by simulating
Mutual Exclusivity experiments that have been applied to children.

The implementation of Mutual Exclusivity also brought up fundamental questions
that are not addressed in the psycholinguistic literature: how positive of a word's de�nition
must an agent be in order to rule out the connection of the referent concept to other words?

What happens to rejected mappings when the basis for their rejection is changed (i.e. the
system revises a previous de�nition)?

The use of Mutual Exclusivity also allows Camille to infer when its concept knowledge
is incomplete. As demonstrated in section 4.4, Camille 2.3 was able to use this constraint to

expand its concept representation for objects.

The most basic bene�t of the script mechanism was as a well-integrated representation
for discourse information. Because Camille used LINK's DAG structure to represent scripts

as well, information from di�erent sentences could be combined together via uni�cation.

The use of scripts for verb acquisition was a tricky matter. The usual method of
using verbs to trigger script application was clearly unsuitable for this task. Testing showed
that the best approach was to leave some of the responsibility for learning a verb's meaning

to Camille's graph search mechanism. The script mechanism proved quite valuable for further
restricting the hypothesis set.
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This also suggested the need for tighter integration of the script processing with the

actual parse process. LINK already integrates the application of syntactic, semantic, and
pragmatic constraints during parsing. This allows it to rule out spurious parses as soon as
possible. If it could also apply discourse-level constraints during parsing, lexical acquisition
using script information could be seamlessly integrated. This would require some extension of

the LINK parser, but could be very valuable. It would allow the system to make inferences
based on the connections between sentences as well as the connections within the sentences.

The implementation of the script mechanism also led to an observation about the type
of text that was tested. Although it seemed like the news report format should �t easily within
the structure of scripts, that was often not the case. Most of the texts were more concerned

with describing the entities involved in an incident than with the actions that occurred.

Camille 2.2 allowed the acquisition of the meanings of ambiguous nouns and verbs.

For nouns, the system took a conservative approach to learning, inferring meanings at the
general level of the constraints of the verb to which the nouns attach.16 When an additional
example of a word's use conicted with the previous de�nition, an ambiguous de�nition was
inferred.

For learning verbs, Camille 2.2 relied on the word's pattern of usage to indicate if
it was ambiguous. If the slot �llers could be separated into two basic-level groups, then the

de�nition was split. This approach is limited because it requires a certain minimal number of
instances of the word's use before it can reach any conclusions about the word. It would be in-
teresting to compare this behavior to psychological �ndings about children learning ambiguous
words.

Camille 2.3 just scratched the surface of the concept acquisition problem. It did
demonstrate one method for recognizing a de�cit in the concept representation by applying

the Mutual Exclusivity constraint to an unknown word. If a word does not have an appropriate
referent within the current structure, then a node should be added.

There is an alternate approach possible to concept acquisition. Instead of taking
the conservative approach from Camille 2.2's mechanism for recognizing ambiguity in nouns,
the system could take a more liberal approach. If a verb constrains one of its slot �llers to

a node that already has a referent, the system could search that node's descendants for an
unlabelled concept. Thus instead of adding a node to the semantic hierarchy, the system
could search for an unlabelled node. This approach would be consonant with psycholinguistic
research that shows that children use unknown words to �ll gaps in their lexicon [Carey and

Bartlett, 1978].17 It would conict, however, with the conservative approach required by
Camille's ambiguity recognition mechanism. If the system encountered an example of a word's
use that was inconsistent with a previous example, it could not know if it was encountering an
ambiguous word or if it had been driven by Mutual Exclusivity to erroneously search for an

overly-speci�c hypothesis.

The weakness of the concept acquisition mechanism stems from the limitations of its

knowledge about the world. The only knowledge source that Camille has is its linguistic input.
Some of the systems that will be described in the next chapter utilize a coded form of \visual

16This approach is conservative in the sense that it does not try to �nd the most speci�c (and therefore most
information-full) referents. The approach is not conservative in the sense that, like Camille's approach to verb
learning, it chooses the most falsi�able hypotheses.

17There is still uncertainty, however, whether the gap is due to a pre-existing concept in the child's knowledge
representation which has no lexical connection, or whether the appearance of a novel label signi�es that a
concept should be formed.
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Figure 4.4: Comparing Camille performance, Assembly Line vs Terrorism

input", that is, a propositional description of a scene. By receiving \spoon-fed" external input,

however, these systems might just be learning what their programmers want them to learn.
Future research will examine the viability of combining Camille's acquisition mechanism with
a real-world visual input system.

4.6 Cross-domain analysis

This section describes the di�erences that were observed as a result of the empirical
testing of Camille's basic system its variations.

As shown in �gure 4.4, there was an obvious inter-domain di�erence in the overall
e�ciency of the basic word-learning mechanism. This was due to two major factors: First, the
complexity of the sentences was much higher in the Terrorism domain. The average sentence
length is su�cient to give a rough measure of the sentence complexity. The average length

of the test sentences in the Assembly Line domain was 4.3. In the Terrorism domain, it was
over 23. The higher complexity of the Terrorism sentences meant that the parser seldom came
up with a complete parse for the entire sentence. Although parse fragments were extracted
after the parser gave up, there was no guarantee that the constituents in the fragments were

consistent with the unparsed portions of the sentence. Furthermore, an incomplete parse could
not be checked for required constituents.

Second, the nature of the text was fundamentally di�erent. In the Assembly Line
domain, a small set of engineers was describing (for themselves) a �nite (although large) set of
operations. In order to do this, they naturally developed a technical jargon. Thus a word like
\aside", normally an adverb, was used as a verb, as in, \Aside packaging to trash" (get rid of

the packaging by putting it in the trash). The Terrorism texts were written by a large number
of journalists. Far from constraining themselves to a precise sublanguage, these writers use
quite varied and complex forms of expression (more on this below).

In the Assembly Line Mutual Exclusivity test, Camille performed at a similar level
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as in the basic test. As shown in �gure 4.5 however, all of the terrorism scores for Mutual
Exclusivity were signi�cantly lower than for the basic test with the exception of Precision
which increased slightly.

The reason for this large disparity was mentioned above. The texts were written, for
the most part, by professional writers, who are charged with entertaining (in some sense) their

readers. In order to do so they vary the language that they use. Viewed from the vantage

point of the coarse-grained domain representation for the information extraction task, the
language appears to contain myriad ways for expressing the same concepts.18 This is precisely
the opposite of the language phenomenon that Mutual Exclusivity was intended to capture.
With so many words de�ned as synonyms for the purposes of the information extraction

task (9 synonyms for \attack"), it is no surprise that Mutual Exclusivity pushes Camille into
making many incorrect hypotheses. It is notable, however, that Camille 2.0 also dramatically
decreased the number of concepts produced in its hypotheses (from 37 to 19 for the same

number of hypotheses).
The implementation of the script mechanism gave some interesting insights about the

nature of the domains. In the Assembly Line domain, it appeared that the repetitive nature

of the process would �t naturally into a script representation. Unfortunately, the repetitions
of the actions did not �t so well into the intuitive script structure. One possible method for
extending the script structure to better handle this sort of text will be presented in the future
work section of Chapter 7.

It was, perhaps, even more surprising that the Terrorism texts were di�cult to rep-
resent using scripts. Many of the early implementations of script mechanisms were applied to
texts that were quite similar in style to the ones used here. Analysis of the corpus showed,

however, that these messages do not typically describe sequences of actions. They describe

18It is only by inspecting the language more closely, for example at the level of discourse implications, that
the Principle of Contrast would be evident.
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one event and the background for that event. Camille was still able to perform quite well in

the script test, but it was forced to use rather loosely-connected scripts.
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CHAPTER 5

RELATED COMPUTATIONAL APPROACHES

During the past decade and a half, there have been many signi�cant implementations
of lexical acquisition mechanisms. The evolution of these systems has tended to follow a more

general trend in AI. Early AI systems were aimed at demonstrating that a certain intelligent

behavior was possible. Early lexical acquisition systems had the same type of existential goals.
They demonstrated that within a certain micro-world and with certain input, an NLP system

could make a particular kind of inference about word meaning. As AI techniques became more
widely accepted and more successful on small-scale problems, the time came to demonstrate
that they could be applied to larger tasks. The recent ARPA-sponsored Message Understanding
Conferences (MUCs) [Sundheim, 1992; Lytinen et al., 1992a; Lytinen et al., 1992b; Lytinen et

al., in press] are a good example of current e�orts to show that NLP techniques can be applied
to real-world tasks. These conferences have also been a very clear demonstration of a major
di�culty in scaling systems up: the knowledge acquisition bottleneck. As one group said after
facing a second round of the massive development e�ort that they had undertaken the year

before, \We either had to get some new grad students or automate our system."[Lehnert, 1992]

There has been an obvious trend in the evolution of NLP systems to incorporate some type of
acquisition mechanism in order to reduce this most di�cult aspect of porting an information

extraction system to a new domain.
At the same time, other developments in lexical acquisition systems suggest a cyclic

trend. As many of the basic aspects of lexical acquisition are tackled, some researchers are
focusing on demonstrating the tractability of aspects of linguistic development that were pre-
viously assumed to rely on special-purpose mechanisms. Typically, these demonstrations need
to mature before they can be applied to real-world tasks. An important aspect of any AI

system is its appropriateness for large tasks.

The purpose of this chapter is to locate Camille within the space of lexical inference
research. The chapter begins with a tabular delineation of systems along several axes. These
signi�cant implementations of lexical acquisition mechanisms are then grouped by their overall
approach and described in detail. The chapter ends with an analysis of the strengths and

weaknesses of the various approaches.

5.1 Cross-system comparison

Table 5.1 summarizes the positions of the relevant systems along several axes. The

axes represented in this table are:

� The name of the system

� The general approach to learning
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� The purpose of the system as a whole

� The knowledge representation used

� The type(s) of information learned

Table 5.1: Various attributes of Lexical Acquisition Systems
System Overall Purpose Knowledge What's

Approach Rep learned?

Moran cognitive
model

lexical
acquisition

propositions verb meaning

Child cognitive
model

cognitive
model

CD, pos.
grammar

verb semantics,
syntax

Davra cognitive

model

cognitive

model
X lexical semantics,

syntax

Foul-Up script-based story
understanding

CD lexical semantics

Rina script-based story
understanding

CD, sem. net verb / particle
semantics

Autoslog tool information

extraction

Concept Nodes lexical semantics

MayTag tool information

extraction

Concept Nodes lexical semantics,

syntax

Loom graph search knowledge
representation

inheritance
hierarchy

lexical semantics

Camille graph search information
extraction

inheritance
hierarchy

lexical semantics,
syntax

Table 5.2 shows the breakdown of the system along several other axes:

� The type(s) of input to the system

� Whether or not psychological validity is claimed

� Whether or not the system is trained

� Whether or not the system learns incrementally

� Whether or not the system was applied to a real-world task

These tables emphasize the large number of possible ways of examining lexical acqui-

sition systems. In order to simplify the comparison, the systems are separated into four groups
based on their overall approach to the acquisition task: cognitive models, script-based-systems,
acquisition aids, and graph-search systems. The systems are individually described in the rest

of the chapter.

5.2 Cognitive models

Salveter made one of the �rst notable contributions to cognitive modeling of lexical
acquisition in 1979 with her system Moran. She did not explicitly claim psychological validity
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Table 5.2: More attributes of Lexical Acquisition Systems
System Input Psych Trained? Incr? Real

plaus? World?

Moran snapshots,
sentences

maybe yes yes no

Child scenes,

sentences

yes yes no no

Davra scenes,
sentences

yes yes no no

Foul-Up stories maybe no no no

Rina stories yes yes yes no

Autoslog sentences,
trainer

no yes no yes

MayTag sentences,

cases

no yes no yes

Loom semantic

structure

no no no yes

Camille sentences maybe no yes yes

for her model, but it was clear from the task that it was intended to parallel children's learning.
CHILD has been under development by Selfridge for many years. It is explicitly intended to

give a psychologically plausible computational account of the process that children go through
in learning language, and does so by following a qualitative progression of stages that children
follow. Recently, Siskind developed two systems, Maimra and Davra which were both aimed at

demonstrating that computational \shortcuts" suggested by psycholinguists are not required

for learning. This section describes each of these systems.1

5.2.1 Salveter's Moran

Although it was one of the earliest systems that modeled children's lexical acquisition,
Salveter's work [1979; 1980] remains unique in its approach to incremental word learning. Like

the other systems presented in this section, her system, Moran, used the help of a human
trainer. The trainer supplied pre-parsed sentence case frames, like:

AGENT: Mary
ACTION: move
OBJECT: book
PREP: to

INDOBJ: table

for \Mary moved the book to the table." In addition, the trainer provided \snapshots" (basi-
cally before and after descriptions) of a scene, for example:

1The organization of this section goes against the general organization of the chapter. In the other sections,
the systems are grouped based on the underlying approach that they use to learn language. Here the systems
are organized by their basic goal | to model human behavior. Although these systems use di�erent means to
achieve that goal, they can be compared best in this way.
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Before After

MARY AT LOCA MARY AT TABLE
MARY PHYSCONT BOOK BOOK ON TABLE

CLOCK ON WALL CLOCK ON WALL

Moran computed a graphical description of the action which had two parts. One
node or set of nodes described the Arguments to the verb which are quite similar to Camille's

slot-�llers. Another set of nodes encoded the E�ects of the action which were computed from
the di�erences between the before and after snapshots. For example, with the sentence and
picture descriptions given above, the system would infer the meaning of \move" depicted in

�gure 5.1. This speci�es that \move" takes an Agent Mary, an Object which is a book, and
another argument which is a table. Initially the Arguments are not generalized at all. They
are assumed to be at the exact level of speci�cation in the example sentence. The E�ects
node says that the action takes the Agent from some location LocA to the table, moves the

book to the table, deletes the attribute that the agent has physical contact with the book, and
maintains the fact that the clock is on the wall.

Arguments Effects

AGENT Mary
OBJECT book
C1 table

AGENT AT LOCA → AGENT AT TABLE
null → BOOK ON TABLE
AGENT PHYSCONT BOOK → null
CLOCK ON WALL → CLOCK ON WALL

Figure 5.1: The meaning of \move" from \Mary moved the book to the table."

Deriving this single de�nition doesn't require much processing �nesse. The power of

Salveter's system came in combining di�erent examples of the same word into separate but
related de�nitions. For a word with multiple senses, the common attributes were kept in the
original nodes, but the di�erent attributes were split out into other nodes. Then the meaning

of each sense of the word could be described as a subgraph of this larger graph. In addition,
the system incorporated a generalization mechanism that could broaden the de�nition of words
given multiple senses. So, if Moran were subsequently given representation for the sentence,
\Joe moved the chair", along with the snapshot:

Before After

JOE AT LOCB JOE AT LOCD
JOE PHYSCONT CHAIR CHAIR AT LOCC

CHAIR AT LOCB CLOCK ON WALL
CLOCK ON WALL

it would generalize some of the slot �llers and split others as shown in �gure 5.2. The subgraphs
de�ned by the arcs labeled \1" describe the meaning of the \move object to table" sense of
move, and the subgraphs labeled \2" de�ne the \move object" sense. The nodes with both
labels specify the features that are shared by the di�erent senses.

This method of representing meanings (similar to that described by Katz and Fodor
[1963]) is very powerful. It allows for very compact storage of di�erent verb sense de�ni-
tions, and allows for the ability to periodically reorganize the knowledge structure, grouping
arguments or e�ects that appear to be related.

A shortcoming of Salveter's system was that although it knew a little about the
classi�cations of objects, it had no other knowledge about the world. It could not, for example,
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1,2
Arguments Effects

AGENT human
OBJECT physobj

AGENT PHYSCONT PHYSOBJ → null
CLOCK ON WALL → CLOCK ON WALL

C1 table

1

1,2

AGENT AT LOCA → AGENT AT TABLE
null → PHYSOBJ ON TABLE

1

AGENT AT LOCB → AGENT AT LOCD
PHYSOBJ AT LOCB → PHYSOBJ AT LOCC

2

Figure 5.2: The meanings of \move" from adding \Joe moved the chair."

reason that the fact, \CLOCK ON WALL" in the above example was irrelevant, because it

had no idea about the connection between the action and other things in the scene. Another
limitation was its reliance on a human trainer. The system was able to derive very complete

meanings for verbs (within the limits of Moran's knowledge representation), but it depended
on the proper sequencing of examples from the trainer, as well as the proper descriptions of
the visual scene and sentence deconstruction.

As previously mentioned, this system was not claimed to be psychologically valid, but

it was clear that the task was set up to mimic, in some ways, the child's learning task. The
system was never applied to a real-world task, but, by demonstrating what could be learned
about di�erent senses of a word, it laid an excellent foundation for future lexical acquisition

work.

5.2.2 Selfridge's Child

Selfridge's Child theory and program [1986; 1991] are intended to model children's
language acquisition. In order to evaluate this goal, Selfridge chose six \facts" about the way
that children develop language:

� Comprehension precedes generation

� Vocabulary growth rate �rst increases then decreases

� Utterance length increases

� Irregular words are regularized

� Unlikely actives are initially misunderstood

� Reversible passives are initially misunderstood

On the basis of these attributes, he suggests an eight-stage developmental progression that
children follow during the course of their language learning. These stages take the children

from the age of ten months when they know no language at all, to the age of 5 years when they
are able to understand reversible passive sentence and all actives, have a large vocabulary, and
can produce arbitrarily long sentences. In general, Child follows this progression with the help
of a \parent" (trainer), and a supplied representation of the visual input.

Based on this ability to account for these stages, Selfridge uses his model to suggest
answers to several unresolved questions about children's language acquisition:
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� How do children learn to recognize ungrammatical sentences?

� How do children learn an in�nite language from �nite data?

� How do children learn syntactic word classes?

Selfridge proposes answers to these questions based on the mechanisms that Child uses to
process language.

As the basis of Child's knowledge representation, he uses a simple sort of Conceptual

Dependency [Schank, 1973] formalism. This determines not only how domain knowledge is
represented, but also how syntax is | or is not | used. Instead of a traditional context-free
grammar-like mechanism, Child uses a purely positional account of grammar, specifying, for

example:

The actor of \give" precedes the word \give", the object and the recipient. The
object follows the actor and \give", and precedes the recipient. The recipient
follows the actor, \give", and the object.

As will be seen in the next chapter, this bare-bones grammatical mechanism seems to be

countered by psycholinguistic evidence that by a young age, children have acquired quite
sophisticated syntactic knowledge.

To learn words, Child starts with knowledge of function words (i.e. prepositions
and determiners) and an assumed ability to perceive \visual input" (actually, a description of

an action provided by the trainer, similar to the Moran's). The visual input consists of an
action and a set of features, for example: (PTRANS Actor (Father) Object (Ball) To (Top

(Table)) Time (Past)) [Selfridge, 1986, p. 196]. Child assumes this to be the meaning of the

input sentence. The input sentence is also provided by the trainer and is either an imperative
or a declarative description of an action. The trainer can simulate intonational emphasis by
capitalizing one of the words in the sentence. If a word is emphasized, Child assumes that the
meaning of that word is the implied meaning for the sentence with meanings of known words

subtracted from the set.
An example will help clarify this process. If Child is just starting to learn and has

the visual input given above along with the sentence, \papa put the Ball on the table", it will
take the entire representation to be the meaning of the word \ball". Given other examples of

the emphasized use of \ball", Child restricts the meaning to be the intersection of the prior
and current visual inputs. This has two major implications: First, Child meaning development
relies heavily on the trainer's input. Second, polysemy (multiple word senses) is not handled.

It is interesting to note that Selfridge draws from Child the conclusion that \children
use knowledge of known words to limit the hypotheses about an unknown word." [Selfridge,
1986, p. 210] Camille does the same thing, but in a totally di�erent manner. Child has for
each word a set of attributes that add up to the meaning of the word. For Camille, words

have constraints about the contexts and combinations that they can be a part of. Instead
of whittling down a provided meaning representation, Camille applies syntactic and semantic
constraints to locate word meanings in the concept space.

Selfridge took on an ambitious project, attempting to explain much of the general

phenomena involved in language acquisition. Because it was speci�cally developed to emulate
children's behavior, however, its psychological claims must be scrutinized.2 Certain assump-
tions are suspect, for example that the lexicon is implemented as a stack, with the most recently

2An in�nite number of programs can be written to �t a particular curve.
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learned de�nition for a word taken as the de�nition. Because Camille was not intended to em-

ulate a certain behavior, any similarities with human cognition that it displays are more likely
to be a result of general properties of the task.

5.2.3 Siskind's Davra

In developing Davra,3 Siskind's [1991] goal was to demonstrate that two popular and

competing psycholinguistic theories were computationally unnecessary. These theories both
described strategies that children might use to apply what they already know to the task of
learning the rest of their language. The �rst theory, semantic bootstrapping [Grimshaw, 1979;
Grimshaw, 1981; Pinker, 1984], suggests that children use their knowledge of what a sentence

means in order to determine the syntax of that sentence, and by repetition, their language.
Syntactic bootstrapping [Gleitman, 1990] (see also section 6.3) states that children �gure out
grammar at an early age and use that knowledge to guide their acquisition of word meanings.

Siskind's goal in developing Davra was to demonstrate that neither of these mechanisms is
necessary for language acquisition. In order to do this, Davra deduced semantic and syntactic
information from examples in a task setting similar to Child's and Moran's.

The input to the system consisted of simple sentences that were provided by a trainer,
for example, \Bill ran from John." The system also received a set of possible meaning interpre-
tations of an associated scene in the form of Jackendovian conceptual structures [Jackendo�,
1983], for example:

((BE(person3,AT(person1))) _ (BE(person3,AT(person2))) _

(GO(person3,[Path])) _ (GO(person3,FROM(person1))) _ . . .)

Unlike the other similar systems, this meaning representation was not hand-coded. It was
provided by an independent program that analyzed a stick-�gure animation.

The underlying linguistic structure was based on Universal Grammar [Chomsky, 1981;
Chomsky, 1985; Chomsky, 1986]. Speci�cally, Siskind encoded 12 principles into his system.
Some of the principles de�ned Davra's basic abilities, for example that it had the ability to
segment the input sentences and to comprehend the semantic representation. Other principles

dealt with the speci�cs of the X grammar formalism and its parameter setting. Another set
of principles provided simplifying assumptions, for example that the input would contain no
polysemy, a single language, and only grammatical sentences.

The task for the system, was to process a set of example sentences along with as-
sociated scene interpretations, and compute the syntax and semantics for that sub-language.
Fortunately for Davra, the simplifying assumptions really did their job. The only grammat-
ical information that the system had to infer was if the sub-language was SPEC initial (i.e.

articles precede nouns) or SPEC �nal and if it was head initial or head �nal (following the
conventions of X parameters). For each word it had to infer the lexical category (noun, verb,
or preposition) and a mapping for that word to a segment of one of the supplied semantic

representations. In a training session, Davra received a small set of sentences (around 10)
and 3 to 6 possible interpretations for each. Davra was able to compute all of the parameter
settings and meanings for the 11 words. The only di�culty was that it couldn't decide if the

prepositions it encountered were verbs, nouns or prepositions.

Siskind suggested that the key to success for the system (in the absence of one or
both of the simplifying psycholinguistic strategies, presumably) was what he called \cross-
situational learning."[1991, p. 159] The system required several di�erent examples of a word's

3The predecessor to Davra, Maimra, is described in [Siskind, 1990].
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use and several di�erent syntactic structures to be able to make its inferences. This underscores

a weakness of the system. Davra has the luxury of collecting all the appropriate (trained)
evidence and then applying its substantial computational capabilities to calculate a consistent
interpretation of the syntactic and semantic information. As will be further discussed in the
next chapter, this type of unconstrained hypothesis testing approach is highly improbable for

children.

Nevertheless, Siskind's approach is very interesting. He reportedly plans to devote
further research to discovering if his method will scale up to larger domains and more complex
input. If future research does �nd a way to extend this approach, it could be helpful in de�ning

the possibilities of human language acquisition.

5.3 Script-based systems

Other systems rely on script-based information as their main source of lexical acqui-
sition power. One of the earliest lexical acquisition mechanisms was developed by Granger
in 1977. More recently, Zernik did an updated version of this work that was tailored toward
dealing with certain complex verb constructions.

5.3.1 Granger

Granger [1977] developed one of the �rst systems that inferred the meanings of words
from context. His system was called \Foul-Up" because when the NLP system encountered
an unknown word, the parser could not continue without a special mechanism to doctor the
parse structure. His program was implemented as an extension of a system called SAM, which

was based on Schank's Conceptual Dependency framework [Schank, 1973] and analyzed news
reports using scripts [Schank, 1981] so that they could be paraphrased. This section describes

SAM's parsing process, the extensions that Granger made to acquire word meanings, and an

analysis of the merits of his approach.

As previously mentioned, SAM was based on Schank's Conceptual Dependency (CD)
framework. At the time it came out, this was a radical approach to processing natural language.
The conventional wisdom was that understanding the syntax of a sentence was the key to
understanding the sentence. In fact many systems had no semantic analysis components, on

the premise that producing a parse tree was tantamount to understanding the sentence. Schank
said that this approach was misguided | that the key to understanding natural language was
in the semantics. In fact, he went so far as to say that performing the traditional syntactic
analysis was unnecessary, that the structure of a sentence could be derived from expectations

based on the meanings of the words. For example, the word \throw" expects to be combined
with an actor that is a human, an object, and an animate recipient.4 The actor would come
before the verb, the object immediately afterwards, and the recipient in a prepositional phrase.

The ELI (English Language Interpreter) segment of SAM processed a sentence using

the expectations described above, and transformed it into a set of primitive relations and
objects. In the case where all the words of the input sentence were de�ned, ELI used the

de�nition for the verb to set up the expectations (as described above) for the other elements
of the sentence. The result was a frame which listed the type of action and the various slots

and slot �llers for that action (e.g. Actor, Object, Destination).

4CHILD's rules are similar because they were derived from this theory.

64



In order to understand the connections between sequences of actions, scripts were

added to represent common combinations of sentences. The power of scripts was described in
section 4.2 | they allow the system to infer details that are not included in the story. They
also allow a lexical acquisition system to make inferences about parts of the story that are
left out or that the analyzer can't understand. The mechanism for this inference is described

below.

To derive his treatment of unknown words, Granger used his intuitions about how
humans perform the same task. The new word triggered a reaction by the ELI system that
it should enter a place holder in its representation to record ELI's expectations, so that when

a script was applied, those expectations could be combined with the missing script elements
to make a hypothesis about the meaning of the unknown word. As an example, assume the
system encountered the following sentences:

Friday, a car swerved o� Route 69. The car struck an elm. [Granger, 1977, p. 173]

If ELI didn't know the word \elm", it would complete processing by putting a place-holder
into the OBJECT slot of a PROPEL frame. The place-holder recorded what the word was

and that it had an inde�nite article. Then the APPLY mechanism went to work, �tting the
representation into an appropriate script. In this case, the script Vehicle-Accident had an
un�lled Obstruction slot which takes a PHYSOBJ. ELI's partial representation for \elm" was
consistent with it being a PHYSOBJ, so Foul-Up inferred that \elm" was a PHYSOBJ and

put it into the script.

Granger attempted to learn the meaning of verbs as well and noted the di�culty
in dealing with them because they provided the expectations and script triggers for events.
In order to handle unknown verbs, Foul-Up took a four-step approach. First, ELI entered
a place-holder representation for an action that set up expectations for all possible types

of attachments. Prepositional phrases were attached using heuristics. For example \to",
\towards", \into", and \at" �ll the TO slot of a frame. Granger hand-crafted a table to give

preferences for the type of action based on the prepositions and their objects found in the

sentence. A sentence with the preposition \to" followed by a Locale preferred a PTRANS
(physical transfer) action. Finally, a exible match was done between the slot �llers for the
preferred concept and the slot �llers that were generated by ELI. If the slots matched, the

preferred action was taken as the de�nition of the unknown verb. If not, the system searched

for a closer match.

Granger's work laid an �rm foundation for future research. He showed the importance
of using world knowledge for inferring verb meanings and pointed out the di�culty in learning
the meanings of verbs which provide the constraints that apply to the other components of

the sentence. His work was limited primarily by the weakness of the concept organization that
was used to represent objects in the world. SAM used only �ve object categories, PHYSOBJ,
LOCALE, HUMAN, BODYPART, and CONCEPT. This representation lacks two important
sources of information. First, the coarse grain of the categorization scheme obscures much

discriminating information that could help the system learn words. Bananas and bulldogs,
although both PHYSOBJs, are rarely used in the same way in sentences. Second, because
there were no connections between the categories, the system's ability to generalize or re�ne
concepts were limited.

In order to make up for this lack of discrimination at the intra-sentence level, Granger

relied heavily on prepositions that occurred in the sentences to suggest hypotheses. Because
natural languages use prepositions in many di�erent ways, this approach is bound to yield
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limited success. Granger himself recognized this problem but didn't make suggestions for its

solution. By using a much more powerful syntactic grammar, LINK can make �ne distinctions
in the syntactic structure of a sentence, and Camille can use these to inuence word acquisition.

Granger's learning mechanism was based on his \intuitions about how the analogous
tasks are performed by people."[Granger, 1977, p. 172] Unfortunately, he did little psychological
analysis to back up his intuitions. His system is weak in terms of its psychological validity in
several ways. First and foremost is the lack of discriminating information described above. We

know that humans have di�erent categories for di�erent types of objects because all natural
languages show varying treatment for di�erent categories (e.g. basic level e�ects). Second, as
I will discuss in the next chapter, psycholinguistic evidence shows that humans use syntactic
information to a much greater extent than Granger's system does. Bowerman, for example,

cites evidence that 17 month old children can distinguish subtle variations in syntactic forms
and apply them to their lexical acquisition task.[Bowerman, 1983] Granger made a good start at
de�ning the problem of automatic acquisition of lexical acquisition, and the research described

in this thesis is in some ways an extension of his. By using more intra-sentential constraints, a
richer semantic representation, and more syntactic power, Camille can accomplish more robust
lexical inference.

5.3.2 Zernik's RINA

Zernik's [1987b] thesis work was one of the most signi�cant prior implementations of
a lexical acquisition system due to the breadth of knowledge sources that it used. His program,

RINA, combined a hierarchically-structured lexicon with script-like information and planning
information to demonstrate the ability to learn verb-particle combinations. The goal of the
system was to parallel the task of second-language learners, acquiring di�cult phrases from

examples with the help of a trainer.

RINA did not have a traditional grammar. Instead all of its syntactic information and
lexical information was combined in a phrasal lexicon. Each element in the lexicon contained

three items, a pattern, a concept, and a set of presuppositions or constraints. In this respect,
RINA's knowledge representation was quite similar to Camille's. Although LINK maintains
a distinction between lexicon and grammar, both forms of information are represented by the

same structures, and so can be easily combined. Furthermore, the grammar rules can contain
lexical information, allowing them to serve as the types of patterns that Zernik uses. Because
LINK's constraints are on the semantic constituents (for example the constraints are on the
Actor of an action, not the Subject of the sentence), this aspect of Camille's representation

has greater exibility than RINA's. RINA makes up for this lack of exibility by allowing its
lexical items to inherit from more general items. Thus a phrasal lexicon entry like,

<Person1> take on <Person2>

can inherit information from a more general pattern for \take" and a more general pattern for

\on". In this sense, RINA closely parallels the representation of Salveter's Moran.

Learning occurs during a training session when there is a mismatch between the

presuppositions and the input. In an example (starting on p. 227), RINA was presented with
the following text:

Jenny wanted to buy a car.

She took it up with her dad.
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In the second sentence there is an ambiguity concerning the referent of \it". The word could

refer to the car, or (as inferred from the information that Jenny wants something) an unresolved
goal of Jenny's. RINA's presupposition processor inferred that in order for Jenny to take the
car \up" somewhere, she would have to have it, and in order for her to want to buy it, she
must not have it. Thus there is a contradiction, and RINA signaled its di�culty to the trainer:

\Jennifer drove a motor-vehicle upwards with her father?" At this point the trainer signi�ed
that it was not an appropriate interpretation, and RINA asked for another example. After the
trainer supplied, \She took up the problem with her dad", RINA inferred a new sense for the

word \took". With additional interaction, RINA determined the importance of the particle
\up" in this construction. This resulted in the construction of the pattern:

<Person1> take <Problem> up with <Person2>

with the associated concept MTRANS (or mental transfer).
Zernik's work is important in that it includes the use of planning information in the

acquisition of new phrases. It was limited, however, by several factors. First, it was purely a
demonstration system. The system was made to work on a few examples, but was not applied
to a real-world test. Second, although the system was claimed to be a cognitive model of
second language acquisition, no corroborating psycholinguistic evidence was supplied. Third,

like most of the other systems described here, RINA su�ered from a lack of discriminating
syntactic knowledge. The patterns that it used were too coarse-grained to represent many
grammatical structures. In a sense, Camille is an alternative approach to the same problem.

Instead of seeding the system with a lot of special-purpose knowledge that will help with speci�c

examples, Camille uses a simple, general approach and a strong grammatical representation to
infer meanings without the help of a trainer.

5.4 Acquisition Aids

The systems described in this section are on the borders of the space of lexical in-

ference mechanisms. The are intended as systems which aid humans in generating lexical
knowledge. They are of interest because they delineate some of the boundaries of lexical ac-
quisition. Furthermore, if the part of these systems that requires human intervention could
be replaced to some extent by a machine learning system, then they could be considered

full-edged lexical acquisition systems.

5.4.1 Autoslog

Autoslog [Rilo�, 1993] is not only geared toward the information extraction task, it
exploits the knowledge base that the task provides. The system creates possible de�nitions of

templates that might be useful for extracting text. It does this by examining the development
keys which are basically examples of the �lled-in database forms that the system should pro-
duce. For each �eld in the keys which is �lled with a string value (as opposed to a number or

a member of some set), AutoSlog searches for the target string within the associated message,
and pulls out the sentence that it �rst appears in. The words in the sentence are tagged for
part-of-speech by another system. Then, using a set of thirteen simple linguistic patterns, the
system searches for a good \conceptual anchor point" for the desired text. For example, one

pattern is:

<subject> passive-verb
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The system uses the simple syntactic categories subject, dobj, and np to specify the

constituents before and after the verb, and after a preposition. In the pattern, they denote the
relative position of the target text. If the sentence contains such a pattern, Autoslog proposes
the verb as the conceptual anchor point for a mapping from the subject to the slot from
which the original text came.

For example, assume that AutoSlog had a Terrorism key with \John" �lling the
Victim slot of a kidnapping. AutoSlog extracts the string \John" and searches for it in the
text. With the sentence, \John was kidnapped," the system recognizes the pattern above and

proposes the following de�nition:

If a SUBJECT is followed by a passive form of ``kidnap'', put the

SUBJECT into the VICTIM slot of a KIDNAPPING template.

AutoSlog processes all of the available templates and associated messages in this

manner. Then a human knowledgeable with the domain examines the proposed de�nitions
and �lters out erroneous ones. From 1500 answer keys and texts in the MUC Terrorism
domain, AutoSlog produced 1237 de�nitions. In �ve hours, the human user winnowed this

set down to 450 good de�nitions. The CIRCUS parser [Lehnert, 1990], using the AutoSlog
de�nitions, produced Recall and Precision scores that were very close to those produced by
the o�cial UMass system which used a (painstakingly) hand-crafted pattern dictionary.

Can this be considered lexical acquisition? In one sense it can. Given that the

ultimate goal of the system that uses these de�nitions is to extract information from text,
these de�nitions satisfy exactly the functional constraints that were set out for Camille in
Chapter 1. Because these simple pattern de�nitions allow the system to perform its task, why
bother with additional information about the words?

One answer to this question is clearly that AutoSlog is so knowledge-poor, that it
needs a human to check its work and throw out the bad parts. Camille exploits its domain

knowledge to generate usable hypotheses.

The more fundamental answer can be found by comparing the di�erent de�nitions
that the systems create. As previously mentioned, the Terrorism domain contains 10 di�erent
words that refer to the concept Attack. Because AutoSlog creates de�nitions that are triggered
by particular words, it would have to create a full pattern de�nition for all 10 words | and that

is just for the passive constructions. It would need quite a few more de�nitions to handle the
actives, in�nitives, and gerunds. Camille de�nes these words as mapping to its Attack concept.

This single node interacts with the general grammar rules to interpret each of these forms.
Thus by inferring a deeper de�nition for a word, Camille can actually reduce its memory load.

5.4.2 MayTag

Recently Cardie developed another novel approach to lexical acquisition using a hu-
man trainer, not for presenting appropriate examples, but for developing a basis for bootstrap-
ping [Cardie, 1993]. Her system, MayTag, works within the environment of an information
extraction task and uses the CIRCUS parser [Lehnert, 1990]. CIRCUS, like Granger's and

Zernik's systems, is a descendant of the Conceptual Dependency approach, and relies only
minimally on the syntactic properties of the sentence. It works by designating certain con-
cepts as triggers. When a word is found that refers to that concept node, the trigger is
activated, and expectations are set up for arguments to attach to it. Syntax is only used to

help distinguish major noun phrases. The system assumes that the NPs are either arguments
to the verb or extraneous to the information extraction task. Thus, the parser must know
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a word's part-of-speech, its semantic interpretation, and any task-speci�c concept nodes that

it triggers. Unlike Granger's and Zernik's systems, which were intended for understanding
stories, CIRCUS was speci�cally designed for the information extraction task. So CIRCUS
does not use scripts. Its concept nodes generate portions of the template that serves as the
output of the task.

MayTag infers lexical information by setting up a set of 39 feature-value pairs (includ-
ing the word features mentioned above) that describe the state of the parser when an unknown

word is encountered. Word features are the word itself, its morphology, and its global semantic
interpretation.5 Local parse features describe the immediate context of the parse | the word
features of the two words before and the two words after the unknown word. Global parse fea-
tures describe the global parser state | the semantic information for the major constituents

(subject, object, verb group, etc) that have been recognized so far. This last set also con-
tains information about the immediately preceding low-level constituent (noun phrase, verb,
or prepositional phrase). The search space for MayTag is the range of possible values for these

features.
To initialize the mechanism, a case base is constructed with the help of a trainer. To

start, the parser processes a sentence until it �nds an unknown word. (Lexical information for
closed-class (function) words is assumed.) The parser �lls in all the feature-value pairs for the
known elements of the parser context. The trainer �lls in the part-of-speech, semantic, and
concept activation information for the unknown word.6 In the experiments cited, 108 sentences

were processed in this manner creating around 2000 cases.
The actual lexical inference process starts after the cases are built. When additional

sentences are processed and new unknown words are encountered, the system matches the
known parser features against the cases in the case base. A decision tree mechanism tunes the
selection of features. The closest matches \vote" on the missing features | part-of-speech,

semantics, and concept activation | for the unknown word. In experiments done on a narrow,

full-text domain typical of the information extraction task, MayTag achieved a success rate of
about 93% correct on part-of-speech, 80% correct on semantic interpretation, and 95% correct

on concept activation.

These results look quite good. MayTag is geared toward the information extraction
task and shares the same basic goals as Camille. Therefore, I will include an in-depth analysis
of the system's performance.

At one level, MayTag and Camille are quite similar. MayTag's general and speci�c
semantic features form a two-level knowledge representation hierarchy which is shallower than

but still similar to Camille's.7 MayTag's task is to infer part-of-speech and semantic informa-
tion based on context.8 It does this using a decision tree which ranks the predictiveness of
features of the surrounding text. Based on examples of the decision trees which MayTag's C4.5

algorithm [Quinlan, 1992] made (provided by Cardie), it was clear that the previous and fol-

5The system distinguishes between local and global semantics.

6Note that there is a bootstrapping problem here. Because the parser state includes information about
adjacent constituents, the system could end up de�ning unknown words based on other unknown words. To get
around this di�culty, the system uses some basic heuristics to infer a default meaning for adjacent unknown
constituents.

7The general features seem to roughly correspond to the higher-level or basic level concepts, for example,
Human. The speci�c features correspond to lower-level concepts that are required for the task, for example,
O�cer.

8It also infers concept nodes, which should correspond quite closely to the semantic features.
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lowing semantic nodes were the most predictive of the word's semantics and its part-of-speech.

This is, in a sense, a roundabout way of doing what Camille does, predicting meaning based
on neighboring constituents.

An interesting distinction between the two systems is that Camille assumes that words

which are assigned the Verb part-of-speech label will refer to semantic nodes in the action

subtree of the concept hierarchy. MayTag decouples these, inferring part-of-speech separately
from semantic features. It would be interesting to check if Camille's assumption is a good
one. Unfortunately, this is not possible based on the broad statistical analysis of MayTag's
performance.

MayTag's inference is somewhat limited because of its lack of syntactic knowledge.
Because it focuses on local features, it may not be able to utilize the constraints of constituents
which are distant in the sentence but proximal in the syntactic structure. Its global context
features provide a certain amount of this type of information, but they do not rival the rich

syntactic structure provided by LINK.

Three other important features separate Camille and MayTag. Camille learns as a
side-e�ect of understanding text. MayTag is a totally distinct machine learning procedure

geared toward lexical acquisition. MayTag is not incremental. Based on its decision trees, it
infers the most likely values for a word's features and sticks with that decision.

Camille is primarily geared toward learning verb meanings because of their impor-
tance for the information extraction task and for providing the structure for the interpretation

of the sentence. MayTag makes no distinction between words, with one exception. It does not
assign any semantic information to verbs. There are two possible reasons for this. One is that
the task9 doesn't rely on verb meanings. The other is that the verb meanings were simply too
di�cult to learn. In any case, this is a fundamental di�erence between the systems. Camille

learns verb meanings. MayTag will only infer their part-of-speech.

5.5 Graph search mechanisms

There are only a couple of mechanisms that use graph search as their primary source

of inference, and one of them is not intended for this purpose at all. LOOM is a general
knowledge representation system that is oriented toward use with NLP systems. It shares with
Camille its ability to search through a hierarchy for a node that meets certain constraints.

The systems described in the previous sections all use a minimal semantic hierarchy,

with only broad categories like Human, and Physical-Object. MayTag used a two-level hierarchy
that only distinguished general and speci�c semantic concepts. This lack of semantic discrim-
ination limits the types of inferences that those systems can make. Bananas and bulldogs are

physically di�erent and do di�erent things. They should be treated di�erently.

5.5.1 Classi�cation Systems

Why is a classi�cation system like LOOM [MacGregor, 1990] included with these

lexical acquisition systems? The purpose of this and other such systems is to represent concepts
and the relationships between concepts, and to support inference on those concepts. As part of
this support, when a new concept is entered into the knowledge base, the system determines,
based on its features, where in the hierarchy that concept should go.

9MayTag was evaluated on the MUC Joint Ventures domain, which shows many di�erences from the Terror-
ism domain.
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Hijacking
object = Transport-vehicle

Murder
object = Human

Arson
object = Building

Terrorist-Act
actor = TerroristAction

actor = Human
object = Object

Strans
object = Action

Figure 5.3: A simple terrorism subsumption hierarchy

An example will clarify this process. Assume that LOOM has already developed the
simple hierarchy depicted in �gure 5.3. A new concept, Frooble, is added to the system with
the following attributes:

Frooble is-a Action

actor = Terrorist

object = Building

The classi�er algorithm inserts this concept into the hierarchy where it is logically subsumed,
under the Arson concept. In fact, because it has no reason to separate Frooble and Arson, it
merges them into a single concept.

If the knowledge base is later told that this instance can also take a Human as an

object, then the previous inference is incorrect and has to be retracted. The classi�cation
system now infers that Frooble should be located further up the tree. The concept is merged
with the Terrorist-Act concept, because it takes a Terrorist as its actor and an Object (assuming
Object subsumes Person and Building) as its object.

Thus classi�er systems provide a very similar inference mechanism to Camille's. Be-
cause they are not designed for the lexical inference task, however, they stop short of inferring
the best hypotheses. If a classi�er system received an example with a general slot-�ller, it

would make a general hypothesis. Camille makes the most speci�c hypothesis possible. Spe-
ci�c hypotheses have a higher information content and are more falsi�able.

5.5.2 Camille

This section contains a re-examination of Camille in terms of the relevant axes for
lexical acquisition systems. This will provide a direct comparison and contrast with other
systems which have similar goals.

Camille was designed for use in the information extraction task. As described at
the start of Chapter 3, this has implications about the level of its domain representation and
the type of processing used. Camille's more robust model of grammar, lexical, and semantic
knowledge allows it to make more powerful inferences than the other information extraction

systems.
Although several other researchers have observed the di�culty caused by inferring

verb meanings, none have developed a general weak method to attack the problem. Others
have glossed over the problem entirely. Camille reduces the verb acquisition task to a graph

search problem. It uses the semantic constraints on its concepts to guide the search through
its domain representation, always preferring the most speci�c concepts.
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Because it is incremental, the system can recover from overly speci�c hypotheses. Its

incremental nature also reduces Camille's processing and storage requirements.
Camille learns part-of-speech and semantic information about words. This is more

complex than the simple patterns inferred by AutoSlog. It does not infer grammatical param-
eter settings like Davra or patterns like AutoSlog and Child, but these patterns seem to be too

simple for general language understanding.
The system does not use any representation of the external context like Child, Davra,

and Moran do. The addition of such a mechanism is not required for the information extraction

task, but may be addressed in future research.
Camille is totally automatic. It does not require the help of a human trainer. Fur-

thermore, it uses only the knowledge that is present for normal parsing.
Camille was not designed to work as a cognitive model, yet it displays many similar-

ities with human linguistic behavior. The fact that this behavior was brought about by the
requirements of the task rather than as a design goal of the system makes it more likely that
the system will be predictive of other cognitive phenomena.

One of the biggest advantages of Camille over most of the other systems described in

this chapter is that it has been systematically tested with real-world data. This has resulted
in some unforeseen conclusions, for example, the di�culty of representing many texts with a
script mechanism. Systems which are not tested on real world texts may demonstrate that a

task is theoretically possible, but they do not necessarily prove that they have a good method
for performing that task.
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CHAPTER 6

RELATION TO PSYCHOLINGUISTICS

Camille was not intended as a cognitive model. It was developed to glean the meanings
of words from context in order to create a more robust NLP system. The goal was purely

computational. As Camille was developed, however, it became clear that some of its behavior
was quite similar to that of children when they are learning language.

Why are these similarities important? Dennett gives an answer from the philosophical

standpoint:

A good psychology of Martians, however unlike us they might be, would certainly
yield general principles of psychology or epistemology applicable to human beings.
[Dennett, 1978, p. 113]

Any agent which successfully processes the same sources of knowledge that humans do must
have something to say about the properties of that knowledge that make it amenable to pro-

cessing in general, and about how other agents must process it.

Computationally speaking, it appears that the lexical acquisition task is so inherently

di�cult (it has resisted computer solution for a long time) that the task itself forces any solu-
tions to conform to some sort of overall qualitative structure. If this is true, then any solution
to the problem will also have some extent of predictive power as to how other solutions (human
or computational) will work. The extent of this predictivity will depend on the proximity of

the solutions.1 In order to assess the similarity of Camille's processing to human language
learning, this chapter describes related psycholinguistic �ndings and an analysis of how they
relate to Camille as a cognitive model.

6.1 Fast mapping

Young children are remarkably adept at using a small amount of information to drive
their learning process. In order to learn lexical items, they normally receive a small number of

positive examples of how the word is used in context (maybe repetitions of the same phrase),
and very few negative examples that would tell the child what uses of the word do not lie

1There must be a continuum of cognitive modelness. No silicon model is equivalent in every way to a neural
model, so at the lowest level (Marr's mechanism level or Newell's physical level or Pylyshyn's \low road" [Marr,
1982; Newell, 1990; Pylyshyn, 1989]), there can be no absolute equivalence. Cognitive models must all, therefore,
abstract to some level at which they assert that their process is the same or similar to human processing. At
the other end of the spectrum, all computer programs that perform some task that humans do can claim at
least some level of similarity to human processing. The task that remains then is to locate a particular model
on this continuum.
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within the language (the \no-negative-evidence problem", section 6.2). Despite this lack of

evidence, children very quickly �gure out what words mean. The process that children go
through in assigning meaning to new words has been described as \fast mapping" by Carey
[1978]. She suggested that children are forced to make poorly informed, quick guesses at how
new words map to the internalized concepts.2 Carey and Bartlett [1978] tested children to

see how much they could learn about color terms with no explicit teaching but examples like,
\Bring me the chromium one, not the blue one, the chromium one." The children were tested
a week later to examine their recall of the word. They found that at least for these color terms,

the children's learning abilities were remarkable. More than half of the children demonstrated
a week later that they had learned something about the word that they had only heard on
that one occasion.

A more recent study by Heibeck and Markman [1987] expanded on that earlier work.

They took three groups of children, aged two, three, and four, and tested them using a pro-
cedure similar to that described above. They expanded the test to include texture and shape
terms as well as color terms to see if the results might have been speci�c to just one particular
domain. In addition, they changed the testing procedure to explore just how much information

the children gained from the examples. After a brief delay from the time that they were given
the original example, the children were tested to see if they could produce the word that they
had just learned. Next they were tested to see if they could tell what domain the word came
from. For example, the children were asked a question like, \See this book? It's not chromium

because it's ." If the child responded with another color term, he or she was credited
with knowing the domain of the target word. Finally, the children were given a comprehension
test to see if they could remember the meaning of the new word (even if they could not produce

it) by being asked to show the tester an object of the particular color, shape, or texture.

The results of their experiments demonstrated that with very little di�erence between
age groups, the children performed quite well at deriving word meaning information from the

brief examples given to them. Together, these �ndings argue against a competing theory, the

\unconstrained hypothesis-testing" view of lexical acquisition, which suggests that learners
simultaneously consider many hypotheses for a word's meaning, collecting evidence for each
and carefully evaluating them against each other. In the context of the experiment mentioned
above then, the child would have to maintain the possibility that the word chromium could

refer to the shape of the item, its texture, or any of a number of other attributes of the item.
Instead, we �nd the children applying whatever information is available to them to make a
quick \guess" as to what the unknown word could mean. This inferential task is made even

more di�cult by limitations in the available evidence, as described below. The task required
of Camille requires it to act in a similar manner. Because the system is incremental, it must
make guesses about words as it goes along. This allows it to quickly hypothesize meanings for
words although the initial hypotheses may not be correct.

6.2 The No-Negative-Evidence problem

When children learn language, they must induce the structure of the language relying
almost entirely on examples of utterances which are within the language [Bowerman, 1983].

They do not have the bene�t of negative evidence that would tell them which possibilities

2The question of which comes �rst, the concept or the lexeme, is an interesting one that will come up again
in section 6.5. It is not clear whether a novel word signals the child that a new concept should be created, or if
the concepts already exist in the mind of the learner, waiting to have words attached to them.
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to rule out. Although this absence of discriminating information makes the learning process

computationally very complex, children do learn language. The Subset Principle was described
by Berwick [1985] as one way that children could reduce the complexity of the grammar-learning
task. This principle suggests that children have an innate hierarchical mental representation
of language structure which is ordered on the speci�city of the grammars. When learning

syntax, children initially hypothesize the most speci�c grammar that accounts for the \data"
that they have encountered in order to avoid over-generalization. Then, if they hear sentences
that aren't covered by the initial strict grammar, they choose the next most speci�c grammar

that includes the new utterance.

Despite the fact that Berwick's model has been criticized for the amount of innate
knowledge that it requires on the part of the child language learner, it illustrates an important
general principle. The child can overcome the di�culties of the no-negative-evidence problem
by tending towards making hypotheses about language that are more strict than the evidence

warrants, but that have the advantage of being more falsi�able and therefore being stronger
hypotheses. For these hypotheses then, corroborating evidence can be taken as con�rming the

hypotheses, because evidence to the contrary is relatively more likely to be encountered.

For learning word meanings, there is evidence that children (and parents) actively try
to make up for the paucity of negative examples in everyday speech. Shatz and Ebeling [1991]

enumerated four di�erent types of language learning-related behaviors that children engage in
to interactively learn language. One of these four, language lessons, was most often used in
order to provide word-meaning information, for example:
Parent: What color is that?

Child: Blue.

Parent: Green!

Child: Green.

These lessons, which accounted for 12% of the language learning-related behaviors, are one
way for children to receive negative evidence about word meaning.

Bowerman [1983] described another method that childrenmight use to help them learn
word meanings in the face of the no-negative-evidence problem and compares it to innatist
theories like Berwick's. On the \nurture" side, she suggested how, when learning words,

children could use what they've learned about syntax (more about this in the next section) to
make predictions about how particular verbs can be used. As an example, she described (p.
33) how a child might have learned the general principle that verbs that involve direct causative
action can be used in the lexical causative form, as in, \I broke the stick." Other verbs which

involve less direct causation, can only be used in the periphrastic causative form, as in, \I
made the stick disappear." But if the child sees a magician directly manipulating a rabbit to
make it disappear, she might make the prediction that \disappear" can be used in the lexical

causative form. This sets the stage for a mismatch between the child's expectations and what
she hears. Upon encountering the periphrastic use of \disappear", the child will realize that
her prediction was wrong. This could provide the type of indirect negative evidence needed to
counteract the no-negative-evidence problem.

The important point here is that learning language is an underconstrained problem.

Children don't have su�cient evidence to deductively derive the meaning of a word or an
appropriate grammar. Thus, they must make many \guesses" during the course of language
acquisition. These guesses in a sense add information to the data that they hear. By mak-
ing highly falsi�able hypotheses, children can assume that without evidence to the contrary,

their hypotheses are correct. The next section describes how children can leverage their early
knowledge of syntax to guide the semantic guesses that they make.
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As previously mentioned, children do receive some negative evidence with regard to

word meaning. Because Camille is not trained, it never has the bene�t of direct negative
evidence. So in learning the meanings of words, it is in a similar situation to children learning
syntax | positive examples only.

6.3 Syntactic bootstrapping

Gleitman [1990] described a mechanism called syntactic bootstrapping that children
might use to guide their search for meanings of verbs through the space of possible meanings
that could be inferred from the immediate context. She gave striking evidence that children who

can barely produce two-word utterances are capable of using syntactic information embedded
in the sentences they hear to constrain interpretations of new words. In an experiment which
used the preferential looking procedure originally designed by Spelke [1982] and adapted for

linguistic use by Golinko� et al. [1987], 17-month-old children who had no prior knowledge of
the word \ex" were shown two videos, one which showed Big Bird and the Cookie Monster
crossing and uncrossing their own arms, and another with one of them crossing the arms of
the other. When one of the sentences \Big Bird is exing with Cookie Monster" or \Big Bird

is exing Cookie Monster" were broadcast through a speaker, the children showed a de�nite
preference for the \syntactically congruent screen," i.e. the video that was showing the action
that was consistent with the linguistic input, even though they had no semantic knowledge of
the meaning of \ex." Gleitman argued that without such a constraining mechanism to limit

the appropriate hypotheses, the task of word learning would be computationally infeasible.

Bowerman's work [1983] also relates to the idea of syntactic bootstrapping. In order
to make the distinctions in meaning that she describes, children must be able to distinguish

the lexical and periphrastic causative syntactic forms. The di�erences in syntax are the keys
to learning some of the subtleties involved in the di�erent meanings.

Naigles' [1990] o�ers experimental results that validate Gleitman's hypothesis that
very young children are capable of using syntactic information to choose between di�erent verb
senses. In addition, she commented on the likelihood that learning does not occur solely on
the basis of a single input, but is \gleaned from the presentation over time of the verb in its

particular set of syntactic frames." [Naigles, 1990, p. 371] Although at �rst glance, this might
seem to conict with the \fast-mapping" hypothesis, there is a reconciling explanation. As
Carey and Bartlett suggest, children make a quick guess at what a word means. This guess not
only provides a concept that the word maps to but also a set of predictions about how it will

be used in other constructions. If over time, these predictions or the concept mapping conict
with new evidence, the learner can incrementally re�ne the hypothesis. Thus, learners have
the advantage of an early, usable idea for what the word could mean along with a mechanism

for improving that idea over time.

Hirsh-Pasek and Golinko� [1993] include this work as part of what they call \skeletal
supports" for language acquisition. They suggest that this sensitivity to the arrangements of

words, along with an acoustic sensitivity that allows children to separate spoken sentences into
words in the �rst place, form the basic capabilities that children must have to learn language.

Camille takes advantage of its syntactic knowledge in a similar way. By inferring the

syntactic structure of the sentence, it can determine the case �llers of the verb and use that
information to infer possible meanings for the verb if it is unknown.
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6.4 Objects, actions, nouns, and verbs

When psychologists �rst started studying language acquisition and the types of words

that were acquired �rst, a striking observation was made. Children were learning nouns well
before and at a faster rate than they were learning verbs. This prompted several studies of the
di�erences in acquisition between the various types of words and theories about what causes
those di�erences. These studies suggest that di�erences in the knowledge representation for

nouns and verbs force children to use di�erent mechanisms to learn them.

Gentner [1978, pp. 988-989] cites several studies that describe di�erences in acquisition

between nouns and verbs. Some of these studies showed that young children's initial vocabulary
consists entirely of nouns with verbs slowly making their way in. Others showed that the �rst
verbs took almost twice as long to appear as the �rst nouns. A study of comprehension and

production by Goldin-Meadow, Seligman, and Gelman [1976] showed two stages of early lexical
development. In both stages, many more nouns than verbs were comprehended. Only a portion
of the comprehended verbs were produced in the second stage, and none were produced in the
�rst. Finally, Gentner described an additional study that demonstrated that the di�erences in

acquisition are not just attributable to di�erences in the frequency of verbs versus nouns that
the child hears. Even when presented with made-up nouns and verbs, and when balancing the
presentation of these new words, children �rst used verbs an average of 8 months after starting
to use nouns.

These results are tempered somewhat by recent suggestions that the �ndings may be
speci�c to the English language. Gopnik and Choi [1990], in a study of the correlation between

linguistic and cognitive development, cite studies that Korean- and Japanese-speaking children
show a higher use of verbs during the one-word stage than English-speaking children do. They
attribute this di�erence in behavior to structural di�erences in the languages. The Korean and

Japanese languages both place verbs in the �nal position of an utterance which makes them
more perceptually salient to the child. Furthermore these languages allow liberal deletion
of nouns. In a study of maternal speech by Japanese and American mothers, Fernald and
Morikawa [1993] found that there were di�erences in the overall distribution of nouns versus

verbs in maternal speech but they attributed this to cultural di�erences instead of di�erences
in the structure of the languages. As a result, they found that Japanese children between 12
and 19 months increased their use of verbs about the same amount as did American children of

the same age, but they increased their use of object labels signi�cantly less. This underscores

the importance of the input in lexical acquisition.

Along a slightly di�erent vein, Behrend conducted in-depth studies of di�erent types

of verbs to compare children's comprehension and production among these various verbs
[Behrend, 1990]. The types of verbs that he studied were those that described actions (e.g.
\squeeze", \pound"), results (\atten", \break"), and instruments (\hammer"). He found

that when labelling actions (\What is the person doing?"), children are more likely to use an
instrument verb than an action verb. This seems strange for two reasons. First, the learning
biases for the \fast mapping" procedure described above suggest that a child should make the
best possible guess about the meaning of the word given what she knows. All other things

being equal, this should correspond to the type of verb that occurs most frequently in the
language. But instrument verbs are far less frequent than action verbs are. Second, instru-
ment verbs carry more information than action verbs and are therefore more speci�c. Thus
the children in the experiments were labeling the events with the most speci�c label possible.

This contradicts the results found in acquisition of nouns, which demonstrate that \speci�c
subordinate terms are used much less frequently than basic-level terms as labels for familiar
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objects." [Behrend, 1990, p. 694].

What could explain these psycholinguistic results? They suggest a di�erence between

the internal mental structures that nouns and verbs map to. Gentner calls the basis for this
di�erence the \referential / relational" distinction. Nouns normally refer to objects or \thing-

like elements." Objects (at least concrete ones) tend to be highly constrained by the physical

world. Hence, similar objects share almost all the same attributes. On the other hand, verbs
tend to express relationships between objects or changes in those relationships. Relationships
are more abstract and less easily perceived by humans. In fact, because there are basically an
in�nite number of imaginable relationships between any pair of objects or events [Bowerman,

1976], children must rely on linguistic input to inform them what relationships are culturally
important. Because very young children have not fully developed this knowledge source, we
expect them to focus on the more compelling perceptual aspects of their environment. Under
this assumption, it is clear why they learn nouns �rst: nouns refer to objects that they can

see. Verbs refer to relations which tend to be less constrained by the physical world, so their
meaning components \cut across all semantic �elds." [Behrend, 1990, p. 694].

What kind of mental representation can account for the di�erences that these data
suggest? The representation that Gentner espouses is a semantic net, in which meanings

are built up compositionally by referring to more basic elements of meaning. She suggests
that research shows that relational meaning is more componential than object meaning, and
that children acquire this meaning piece-by-piece. She admits, however, that this model of
componential meaning \accretion" is not su�cient to account for all language acquisition.

Gentner's representation focuses on the representation of single nodes of meaning.
Behrend supports Huttenlocher and Lui's proposal [1979] that these di�erences in behavior are
caused by the overall structure of the representation. They suggest that objects are organized
in a structured hierarchy so that nearby elements share many of the same features. The

relational elements that are expressed by verbs are represented in a matrix structure with
nodes connecting across the various object hierarchies. Graesser, Hopkinson, and Schmid
[1987] have recently done experimental testing to support this hypothesis. The subjects were
asked to sort sets of words by similarity. The �ndings suggested that people tend to sort

nouns hierarchically while verbs were less structured and more \cross-classi�ed." The cross-
classi�cation of Camille's concepts is discussed in section 6.7.3.

6.5 Formation, alteration of concepts

Recent psychological evidence suggests that infants have some conceptual capabili-
ties. Mandler [1988; 1992] cites evidence that children as young as 3 and 4 months old display
some attributes of conceptual representation. Six and seven month-old children have shown

symbolic functioning, and 9, 10, and 11-month-old children have demonstrated recall capabili-
ties. Mandler further suggests that her hypothesis is consistent with �ndings in regards to the
early linguistic development of children. She says that, by the time they start talking, children
have solid foundations for such concepts as Containment and Support. This allows them to

easily and e�ciently acquire meanings of such spatial function words as \in" and \on".

The relevance of this to Camille is that its constraint of an a priori concept represen-
tation is not totally outrageous. Psycholinguistic theories suggest that a signi�cant amount of
concept knowledge is in place when children start learning language.

Section 4.4 described one method by which linguistic input can inuence the concept

representation. The further development of the crucial interaction of linguistic and concept
acquisition will be a topic for future research.
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6.6 Biases / constraints for learning

One of the most popularly cited mechanisms for children's use in reducing the com-

plexity of their language acquisition task is for them to employ some sort of heuristic rules to
cut down the number of hypotheses that they must consider. Markman [1991] described three
of these assumptions that children might use when learning new words: the Whole Object,

Taxonomic, and Mutual Exclusivity assumptions. When a child sees an object and hears a
spoken word that refers to it, that word could theoretically apply to any of a number of features
of that object. It could specify the color, the texture, or the weight of the object. It could refer
to one of the pieces that make up a complex object or to the combination of the object and

the arm of the person holding it. But children assume (usually successfully) that the referent
of the new word is the object and nothing else. This is called the Whole Object Assumption.

As previously mentioned, there are an in�nite number of imaginable relations between
objects that children could attend to. Interesting results are found in children's use of the-
matic versus taxonomic relations. Thematic relations are based on co-occurrence in common
situations, for example cows and milk. Taxonomic relations are derived from a structuring

of objects into classes, for example mammals or farm animals. Studies showed that thematic
relations are particularly salient to children. When asked to �nd an unlabelled object that
was like a target object, they chose a thematically related item. If the object was labelled

with an unfamiliar word, however, they chose a taxonomically related item as the referent.
This taxonomic constraint was proposed as a method that children use to help them learn
appropriate names for object categories.

By applying the Mutual Exclusivity Constraint, children can use their existing lexical
knowledge to limit what a new label can mean. This assumption tells them that there will not
be two di�erent names for the same thing. So if they encounter an object that they already

have a label for along with the novel word, children will assume that instead of being a label
for that object, the new word applies to some other aspect of the object. Note that there
can easily be interactions between the various assumptions. For example, if the word \cup"

is known, and a parent points to a cup's lid and names it, the Mutual Exclusivity Constraint
can help the child override the Whole Object Assumption and decide on the proper meaning
for \lid."3

Clark [1989] described a related rule that adults use in language, and showed ex-
perimental evidence that children use it too. Similar to mutual exclusivity, the Principle of
Contrast holds that no two words are exact synonyms.4 Clark pointed out that even for words

like \cop" and \policeman," where the extension or reference set of both words is surely the
same, another aspect of their meaning di�ers; that is, the conversational context in which each
is likely to occur. Thus, instead of allowing children to infer that two words are complete
synonyms, this principle forces them to explore other meanings or aspects of meaning. These

3This constraint has a weak and a strong version. The weak version is the one presented here, and restricts
each object to having exactly one label. The stronger version takes this one step further and has implications
for knowledge representation. It says that categories are mutually exclusive. If something is a \dachshund," it
can not also be a \dog." This implies that there can be no hierarchical structure in the knowledge base, just a
set of collections. Proponents of this theory do not suggest that hierarchical structures never exist in the mental
representation, however, only that Mutual Exclusivity is used as a heuristic at an early age to speed lexical
acquisition. Eventually, it is abandoned. Furthermore, Mutual Exclusivity can be overridden under certain
circumstances, as in the case of the Taxonomic Assumption example above.

4The Principle of Contrast can be viewed as a weaker version of Mutual Exclusivity, although the latter only
stresses the extension of the word.
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various assumptions can combine (in poorly-understood ways) to make the complex cognitive

task of learning word meanings more tractable.

Most of the psycholinguistic work with the Mutual Exclusivity constraint has been
concerned with learning object labels. As mentioned in Chapter 4, Camille provides an excel-
lent testbed for applying Mutual Exclusivity to verb acquisition. The analysis of this mecha-
nism is included in section 6.7.1.

6.7 Implications of cognitive aspects

What is more interesting, an apple that tastes like an apple, or an orange that tastes

like an apple? Clearly, the orange is more interesting.

To give a more extended example, consider a pioneering aeronautical engineer who
wants to build a ying machine, but doesn't realize that there are animals that y. She just
knows a bit about lift and drag and aerodynamics. Using this knowledge, she makes a machine,
an airplane, that ies.

One day someone says, \Hey, birds y and they don't y anything like that. There's

nothing similar about birds and your ying machine." She says, \Fine, I didn't mean to
imitate birds, I just wanted to make a machine that could y." Our engineer is intrigued,
though. There's a natural mechanism that does the same thing as her ying machine, but
apparently it does it in a totally di�erent way. So she studies more about how birds y. She

sees that they ap their wings and use that motion to generate lift and thrust. Her machine
generates thrust in a completely di�erent way. But to generate lift, her airplane uses wings
that have a particular shape. Bird wings seem to have that same general shape. Now that is
interesting . . .

The point of all this is that although Camille wasn't intentionally developed as a

cognitive model, it does perform a task that humans perform and it is thus capable of rendering
interesting insights on human language learning. An analysis of some of the similarities to
psycholinguistic �ndings is included here, but because it is not the primary focus of the thesis,
testing of many of the cognitive aspects of Camille is left to future research.

This section analyzes three di�erent aspects of Camille in terms of what they predict

about learning in humans: the use of constraints, how input relates to learning, and how the
conceptual organization relates to learning.

6.7.1 Mutual Exclusivity

As previously mentioned, Camille includes a simple version of the Mutual Exclusiv-
ity constraint for the word-learning mechanism. Despite the fact that most psycholinguistic

literature deals with the application of Mutual Exclusivity to nouns, Camille can apply it to
verb-learning as well. This brings up an issue that is not dealt with particularly well by either
the psychological literature or Camille. The di�culty stems from the fact that when learning
an unknown verb, the system can entertain multiple hypotheses, all of which are consistent

with its experience. So the question becomes, \How certain of a meaning hypothesis must the
system be in order for it to rule out that hypothesis for other new words?"

Since there have been no thorough studies of the use of biases in learning labels for
actions, this issue has been largely ignored by psychologists. But there is a more general
question that subsumes it: \How can children (or computational models, for that matter)

choose between several consistent meaning hypotheses?" If the child has a clear preference for
one type of meaning over another, the �rst problem goes away. But there is little evidence
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for how children might construct such preferences. Behrend's work suggests one possible

mechanism, choosing the most speci�c hypotheses for verbs and preferring the basic level
for objects, but it is clear from Camille's implementation of the Mutual Exclusivity constraint
that more work needs to be done to explain these phenomena fully in psychological terms.

Another interesting topic brought up by this addition is the question of when Mutual

Exclusivity should be overridden. It is obvious that at some point children realize that both
\animal" and \dog" can apply to the same object, but what conditions allow for the constraint
to be overridden? This is the topic of current psycholinguistic research, and future research
with Camille.

6.7.2 Input and Learning

Although the testing of Camille was done on input sentences picked randomly from
a large corpus, it is clear from the results that there are some important factors that are

inuenced by the input to the system, and that variation in the input can improve or degrade
the system's performance.

One prediction is evident from Camille's use of the hierarchical structure which dis-
tinguishes general from speci�c concepts. Because Camille assumes the most speci�c meaning

for an unknown word, general words will be given overly speci�c hypotheses unless they are
encountered in the input with a variety of slot �llers. Thus if a child were to receive only input
sentences like, \Get the string" and \Get the twine", Camille predicts that the child would
infer an overly speci�c meaning for \get" like Tie. In other words, reducing the breadth of

input that a child receives should result in overly speci�c hypotheses.

No psychological tests have been performed that address this prediction directly, but
there has been work which more broadly addresses the role of input in learning. First, the
previously described Fernald and Morikawa [1993] work concluded that di�erences in distribu-

tions of nouns and verbs was due to di�erences in maternal input. Second, Huttenlocher et al.
[1991] showed that despite previous predictions that early lexicon size would be dependent on
learning capacity, children's lexica are instead related to how talkative their mothers are. In

general, children who receive more input have larger lexica.

6.7.3 Concept Organization and Learning

The organization of the concept representation is, as mentioned, an important aspect

of Camille's implementation. The general framework consists of an IS-A inheritance hierarchy,
a type of representation that is widely used in Arti�cial Intelligence. Various psychological
studies support the existence of hierarchical structures in the brain ([Kaplan et al., 1990] and
[Keil, 1991], for example). At the lowest level, this representation is clearly not \brain-like". It

is highly unlikely that the brain uses such a rule-like arrangement for representing constraints.
But the hierarchical structure has advantages that make it a powerful representation scheme
for computers and humans. This format makes it easy to make generalizations, an ability that
is a key to learning and reasoning. It also provides e�cient storage of information.

These advantages are most easily seen in the case of representing objects. Here, the
hierarchical scheme allows for similar objects to be located proximally in the representation,
even across di�erent types of objects. Thus for natural kinds like animals, dogs can be stored
close to wolves, somewhat further from cats, and rather far from insects. These distinctions

can be made based on physical attributes which humans use to delineate natural kinds. For
artifacts, the same distance attributes can be found, but the distinctions can be made on

81



Anything

Instr-Obj

Object

Action

Human-or-
Place

Human

Explode

Attack

Explosive

Gun

Shoot

Actor

Instrument

Actor

Object

Object

Figure 6.1: Matrix-like organization of action concepts

functional values, grouping, for example, kitchen appliances together. This type of arrangement

allows for the e�cient storage of constraints like, \mammals are warm-blooded" and \kitchen
appliances are used for food-related activities." Finally, this structure makes it easy to tell

when Camille needs further discrimination in the concept representation. Given an input
sentence like, \I took my Queensland Blue out for a walk," we can infer that Queensland Blue

is a type of dog, even if we've never heard of that particular breed. The ability to make this

type of extension was discussed in section 4.4.

For representing actions and relations, the situation is somewhat murkier. As previ-
ously pointed out, although some psycholinguistic researchers have postulated a hierarchical

scheme for their representation, recently the focus has turned to more \matrix-like" schemes.
But the latter approach may be seen to conict with the observation about the nature of con-
straints provided by the input and whether an upper bound or lower bound is created on the

set of possible meanings for an unknown word. It's just not clear what \lower bound" would
mean in a matrix-type organization.

On close inspection, it appears that Camille's representation has the best of both
worlds. If the slot-�ller constraints are displayed graphically (see �gure 6.1 where the solid

lines represent paths in the IS-A hierarchy and the dashed lines represent constraints on the
actions), it is apparent that the connections do (as Huttenlocher and Lui put it) cut across
the various parts of the hierarchy. This leads to the question, \Does it make sense to have the
additional structure imposed by enforcing a hierarchical structure on actions?" The answer

appears to be yes, for the same reasons given for object representation above. The hierarchy
has representational strength | it allows for e�cient storage of the attributes and constraints
of actions.

The question that remains then is, \What does this imply about human concept orga-

nization?" For one thing, it lends support to the idea that there can be multiple organization
structures within the brain. There are clear advantages to having both types of concept rep-
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resentation. In addition, it suggests that learning could proceed in one of two ways. If a child

realizes that her idea of what a word means is wrong, she should look for concepts that are
closely related in the hierarchy. If the child's hypothesized constraints for the word are wrong,
she should change those constraints based on the structure of the hierarchy that is selected by
the matrix links.

Again, only partially related psycholinguistic studies have been performed. Bloom
et al. [1980] created a simple hierarchy of early verbs based on their case frames: Action and
State verbs were the most general. Action verbs were broken down into Locative (specifying a

source or destination) and Non-Locative verbs. Locative verbs were further broken down into
Mover, Patient, and Agent Locatives. Then they analyzed the speech of children who were
just beginning to use inections. They found signi�cant di�erences between verb groups in the
frequency of inection use and the order of emergence of the inections. They concluded that,

\The semantics of the verbs that the children were learning was the major inuence on their
learning of verb inections." [Bloom et al., 1980, p. 404] This supports the general notion of
the relationship of semantic structure to learning.

Tomasello's [1992] analysis of a diary of his daughter's speech starts with the con-

trasting assumption that verbs are initially totally disjoint, i.e. that there is not an overarching
structure which guides the child's learning of verbs, their argument structures, and inections.
From this \Verb Island Hypothesis", however, Tomasello suggests that the process of learning

the relationships between the (initially disjoint) verbs is the key �rst step toward learning
grammatical relations. Thus he is making the developmental argument that verb categories
do not innately exist, but they are learned, and learning these verb categories is crucial to
language learning in general.
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CHAPTER 7

CONCLUSION

This thesis has presented a computational account of lexical acquisition from context

and its psychological implications. The main research goal was to make the best possible
inferences from context. The implementation of Camille has pursued that goal by concentrating
�rst on leveraging the information found within an example sentence. Only after it completely
exploited this knowledge source was the context expanded to include multiple sentences. As a

result, this thesis provides the most thorough explication of the power of linguistic context in
lexical acquisition to date. This chapter summarizes the speci�c contributions of this line of
research.

7.1 Major contributions

The most fundamental observation that comes out of this work is the dichotomy

between inferring noun meaning and inferring verb meaning (in section 3.1). This comes as
a direct result of attachment of semantic constraints to the action concepts. This is not an
artifact of Camille or LINK. It is a fundamental attribute of language. The verb and the action

it corresponds to serve as the center of the representation of the sentence. Thus, they serve as
the logical focus for the representation of constraints as well.

The constraints specify an upper bound on the concepts that can �ll them. Therefore,
if an NLP system does not know the meaning of a noun, but it can determine what slot it �lls,
it can deduce an upper bound on the interpretation of that noun. Conversely, if the meaning

of the verb is not known, a lexical acquisition mechanism can only deduce a lower bound on
the interpretation of that word. The primary focus of this research has been in developing a
method to counteract the vagueness that results from the lack of an upper bound for unknown

verb meanings.

The solution is for the system to guess the most speci�c consistent meaning for the
verb. This supplies a tentative, highly falsi�able, upper bound that can be corroborated or
rejected by later instances of the word in context. If the original hypothesis is rejected, the
domain representation is searched for a di�erent concept that is consistent with the slot �llers

that have been encountered.

A corollary to this observation is that it is likely that general verbs will occur in
text more frequently than will speci�c verbs (in section 3.2.3). This is a straightforward
result of the fact that general words can occur with more slot-�llers. Because Camille infers
the most speci�c consistent meaning, it is successful for highly speci�c verbs, which it may

encounter infrequently, as well as for more general verbs, whose frequency of occurrence forces
the hypotheses to the appropriate level of generality.
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The theoretical observations about knowledge representation that are found in ap-

pendix A came about as a side-e�ect of this work. They are important general issues to
consider when creating Natural Language Processing systems, especially those that learn.

Camille is an incremental system that learns words as they are processed. A batch

system could, theoretically, produce better inferences than Camille by examining, at one time,

all of the available evidence about that word's meaning. The batch approach, however, conicts
with the inherently sequential nature of language. Humans do not have the luxury of waiting to
make hypotheses about linguistic elements. One can never know when another instance of an
unknown word will be encountered. Furthermore, the storage and processing requirements of

such an approach would be prohibitive. Camille's incremental graph search mechanism allows
it to make the best possible inferences given the evidence it has encountered. By choosing
the most speci�c concepts, it reduces the size, increases the usability, and maximizes the

falsi�ability of its hypotheses.

Unlike most of the other lexical acquisition systems that have been developed, Camille
is fully automatic. It learns from example sentences as a side e�ect of understanding them.

Although children make use of interaction when learning language, much of their linguistic
acquisition is performed before they create multi-word utterances. Thus, although adults

often alter their speech toward young children, they can't perform reactive training at this
early stage. The fact that Camille does not rely on a trainer attests to the strength of its
learning mechanism.

Another distinction of this work over previous approaches to lexical acquisition is its

emphasis on maximizing the use of context from within sentences. Some of the early lexical
acquisition systems largely ignored the information available from intra-sentence context. In-
stead they relied on script-like mechanisms. Unfortunately, these systems were not tested on

real-world data. As the tests on Camille indicated, although scripts can be a powerful source
of information upon which to base lexical inference, the application of scripts to texts is quite
tricky if the system does not know the triggering verb's meaning.

This thesis has described, from several viewpoints, those learning environments that

lead to rapid acquisition. Section 3.5 contains an analysis of the behavior of the basic system.
Because it infers the most speci�c hypotheses, Camille learns verb meanings most e�ciently if
the examples that it encounters pair general verbs (that is, those at a high level in the hierarchy)
with a wide variety of slot �llers. Section 4.2 explained why some corpora cannot be easily

represented by scripts. Many texts do not contain the sequences of actions that scripts describe.
Section 4.6 described aspects of the Terrorism corpus which made word learning di�cult. The

biggest problem was that the sentences were so complex that they were seldom completely
parsed. Thus Camille was often forced to deal with missing or incorrect information about the

examples. As will be further discussed below, Camille would bene�t from a parsing system
like that described in [Huyck, 1993] that heuristically combines the constituents of a sentence.
This would increase the probability that the information given to Camille would be correct

and complete. The features of the learning environment that relate to cognitive modeling will
be discussed in the next section.

7.2 Cognitive modeling

In Chapter 6, the issue of whether or not to consider Camille a cognitive model was
addressed. Camille performs a task that humans must perform, so, at some level, it must

be a cognitive model. The question is, does it model human behavior well enough to be of
predictive value? At a high level, it has already predicted a trend in psychological theory.
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The observations about the di�erences between the treatment of nouns and verbs were made

independently of any knowledge of the related psycholinguistic theories.

Section 4.1 described the implementation of a psychological theory and its application
to learning verbs. This course of action is the most promising avenue for development of Camille

as a cognitive model. The system can implement aspects of a proposed theory to see how it
behaves. Although one could never be sure if an unexpected behavior was due to a aw in

the underlying psychological theory or to a di�erence between Camille and human learners, it
can be used to signal that additional psychological tests should be performed. An example of
this type of application will be described in the next section in reference to the Principle of

Contrast.
The Mutual Exclusivity constraint was crucial to Camille's ability to add concepts to

its knowledge representation. Although the biggest factor in concept acquisition is probably
not linguistic | other modes (visual, aural, or even tactile) are likely to be more important
| it is likely that linguistic input aids in concept acquisition, either by agging a potential

concept as important or through adding information to or adjusting the meaning of a concept.

The use of hierarchical mental structures in the brain is a topic of much discussion in
the psychological literature ([Kaplan et al., 1990] and [Keil, 1991], for example). Oddly, most
of the previously developed lexical acquisition systems, even those with cognitive goals, have
used rather simplistic knowledge representation structures. Camille's concept hierarchy not

only gives it representational economy, but also allows it to make �ne distinctions in its lexical
inferences. Furthermore, the addition of the connections between concepts which describe the
semantic constraints makes the representation structure \matrix-like" as Huttenlocher and Lui
say it should be (see section 6.4).

7.3 Future work

The work described in this thesis has created a �rm foundation for research in learning

word meanings. This section describes ways that Camille can be extended, to enable it to better
perform acquisition within the bounds of the information extraction task, and by applying it
to new tasks. Camille can also be enhanced as a cognitive model and used to test aspects of

psycholinguistic theories.

As mentioned above, Camille would bene�t from integration with a heuristic parsing

mechanism like Huyck's. Such a mechanism is more likely to create a complete parse, or at
least properly combine parse fragments. This should greatly increase Camille's performance
in domains with complex corpora.

Although the current version of Camille does include a rudimentary mechanism for

recognizing and making use of the morphology of words, it could certainly be improved upon.
One major weakness of the current system is that each de�nition that it makes only applies to
the exact word as it was encountered in the text. Obviously, the de�nitions should apply to
all of the forms of a word. This will be a straightforward extension.

The system's ability to handle noise can be improved by having it periodically reex-

amine its de�nitions. Because it keeps a record of prior slot �llers, Camille can recognize if
one �ller is inconsistent with the others. Then it could remove this �ller and search for a more
appropriate hypothesis.

As mentioned in section 4.2, many of the example texts did not �t well within a script
representation because they did not contain a sequence of actions. One way to extend the script

mechanism that could be especially productive for texts like those in the Assembly Line domain
would be to include preconditions and results of actions, in essence before and after states of
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the actions. If a script could link these states instead of requiring strict sequentiality, the

connections between events would become more evident.

Another way to extend the script mechanism would be to couple it more tightly with
the parsing procedure. Although LINK integrates the application of syntactic, semantic, and

pragmatic constraints, the script mechanism, as currently implemented, is not invoked until

after LINK is �nished. This occasionally forced the script mechanism to reinvoke Camille's
learning procedure if it cannot �t a hypothesized meaning into a script. Coupling the script
application more tightly with the parser would allow it to impose discourse constraints sooner

and rule out incorrect parses and word-meaning hypotheses.

Although Camille's development has been oriented toward the information extraction
task, there is no reason it could not be used to learn words in more complex task situations.
There are many ways that the system's knowledge representation and input mechanism could

be extended to allow it to infer deeper meanings for words or to make distinctions that it
currently cannot. An increase in the representational power of the language could make the
knowledge acquisition bottleneck more severe | or it could increase the need for linguistic

acquisition systems.

Knowledge about plans and goals (like that used by Wilensky [1978]) can be used
not only to make inferences about information not described in a text, but also about what is
described if some important words are not known. Discourse information (e.g. [Sidner, 1979])
could add similar knowledge about texts. Instead of describing only sequences of actions like

scripts do, discourse information could specify the communication goals of the text. This could
tell the system, for example, what types of background information are likely to be provided
about the victims of terrorist attacks.

More low-level world knowledge could be used to disambiguate some of the concepts
that take the same set of slot-�llers. Information about the frequency of occurrence of various
events, for example that bombings occur more often than hijackings, would allow Camille to
prefer more common actions as hypotheses for unknown verbs. Such information could also be

made explicit to certain situations. For example, the system could store the knowledge that a
certain terrorist organization likes to use a certain type of bomb.

Additional knowledge could be added to the system within the existing framework.
Attributes of objects, like their weight, color, etc. could be represented as arcs on the DAGs.

With a straightforward extension, action concepts could have constraints on their slot �llers

that would restrict the applicable values of these attributes. For example, the Toss concept
could specify that itsObject should weigh less than 20 pounds. Such additions to the system's

knowledge base could become the basis for better word learning. They could also be the
foundation for other generalizations like those made by Lebowitz' IPP system [1980], which
used correspondences between situations (also taken from terrorist reports) to infer additional
domain knowledge from context.

It would be very interesting to integrate Camille with a vision processor that could
provide some sort of natural non-linguistic interpretation of the outside world. It may be some
time, however, before the state-of-the-art in vision processing allows a reliable depiction of a
scene. In the meantime, Camille could follow Moran, Child, and Davra and use some sort of

provided description of a scene. This could greatly expand the information that Camille has
to use as leverage for its learning, and thereby greatly increase what it can learn, especially in
the area of concept acquisition.

Camille can also be extended in its role as a cognitive model. Several important ques-

tions remain about the use of the Mutual Exclusivity constraint. Under what circumstances
is the constraint overridden? How long is it used? Is there a di�erence in the application of
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the constraint between verbs and nouns?

Camille's use of Mutual Exclusivity could also be tested on some task used in psy-
cholinguistic tests. This would reveal more about Camille's implementation and about its
simulation of cognition in general.

As mentioned in section 4.1, Clark proposed a reinterpretation of Mutual Exclusivity
[Clark, 1987] that separated it into three separate principles, some of which are abandoned
after the initial learning period, and some of which are maintained. Camille's implementation
can be extended to make the same distinctions. This will allow the testing of Clark's claims

about the transient nature of part of this mechanism and the permanence of the rest of it.
Finally, Camille can be used to test the role of input and semantic structure in

learning. As described in section 6.4, Fernald and Morikawa [1993] claimed that di�erences in
the relative prevalence of nouns and verbs in maternal text causes di�erences in the ratios of

nouns and verbs that their children use. Huttenlocher et al. [1991] showed correlation between
amount of input and lexicon size. Bloom et al. [1980] showed the e�ect of semantic structure
on acquisition of inections. Tomasello [1992] described its e�ect on learning verb argument
structures which, he suggests, serve as the groundwork for grammatical structure. Because

Camille is an arti�cial system, its input and semantic structure can be precisely controlled.
With more integration of the noun, verb, and concept learning mechanisms, Camille can be
used to examine these aspects of children's language acquisition.
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APPENDIX A

A DECONSTRUCTION OF THE KNOWLEDGE

REPRESENTATION

This appendix contains some philisophical musings about knowledge representation
that do not �t easily into the ow of the rest of the thesis but have a pervasive underlying
e�ect on the work reported here, both in the type of representation used by the system and in
what it learns. It also contains a set of speci�c conclusions about how knowledge is represented

drawn from the experience of implementing Camille.

What is knowledge? Webster describes knowledge as \. . . facts or ideas acquired by

study, investigation, observation, or experience." Human knowledge, then, encompasses an in-
credible range of complexity, from high-level concepts like Knowledge to low-level experiences
like the feelings we get from seeing certain colors, or smelling certain aromas. Arti�cial intel-

ligence has not even approached an implementation that can accommodate this range.1 Even
an incredibly ambitious project like Cyc [Lenat, 1990], which is aimed at encoding a massive
amount of common-sense knowledge, draws the line at some level of detail, relying on atoms

to bridge the gap between perception and basic concepts.

What is knowledge representation? Knowledge representation is a mechanism that
computer scientists use to create a boundary around a task, creating an abstract version of a

problem and of the information required to solve it. This appendix is an attempt to make clear
some of the abstractions that this line of research makes and how they inuence the learning
process.

Where should the knowledge representation lines be drawn? Katz and Fodor [1963]

and Barwise and Etchemendy [1989] approach this question from a theoretical perspective.

Their conclusions about what a semantic model should include are based on considerations
of what what it takes, in theory, to represent KNOWLEDGE. Allen [1981] made his task
somewhat simpler by taking a more pragmatic approach. He considered what it would take
to represent the verb \ hide", and answer reasonable questions about it. Allen's answer to

his question involved a temporal logic that could address \notions of belief, intention, and
causality."[Allen, 1981, p. 81]

This work takes the same approach as Allen's, in e�ect rephrasing the previous ques-
tion as, \In order to meet the functional requirements of the overall task, what does the NLP
system need to know?" Instead of requiring the system to answer all possible questions about

the consequences of actions, however, the system is only required to answer a �xed set of
questions about a �xed set of actions | in short, the information extraction task.

1The model proposed by Kaplan, Weaver, and French [1990], however, does suggest a promising research
direction.
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What is required to successfully perform the information extraction task? In the

MUC competitions [Sundheim, 1992], systems with greatly varying depths of knowledge rep-
resentation performed at similar levels of e�ciency. Some rather successful systems turned
assumptions about the knowledge required for NLP on their ear by dispensing entirely with
lexica and grammars and concept representations. Instead they reduced the task to a simple

pattern-matching problem (for example, SRI's FASTUS system [Hobbs et al., 1992]). When
simple patterns were matched in the input, the appropriate part of the text was extracted.

Unfortunately, because these systems do not have full grammar, it is fairly easy to

come up with examples that the pattern-matchers cannot handle. For example, consider these
patterns and phrases:

<HumanTarget> was injured \the reputation of the President was injured"
<HumanTarget's> body \the attorney's body of evidence"

The philosophy behind the LINK system is that it is necessary to encode the grammar
of the language and the concepts in the domain in order to adequately understand text. (Of
course, this implies a need for a larger knowledge base, and therefore, a need for systems like

Camille.)

This leads to three basic implications for knowledge representation as it relates to
information extraction and lexical acquisition:

� Level of atomicity: There is a natural trade-o� between the granularity of represen-

tation and the amount of knowledge required, for example, Pick-Up versus [Move-Hand,
Tighten-Grip, Move-Hand]. LINK makes its atoms at the level of the basic actions and
objects that are required by the task (and Camille is pledged to use this granularity).

This a�ects learning in two ways. First, the system is unable to reason about parts of
actions or features of objects. Second, the meanings that it learns are at the same level
of granularity as the rest of the domain knowledge.

� Compositionality: Although LINK/Camille will not break atomic concepts down to a
�ner granularity, the system can (and routinely does) combine concepts to create more
complex concepts (for example, the meaning of a sentence). The process of combining
concepts is critical to Camille's learning task (and to language in general). The word-

learning task can be viewed as inferring the missing component of a complex concept.2

� Inheritance: Conceptual knowledge in LINK forms a standard subsumption hierarchy.
This allows parsimonious representation of constraints | they are connected with the

concept at the highest level of abstraction to which they apply, and then are inherited,
or made more speci�c, by the descendants. This is important for Camille because the
structure that results from organizing the concepts forms the space that is searched for
meanings of unknown words.

� Concepts vs. Features: Within the knowledge representation, there is a choice of
methods for representing \attributes" of the concepts. Attributes are de�ned as features

2This brings up an interesting research issue: what would it take for a system to automatically learn word
meanings that correspond to complex concepts, for example, sequences of actions? (This is a task that Hu�man's
system [Hu�man et al., 1993] is trained to do.) This will be left to future research.
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of the concept which do not a�ect their set membership. For example, the color of a car

may be important, but it doesn't a�ect whether or not it's labelled as a car. Attributes
could be represented by atomic labels, as many syntactic features are, for example, (Syn
VType) = Trans. Alternatively, since there is no limit on the number of parents a
concept node can have, a separate concept could be created which subsumes the concepts

which have that attribute, for example, Red-Things. In keeping with Camille's overall
approach to language, attributes are not represented unless they are relevant to the
task. This judgment has implications for the choice of representation. If the attribute

is relevant, than it is likely that the system would bene�t from explicitly knowing its
members. For example, in the Assembly Line domain, Wiring-Harness and Drain-Hose

are functionally dissimilar, but share an important attribute, that they are long and
skinny and exible. Hence, similar actions can be applied to them, like Uncoil and Route.

Thus, the relevancy test leads to the choice of representing attributes as concepts instead
of as features.

The importance of making these underlying knowledge representation issues explicit
is that by doing so, we can better understand the functional performance limitations of the
system. Then, if some additional behavior is desired that lay outside the boundaries, it will be
obvious how the system and the underlying knowledge representation must be changed. For

example, in order to make inferences about sub-atomic actions like Tighten-Grip, the level of
atomicity of the knowledge representation must be changed.
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APPENDIX B

TEST RESULTS

This appendix describes the details of the various tests that were applied to Camille
and the results of those tests. Most of the analyses of the results are within the body of the

thesis.

The appendix begins with a description of the original domain to which Camille was
applied, the Assembly Line domain. The task for this domain and the knowledge representation

are described. Then the protocol and results of the basic and extended tests are described.
The third section compares the performance of Camille over its evolution. The fourth section
describes its performance when the percentage of unde�ned words was varied. The tests on
the Camille variations are described in section B.5.

B.1 The Assembly Line domain

Camille was originally applied to the Assembly Line domain. The MUC4 Terrorism
domain, described within the body of the thesis, served to validate its results. In this section,
the domain knowledge and corpus format of the Assembly Line domain is described. This

domain contains descriptions of tasks for a human operator on an automobile assembly line.

This task is somewhat di�erent from other information extraction tasks. Instead of
populating a database from the text, the information from the sentences was used to create a

set of dependencies in the form of enabling conditions and resulting e�ects. By combining all
of the actions required of each single operator, a model of the entire assembly line was created.
This model allowed plant designers to verify a design without actually setting it up.

Figure B.1 displays the action concepts included in this domain, and �gures B.2 and
B.3 display the objects. In this domain, the constraint de�nitions include the use of \=r" in
addition to \=". The \=r" (for required) operator allowed Camille to distinguish those slots

that were required for a particular concept from those that were optional (which is the default).
For all versions of Camille after 1.1, the set of hypotheses was checked after sentence parsing,
and the concepts whose required slots were not �lled were removed from the set.1

As previously mentioned, the sentences in this domain consist of short descriptions
of actions that the operator should perform, as shown in the examples below:

At bench, get inspection record.

Tear off inspection record.

Fold insp record.

1The \=r" constraint is also used in the Terrorism domain, but because of the complexity of the sentences,
the parser rarely completely parses an entire sentence, so the constraint is seldom applied.
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Aside
Purpose = Nothing
Destination =r Location

Assemble
Destination =r Location
Object =r Auto-Part
Purpose = Nothing

Check-Object
Purpose =r Factory-Action

Get
Destionation = Nothing
Purpose = Nothing

Inspect
Object = Nothing

Load

Lubricate

Open
Object =r Door-or-Container
Purpose = Nothing
Destination = Nothing

Record-Action
Object =r Record

Refill
Object =r Liquid-Container

Remove
Purpose = Nothing
Destination = Nothing

Repair
Object = Nothing

Restock

Toss
Destination =r Location
Purpose = Nothing

Uncoil
Object =r Harness
Purpose = Nothing
Destination = Nothing

Fasten
Object =r Nut

Install

Position

Secure
Instrument =r Fastener

Apply-Record
Destination =r Factory-Object
Purpose = Nothing

Check-Record
Purpose =r Number-Action

Fold
Purpose = Nothing

Inspect-Record

Read

Tear
Purpose = Nothing

Apply-Tape
Destination =r Factory-Object

Break
Destination = Nothing

Crumple
Destination = Nothing

General-Factory-Action
Object =r Factory-Object

Route
Purpose = Nothing
Object =r Hose-or-Harness
Through =r Location

Tape-Action
Object = Tape
Purpose = Nothing

Place
Destination =r Location
Purpose = Nothing

Figure B.1: The action hierarchy for the Assembly Line domain
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Factory-Object

Auto-Obj

Misc-Fact-Obj

Door-or-Container

Packaging

Record

Tool

Auto-Part

Job

Trash-Can

Printer

Printer-Paper

Liquid-ContainerContainer

Dunnage

Foam-Protection

Body-Tag

Inspection-Record

Manifest

Hand-Tool

Power-Tool

Lube-Bottle

Water-Bottle

Bag

Bag

Mallet

Trim-Stick

Nut-Driver

Door

See Figure
B.3

See Figure
B.3

Figure B.2: The top of the object hierarchy for the Assembly Line domain
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Auto-Part

Aux-Object

Molding

Clip

Hose-or-Harness

Chassis-Component

Electric-Component

Mechanical-Component

Reinforcer

Fastener

Stuffer

Tab

Door

Floor-Pan

Hood

Frame

RSB

Trunk

Harness

Deck-Cylinder

Door-Handle

Lock-Cyl-Kit

Lock-Cylinder

Pillar

Power-Top

Drain-Hose

Hinge-Bolt

Nut

Tape

Door-or-Container
(from figure B.2)

Door-or-Container
(from figure B.2)

Figure B.3: Descendants of Auto-Part in the Assembly Line object hierarchy
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At bench, get manifest.

Apply tape to manifest.

Visually check inspection record , manifest to match numbers.

Check manifest for Z7Q, 2DR.

Get lock cylinder kit.

Walk to front of job.

Get and read body tag to verify serial numbers.

Apply manifest to hood.

Walk to front door.

Toss insp record in job.

Walk to bench.

Get driver.

Walk to job.

Open door.

Toss left side lock cylinder to left side floor pan.

Allow to open lock cylinder bags (6 @ a time).

Route harness down right side floor pan through right side bolster.

B.2 The Basic Test

For each test a set of sentences was chosen from the corpus at random. In the

Assembly Line test, 100 sentences were processed. For the Terrorism domain, 50 sentences
were tested because the sentences were longer and had a larger number of verb occurrences
per sentence (and parsing times were much longer). These sentences were randomly selected
from the subset of sentences in the corpus which contained relevant verbs. A portion of the

Terrorism domain test sentences is presented in section B.2.2. In order to simulate full-scale
verb learning, all of the verb de�nitions were removed from LINK's lexicon. Then the sentences
were processed by Camille and the resulting de�nitions were written to the lexicon. After all of
the sentences were processed, the de�nitions inferred by Camille were compared to the correct

de�nitions. This section details the results of each test.

B.2.1 Assembly Line domain

Table B.1 shows the concepts that Camille 1.0 inferred for the verbs in the Assembly

Line test sentences. Each unknown word is shown with the set of concepts that Camille positted
as its reference.

In table B.2, the verbs are grouped according to the result achieved. The 18 verbs

in group 1 (82% of the 22 words for which a hypothesis was inferred) were assigned a correct
meaning hypothesis by Camille. This measure is labeled Accuracy in this thesis. Each of the
concepts in the hypotheses was consistent with the evidence provided by the example sentences,
and the correct concept was in the set.

Group 2 contains verbs that were ambiguous. These verbs referred to two or more
nodes in the semantic hierarchy. As described in section 4.3, the initial algorithm had no way
of successfully handling such words. The verb \check" is also ambiguous in this domain, but
Camille inferred the more general of the two possible concepts for it.

The verbs in group 3 were the victims of shortcomings in the implementation. \Allow"
always occurs with a sentential object, e.g. \Allow to load paper to printers." This caused
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Table B.1: Test results, Camille 1.0, Assembly Line domain
Verb Ordered meaning hypotheses

allow Apply-Tape Secure Install Position Step Walk

apply Aside Check-Object Inspect Load Lubricate Open Place Repair Restock
Route Toss

aside Aside Check-Object Inspect Load Lubricate Open Place Repair Restock

Route Toss

break Apply-Tape Break Crumple Install Position Secure

check Aside Check-Object Get Inspect Load Lubricate Open Place Remove Repair
Restock Route Toss

crumple Break Crumple

fasten Fasten

fold Apply-Record Check-Record Fold Inspect-Record Read Tear

get Aside Check-Object Get Inspect Load Lubricate Open Place Remove Repair
Restock Route Toss

install Install Position

place Install Position Secure

position Install Position Secure

preload Secure

reach Reach

remove Aside Check-Object Get Inspect Load Lubricate Open Place Remove Repair
Restock Route Toss

return Secure Install Position Secure Step Walk

route Aside Check-Object Get Inspect Load Lubricate Open Place Remove Repair

Restock Route Toss

secure Install Position Secure

step Secure Install Position Secure Step Walk

toss Aside Check-Object Inspect Load Lubricate Open Place Repair Restock
Route Toss

uncoil Uncoil

walk Secure Install Position Secure Step Walk

Table B.2: Grouping of verbs in test results
Group 1 aside, break, check, crumple, fasten, fold, get, install, posi-

tion, reach, remove, return, route, secure, step, toss, uncoil,
walk

Group 2 apply, place

Group 3 allow, preload

di�culty for Camille 1.0 because it could only handle one word at a time (notice that \load"
does not appear in the results).

The word \preload" was only found in one sentence in this test set, so Camille's

hypothesis was overly speci�c.

The results of this initial test suggested that a large portion of the meaning of un-
known words could be inferred automatically using only very basic conceptual information
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about the domain.

B.2.2 The Terrorism domain

A portion of the test sentence from the Terrorism domain is shown below (the actual
texts were in all upper case letters):

The technical investigation commission has determined that some

military were reportedly involved in the assassination of the six

Jesuits and their two maids, which took place at daybreak on 16

November, as reported by President Alfredo Cristiani on 7 January.

Lopez Albujar, who left his post at the Ministry in May 1989, was

riddled with bullets as he was getting out of his car in the Lima

residential district of San Isidro.

Some 1600 Peruvians were murdered during the last quarter of 1989 due

to the political violence surrounding the 12 November municipal

elections.

Salvadoran Social Democratic politician Hector Oqueli Colindres was

kidnapped today in Guatemala City, his party reported in Mexico City.

The MNR reported on 12 January that heavily armed men in civilian

clothes had intercepted a vehicle with Oqueli and Flores enroute for

La Aurora airport and that the two political leaders had been

kidnapped and were reported missing.

Reportedly, Oqueli had been threatened with death by several people

who, through a government radio network, had accused him of being an

accomplice of the rebels.

Shots were fired from it at the sentry post from a distance of some

150 meters.

Today two people were wounded when a bomb exploded in San Juan

Bautista municipality.

They destroyed several power poles on 29th Street and machinegunned

several transformers.

Ordonez Reyes accused Jose Jesus Pena of masterminding the 7 January

assassination of Contra Commander Manuel Antonio Rugama.

After processing these and 40 more sentences from the domain, Camille 1.0 inferred
the hypotheses in table B.3.

Table B.4 contains the grouping of the results in this domain. In this test, 15 verbs
were assigned hypotheses by Camille, and 8, or 53%, were correct.
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Table B.3: Test results, Camille 1.0, Terrorism domain
Verb Ordered meaning hypotheses

accused Accuse Ambush Bombing Injure Shoot Suspect

attacked Bombing

claimed Fight Threat

denied Admit Report Request Think

destroyed Bombing Destroy

dynamited Bombing Destroy

kidnapped Accuse Ambush Bombing Injure Kidnapping Murder Shoot Suspect

killed Accuse Suspect

machinegunned Bombing Destroy

murdered Accuse Ambush Bombing Injure Kidnapping Murder Shoot Suspect

reported Bombing

riddled Shoot

stated Admit Report Request Think

threatened Accuse Ambush Bombing Injure Kidnapping Murder Shoot Suspect

wounded Bombing

Table B.4: Grouping of terrorism verbs in test results
Group 1 accused, denied, destroyed, dynamited, kidnapped, mur-

dered, riddled, stated

Group 2 killed, machinegunned, threatened, wounded

Group 3 attacked, claimed, reported

Group 4 died, exploded

The words in group 1 are those correctly inferred by Camille. The words in group 2
were victims of incomplete parses. Because the sentences were too complex for the grammar,

these words were either assigned incorrect slot �llers or were missing slot �llers. The words
in group 3 have rather general constraints, so Camille did not have enough instances of their
use to converge on a correct hypothesis. Because of incomplete parses, no hypotheses were
generated for the words in group 4.

Camille's overall performance was signi�cantly lower for the Terrorism domain than

for the Assembly Line domain. This is hardly surprising given the additional complexity of
both the concept representation and the sentences in the corpus. The average number of words

per sentence gives a rough measure of the corpus complexity. For the Assembly Line domain,
it was just over 4 words per sentence, for the Terrorism test set, about 23 words per sentence.

B.2.3 Additional statistical analysis

The initial results of the test were encouraging, but not entirely satisfying. For one

thing, the number of guesses for each word was quite high (about 6.2 concepts per word for the
Assembly Line domain, 3.2 for Terrorism). In the extreme case, Camille could have guessed
that every word referred to each concept, resulting in an Accuracy score of 100%. Ideally,
the results should express both the accuracy of the hypotheses and their precision. In order

to more adequately reect this, the scoring mechanism used in recent MUC competitions (for
which, it had been adapted from the Information Retrieval world) was adapted to the lexical
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acquisition task.

This system of scoring describes performance from several viewpoints. First is a
variation of the simple performance measure shown above, labelled Recall. This is formally
de�ned as the number of correct answers divided by the total number of unknown verbs that
appeared in the test set. This di�ers slightly from the Accuracy measure mentioned above.

There were some cases in which Camille did not make a hypothesis for word that appeared in
the test set due to inadequacies in the Camille implementation or di�culties with the parse.
The Accuracy measure provides the ratio of correct answers to the number of hypotheses

generated, that is, the number of verbs for which Camille actually produced a possible meaning.
The next measure, Precision, is de�ned as the number of correct hypotheses divided

by the total number of concepts generated. Combining this measure with Recall reects the
desired trade-o� between the number of good hypotheses and the total number of hypotheses

generated.
Especially in domains with complex sentences, LINK frequently returned incomplete

parses. Although parse fragments were extracted from the chart, they did not necessarily
contain a given unknown word from the sentence. Without this information, Camille could

not infer a meaning for the word. In order to measure the system's performance based on the
words for which it could make hypotheses, the Accuracy measure is included in the following
graphs.

In order to gauge the most basic inferential capabilities of the system, the ratio of
the number of verbs in the test set to the number for which Camille generated a hypothesis
was calculated. This is represented by the Production measure.

One �nal measure shows how many de�nitions Camille got exactly right. The Par-

simony measure is the ratio of the correct answers which only contained one concept to the
total number of possible de�nitions.

As displayed in �gure B.4, Camille 1.0 running on the Assembly Line test scored a
Recall of 51%, a Precision of 13%, and Production of 63%, Accuracy of 82%, and Parsimony

of 9%. In the Terrorism domain (�gure B.5), Camille scored a Recall of 47%, a Precision of
15%, Accuracy of 53%, Production of 88%, and Parsimony of 6%. These scores become more
interesting when put into the context of the changing performance of the system over time as

described in the section B.3.
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Figure B.4: Camille performance, Assembly Line domain

Production Recall Precision Accuracy Parsimony
0

0.2

0.4

0.6

0.8

1

Camille 1.0
Terrorism domain

Figure B.5: Camille performance, Terrorism domain
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B.2.4 Target word repetitions

As described in section 3.2.4, the number of instances of a word is important for

Camille's performance. Table B.5 shows the number of repetitions of the words in the Assembly

Line test set. Table B.6 shows the corresponding summary for the Terrorism domain. The

average number of occurrences for the Assembly Line domain was 3.7, and for Terrorism it

was 2.7.

Table B.5: Repetitions of words in the Assembly Line test set
allow 10 preload 1

apply 2 reach 1

aside 9 read 1

break 1 re�ll 1

check 3 remove 6

crumple 1 repair 2

fasten 1 return 6

fold 1 route 2

get 22 secure 3

inspect 2 step 2

install 5 stock 4

load 1 tear 1

lubricate 1 toss 3

match 1 uncoil 1

open 7 verify 1

place 2 walk 16

position 1

Table B.6: Repetitions of words in the Terrorism test set
accused 2 machinegunned 2

attacked 4 murdered 2

claimed 1 reported 10

denied 2 riddled 1

destroyed 2 said 3

died 2 shot 5

dynamited 1 stated 1

exploded 2 struck 1

kidnap 1 threatened 1

kidnapped 5 told 1

kill 1 wounded 7

killed 4

If the items are sorted by the number of occurrences, however, as in tables B.7 and
B.8, the di�culty of the task is clear. In the Assembly Line domain, 15 of the 33 verbs (or

45%) occur only once in the test set, and in the Terrorism set, 9 of the 23 (39%) words occur
only once, and 16 (70%) occur twice or less.
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Table B.7: Sorted repetitions of Assembly Line verbs
break 1 place 2

crumple 1 repair 2

fasten 1 route 2

fold 1 step 2

load 1 check 3

lubricate 1 secure 3

match 1 toss 3

position 1 stock 4

preload 1 install 5

reach 1 remove 6

read 1 return 6

re�ll 1 open 7

tear 1 aside 9

uncoil 1 allow 10

verify 1 walk 16

apply 2 get 22

inspect 2

Table B.8: Sorted repetitions of Terrorism verbs
claimed 1 died 2

dynamited 1 exploded 2

kidnap 1 machinegunned 2

kill 1 murdered 2

riddled 1 said 3

stated 1 attacked 4

struck 1 killed 4

threatened 1 kidnapped 5

told 1 shot 5

accused 2 wounded 7

denied 2 reported 10

destroyed 2

B.2.5 The bigger test

As mentioned in Chapter 3, the basic test sets were intentionally kept fairly small to

limit the number of repetitions of particular words. The goal was to see how well the system
could do under rather extreme conditions. In order to completely test the system, however, it
was applied to a larger test set in the Terrorism domain. 200 sentences were selected from the

corpus which contained the unde�ned verbs from the basic test set. Then the sentences were
processed and Camille's scores after each set of 50 sentences was calculated. The respective
mean and median word repetitions for the increasing test sets were: 3.6 and 2, 6.9 and 5, 10.2
and 6, and 14.2 and 9. As mentioned in section 3.4, Camille's scores actually went down, as

shown in �gure B.6.

Most of the decreased performance was due to errors in the parsed sentence structure.
To isolate the performance of the learning mechanism from the performance of the parsing

103



Test set size

50 100 150 200
0

20

40

60

80

100

Production Recall Precision Accuracy

Larger Test Performance
Terrorism domain

Figure B.6: Camille performance with larger test set

mechanism, this set of sentences was \hand-parsed", producing the actual slot �llers that the
a correct parse would yield. Examples of three sentences and their representations are shown

below:

Those accused of the assassination of six Jesuits will have a fair

trial and if found guilty, will be punished whether they are

civilians, military, or influential people, Supreme Court

President Dr. Mauricio Gutierrez Castro said.

(SAID (ACTOR POLITICAL-FIGURE) (OBJECT IGNORE-ACTION))

Salvadoran Social Democratic politician Hector Oqueli Colindres was

kidnapped today in Guatemala City, his party reported in Mexico City.

(KIDNAPPED (OBJECT POLITICAL-FIGURE) (TIME DATE) (LOCATION PLACE))

As a result of these attacks, several persons were wounded and others

died.

(WOUNDED (OBJECT CIVILIAN))

(DIED (ACTOR CIVILIAN))

The comparative results of the LINK-parsed and hand-parsed versions are shown in
�gure B.7.
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Figure B.7: Comparing LINK-parsed input to hand-parsed input

B.3 Plotting Camille's evolution

In this section, the test results of the di�erent stages in Camille's evolution are pre-
sented. Camille 1.0 is the initial version. As described in section 3.3, Camille 1.1 ranked
the hypotheses based on the tightness of their constraints �t to the slot �llers. Camille 1.2

(section 3.4) maintained a memory of the slot �llers so that the constraints could be accu-
rately matched to additional instances. Due to the post hoc nature of the testing, however,
Camille 1.1 and Camille 1.2 could not be tested separately. Therefore, separate test results
are not included here for Camille 1.1.

The testing for the variations on the basic Camille implementation, Mutual Exclu-
sivity, scripts, ambiguous words, and concept creation, are described in section B.5.

The enhancements made in versions 1.1 and 1.2 of Camille were intended both to �x
its lapses in memory and to reduce the size of the concept sets that it hypothesized. Table B.9

shows the results of testing Camille 1.2 on the Assembly Line domain.
As shown in �gure B.8, Camille 1.2 scored a Recall of 71%, Precision 22%, Production

94%, Accuracy 76%, and Parsimony 14% in the Assembly Line domain. This �gure also

contrasts the performance of the original version with the improved Camille 1.2. Although
the Accuracy decreased slightly, the other measures all improved signi�cantly. This reects, to
some extent, the trade-o� between Recall and Precision. Camille 1.2 inferred hypotheses for
11 more verbs, but produced fewer concepts (112 as opposed to 138). By reducing the average

number of concepts per hypothesis (3.4 as opposed to 6.3), Camille 1.2 eliminated some correct
concepts but greatly increased Precision (22 from 13, a 70% increase).

Figure B.9 shows the combined di�erence in scores with an area graph. The four
scores for both versions of Camille are added to show the overall increase in performance.
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Figure B.8: Camille 1.2 performance, Assembly Line domain
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Figure B.9: Cumulative Camille performance, Assembly Line domain (area graph)
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Table B.9: Test results, Camille 1.2, Assembly Line domain
Verb Meaning hypotheses

allow Inspect Repair

apply Check-Object Load Lubricate Place Restock Toss

aside Check-Object Load Lubricate Restock

break Break Crumple

check Check-Object Finish-Action Load Lubricate Restock

crumple Break Crumple

fasten Fasten

fold Check-Record Fold Inspect-Record Read Tear

get Check-Object Get Load Lubricate Remove Restock

inspect Action

install Prepare-Action

load Check-Object Get Load Lubricate Remove Restock

lubricate Check-Object Get Load Lubricate Remove Restock

match Match Verify

open Open

place Install Position

position Install Position

preload Check-Object Get Load Lubricate Remove Restock

reach Reach

read Apply-Record Check-Record Fold Inspect-Record Read Tear

re�ll Re�ll

remove Check-Object Get Load Lubricate Remove Restock

repair Action

return Step Walk

route Check-Object Get Load Lubricate Remove Restock Route

secure Check-Object Load Lubricate Restock

step Step Walk

stock Check-Object Get Load Lubricate Remove Restock

tear Check-Record Fold Inspect-Record Read Tear

toss Check-Object Load Lubricate Place Restock Toss

uncoil Uncoil

verify Match Verify

walk Step Walk
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For the Terrorism domain, the set of hypotheses inferred by Camille 1.2 is displayed

in �gure B.10.

Table B.10: Test results, Camille 1.2, Terrorism domain
Verb Meaning hypotheses

accused Ambush Injure Shoot

attacked Attack

claimed Fight Threat

denied Admit Report Request Think

destroyed Destroy

dynamited Destroy

kidnapped Ambush Injure Kidnapping Murder Shoot

killed Accuse Suspect

machinegunned Destroy

murdered Ambush Injure Kidnapping Murder Shoot

reported Robbery

riddled Shoot

stated Admit Report Request Think

threatened Ambush Injure Kidnapping Murder Shoot

wounded Robbery

The results of testing Camille 1.2 on the Terrorism domain were: Recall 41%, Pre-

cision 19%, Production 88%, Accuracy 47%, and Parsimony 18%. Figure B.10 compares the
performance of Camille 1.0 and Camille 1.2 on this test. Here, the Recall / Precision trade-o�
is much more evident. Camille 1.2 produced almost a third fewer concepts, resulting in an

average number of concepts per hypothesis of 2.5 compared to 3.5. As an example of the e�ect
of this reduction, instead of guessing both Destroy and Bombing for the meaning of \destroyed"
and \dynamited", Camille guessed only the concept Destroy. Thus Precision was increased,
but the number of correct concepts was decreased (by one), accounting for the drop in the

Recall and Accuracy scores (and a slightly reduced gain in Precision).
Figure B.11 shows the combined di�erence in scores with an area graph. True to the

nature of the Recall / Precision trade-o�, the compound result barely changed from from one
version to the other. This does not, of course, imply that the performance of the system didn't

change. It demonstrates that by changing the behavior of the system to create narrower or
broader concept sets, the system can be tuned to the needs of the application.
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Figure B.10: Cumulative Camille performance, Terrorism domain
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Figure B.11: Cumulative Camille performance, Terrorism domain (area graph)
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Figure B.12: Partial lexica Camille performance, Assembly Line domain

B.4 Testing Partial Lexica

In order to evaluate Camille's performance with partial lexica, a series of tests was

run in the Assembly Line and Terrorism domains, varying the percentage of the original verb
de�nitions that were deleted. Camille's performance was evaluated with 20%, 50% and 70%
of the domain's verbs de�ned. Because the verbs which were de�ned were chosen randomly,

the test at each level was run 4 di�erent times. This enabled an analysis of the system's
performance under various stages of development.2 The results for the Assembly Line domain
are shown in �gure B.12, and the results for the Terrorism domain in �gure B.13.

These graphs display the values of the test measures on the average of the four runs at
each of the three levels of lexical ignorance. The only apparent trend from the Assembly Line

data is the increase in Precision as fewer verbs are unde�ned. This stems from the fact that

each successive test produced signi�cantly fewer concepts. While the number of correct guesses
went from 21 to 14 to 10, the total number of concepts produced went from 91 to 58 to 35.
Part of the explanation for this behavior comes from the fact that certain verbs caused Camille

to generate a much higher than average number of concepts per word. Although the average
was 3.4, the median was 2. Thus, eliminating a one-word hypothesis and a six-word hypothesis
from the set produces a downward e�ect on the average, but not enough to account for the
large reduction in concept production. A word-by-word examination of the results reveals that

the number of concepts hypothesized for each word did not change. Apparently the random
de�nitions of words coincidentally de�ned (and thus kept Camille from hypothesizing) more
words for which Camille had hypothesized higher numbers of concepts.

The Terrorism results show a downward trend in Recall, Precision, and Accuracy.

2The test could not be viewed as a complete test of varying development however, since the grammar and the
lexicon for the rest of the words were at the same level of completeness for all of the tests. This was necessary,
however, to enable direct comparison of the di�erent versions
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Figure B.13: Partial lexica Camille performance, Terrorism domain

Again this appears to be an artifact of particular testing results. Of the three basic measures,

the number of correct guesses, the number of hypotheses generated, and the the total number
of concept generated, each decreases accordingly as the number of words that are available for
Camille to learn decreases (as the percentage of de�ned verbs increases). The rate of reduction
in the number of correct guesses is higher than the others, and thus produces the downward

trend in the calculated measures which depend in it. The noise in the data comes from one
of the 70% de�ned tests. In this test, only 3 words were assigned hypotheses by Camille,
compared to the average of 6.7 in the other three tests. Of these three guesses, none contained

a correct concept, reducing the average number of correct guesses for these tests to 2.3 from
the average of 3 for the other tests. If this test is removed, the overall result is as shown in
�gure B.14, where no trend is evident.

Two conclusions come from these tests. One is that sometimes small variations in the
tests can lead to larger di�erences in Camille's behavior. This could potentially be addressed
by running tests with larger amounts of unde�ned words and larger numbers of repetitions of

those words. The goal of the tests however, was to examine the performance of the system
under di�cult conditions. A non-interactive agent has no control over the number of learning
instances that it gets, and thus must be able to learn with scant data.

The more general conclusion is that the performance of the system is not signi�cantly
a�ected by changes in its lexical knowledge. This is important because the system should not
have more di�culty learning when its knowledge of other words increases.

B.5 Testing the variations

This section describes the tests on the variations on the basic Camille system that
were described in Chapter 4.
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Figure B.14: Revised Partial lexica Camille performance, Terrorism domain

B.5.1 Mutual Exclusivity

The testing paradigm used for evaluating the Mutual Exclusivity implementation was
the same as that used for testing the basic system. Camille processed the same test set with

the Mutual Exclusivity switch turned on. The switch required Camille to take note of the
mappings between concepts and words. Hypotheses linking an unknown word to a concept
that was already the referent of another word were rejected. As mentioned in Chapter 4, the
results were close to those from testing the basic system.

Table B.11 shows the results from testing in the Assembly Line domain. The only
di�erences between these results and the ones from Camille 1.2 are in the de�nitions for

\preload" and \uncoil". For both of these words, by the time they were processed, another
word had already been assigned to their appropriate concept. For \preload", with the sentence,
\Preload nut to driver," Camille tried (erroneously) to attach the word to the concept Fasten
which was already assigned as the referent of the word \fasten". Camille was unable to �nd

any other applicable referent for \preload" so it was assigned the most general concept, Action.

By the time that Camille processed the sentence, \Uncoil power top harness," it had

already assigned the concept Uncoil to the word \route" (from \Route harness down right-side
oor pan through right-side bolster."). Ironically, the hypothesis was later changed for \route"
because a Hose was attached as its Object.

The scores for the Mutual Exclusivity test on the Assembly Line domain were: Recall
69%, Precision 23%, Production 94%, Accuracy 73%, and Parsimony 14%.

Table B.12 shows the concepts hypothesized using Mutual Exclusivity for the Terror-
ism domain. The scores for Terrorism test set were 17% Recall, 21% Precision, 62% Production,
79% Accuracy, and 12% Parsimony. As expected, the system had di�culty inferring de�nitions
for this test set because of the high numbers of synonyms in the corpus (see section 4.1 for more

discussion). The system did, however, produce relatively precise de�nitions, generating only
19 concepts for its 15 hypotheses. This was a signi�cant reduction over the basic system which
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Table B.11: Test results, Camille 2.0, Assembly Line domain
Verb Meaning hypotheses

allow Inspect Repair

apply Aside Check-Object Load Lubricate Place Restock Toss

aside Check-Object Load Lubricate Restock

break Break Crumple

check Check-Object Finish-Action Load Lubricate Restock

crumple Break Crumple

fasten Fasten

fold Check-Record Fold Inspect-Record Read Tear

get Check-Object Get Load Lubricate Remove Restock

inspect Action

install Prepare-Action

load Check-Object Get Load Lubricate Remove Restock

lubricate Check-Object Get Load Lubricate Remove Restock

match Match Verify

open Open

place Install Position

position Install Position

preload Action

reach Reach

read Apply-Record Check-Record Fold Inspect-Record Read Tear

re�ll Re�ll

remove Check-Object Get Load Lubricate Remove Restock

repair Action

return Step Walk

route Check-Object Get Load Lubricate Remove Restock Route

secure Secure

step Step Walk

stock Check-Object Get Load Lubricate Remove Restock

tear Check-Record Fold Inspect-Record Read Tear

toss Aside Check-Object Load Lubricate Place Restock Toss

uncoil Action

verify Match Verify

walk Step Walk

produced twice as many concepts in 16 hypotheses. The fact that fewer of the hypotheses
created by Camille 2.0 were correct prevented the system from making a dramatic gain in the
Precision score.

B.5.2 Script testing

As mentioned in section 4.2, the testing paradigm for the acquisition mechanism
using scripts was fundamentally di�erent from that used for testing the basic system. Instead of

presenting the system with a set of unconnected sentences, the test set for the script mechanism
consisted of complete texts. For the Assembly Line domain, these were descriptions of the set of
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Table B.12: Test results, Camille 2.0, Terrorism domain
Verb Meaning hypotheses

accused Ambush Injure

attacked Attack

claimed Threat

denied Think

destroyed Action

dynamited Action

kidnapped Kidnapping Murder

killed Suspect

machinegunned Action

murdered Kidnapping Murder

reported Threat

riddled Shoot

stated Think

threatened Kidnapping Murder

wounded Terrorist-Act

actions that a single operator would take on the line, for example (with abbreviations expanded
for readability):

At bench get right-rear door handle reinforcer.

Walk to job.

Simultaneously get front door stuffer from apron.

Install stuffer at front door frame lower rear.

Open door.

Step into opening.

Get harness.

Route harness down right-side floor pan through right-side bolster.

Secure harness to right-side bolster with 2 clips.

...

Return to bench.

Aside tape to trash.

Allow to stock stuffers to apron.

Allow to lubricate stuffers.

Allow to refill lube bottle.

Allow to open boxes and stock water bottle.

Inspect and repair as required.

As discussed in section 4.2, the mechanism was tested with both speci�c scripts and
more general ones. For both cases the top-level script for the Assembly Line domain was the
same:

(define-sem job-script is-a (action-script)

formulae (((1*) = assemble-script

(2*) = finish-script)))
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These scripts allow subscripts and iterations. The Job-Script is interpreted as: \Any

number of iterations of Assemble-Script followed by any number of iterations of Finish-Script."
The Finish-Script allowed any Finish-Action: (Allow Lubricate Re�ll Inspect Repair).
The more speci�c Assemble-Script was de�ned with two children as follows (the items

in the equations with *'s are previously de�ned nodes in the concept hierarchy):

(define-sem assemble-script-1

is-a (assemble-script)

formulae (((1) = *get*

(2*) = manipulate-script

(3) = *assemble*

(4*) = assemble-subscript

(1 object) = *factory-object*)))

(define-sem assemble-script-2

is-a (assemble-script)

formulae (((1) = *get*

(2*) = record-script

(1 object) = *record*)))

Either of these scripts could be an interpretation of any iteration of Assemble-Script in
a Job-Script. Manipulate-Script allowed any Prepare-Action, (Walk Step Reach Uncoil Toss Place

Crumple Break Apply-Tape Remove Open Load Check-Object). The Assemble-Subscript allowed

any number of repetitions of Assemble actions. Record-Script could be either a Record-Action

or a Tape-Action applied to a Record.

Unfortunately, due to the intertwining of these sequences of actions within the texts
(as discussed in section 4.2), these scripts did not accurately describe the texts. They were

replaced by the following more general script:

(define-sem assemble-script-1

is-a (assemble-script)

formulae (((1*) = manipulate-script)))

The Manipulate-Script referred to in this script allowed any of the larger set of actions
which included the Prepare-Actions mentioned above as well as the Record-Actions and the

Assembles.
Table B.13 shows the hypotheses generated for the Assembly Line domain using these

more general scripts. The scores for the test were: 34% Recall, 18% Precision, 40% Accuracy,

86% Production and 6% Parsimony. Figure B.15 shows the cumulative scores of the system
on the Assembly Line domain. The Mutual Exclusivity and Script tests are not directly
comparable to the others, but are included for reference.

In the Terrorism domain, the tests were run on 20 unedittedmessages from a newswire

service. One of the test messages is included below:

Salvadoran Social Democratic politician Hector Oqueli Colindres was kidnapped

today in Guatemala City, his party reported in Mexico City. Oqueli Colindres is
the secretary of the National Revolutionary Movement. The MNR is directed by
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Figure B.15: Overall Camille performance, Assembly Line domain

Guillermo Ungo. Oqueli is also Socialist International secretary for Latin America.
In a communique, the MNR said Oqueli had arrived in Guatemala on 11 January
and was planning to travel today to Nicaragua as a member of a Socialist Inter-

national delegation. The communique adds that Oqueli Colindres was kidnapped
between 0630 and 0700 by heavily armed men while on his way to the airport along
with Guatemalan Social Democratic leader Gilda Flores, who was also kidnapped.
Oqueli, who returned last year to El Salvador after a long exile in Mexico, where he

represented the Farabundo Marti National Liberation Front and the Revolutionary
Democratic Front Political-Diplomatic Commission.

The scripts that were used to test the Terrorism texts were de�ned as follows:

(define-sem ter-act-script is-a (terrorist-action-script)

formulae (((1) = nasty-action

(2) = wound

(3) = murder)))

(define-sem shooting-script is-a (terrorist-action-script)

formulae (((1) = shoot

(2) = murder

(3) = wound)))

(define-sem bombing-script is-a (terrorist-action-script)

formulae (((1) = bombing

(2) = detonate

(3) = explode

(4) = destroy

(5) = die
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Table B.13: Test results, Camille 2.1, Assembly Line domain with scripts
Verb Meaning hypotheses

allow Allow

apply Check-Object Load Place Toss

aside Check-Object Load

break Finish-Action

check Check-Record Inspect-Record Read

crumple Break Crumple

fasten Aside

fold Check-Record Fold Inspect-Record Read Tear

get Get

install Prepare-Action

load Check-Object Get Load Lubricate Remove Restock

lubricate Finish-Action

match Match Verify

open Check-Object Load Open Remove

place Install Position

position Install Position

preload Finish-Action

reach Inspect Repair

re�ll Finish-Action

remove Check-Object Load Remove

return Inspect Repair

route Uncoil

secure Finish-Action

step Step Walk

stock Check-Object Get Load Lubricate Remove Restock

tear Check-Record Fold Inspect-Record Read Tear

toss Aside

uncoil Finish-Action

verify Prepare-Action

walk Inspect Repair

(6) = wound

(7) = murder)))

(define-sem kidnapping-script is-a (terrorist-action-script)

formulae (((1) = kidnapping)))

The scores achieved by Camille using these scripts were Recall 30%, Precision 43%,
Production 60%, Accuracy 50%, and Parsimony 30%. Because of the di�erences in the testing
procedure and the de�nitions that were collected, these results are not directly comparable

to the basic test results. They do serve, however, to give a rough idea for the strengths and
weaknesses of a script-based approach as discussed in section 4.2.
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Table B.14: Test results, Camille 2.1, Terrorism domain with scripts
Verb Meaning hypotheses

attacked Destroy

destroyed Destroy

kidnapped Fight Threat

murdered Murder

reported Ambush Injure Kidnapping Murder Shoot

wounded Murder

B.5.3 Ambiguous words

In order to test the learning of ambiguous verbs, the basic test was run with the

addition of the mechanism described in section 4.3. The results of this test were exactly
the same as for Camille 1.2 with the exception of the de�nition for open. As explained in
section 4.3, this node was split into two di�erent concepts, but the inferred hypothesis for both
was Open.

As described in section 4.3.1, the test of the ambiguous noun acquisition mechanism
required the removal of 9 word de�nitions from the corpus: branch, charge, lines, others, plant,
post, quarter, state, and system. Examples of the 100 sentences which contained these words

are shown below:

CHARGE:

According to Panamanian reports, charge d'affaires Luis Sandiga has

made statements on the situation that did not please the government.

According to a witness, the dynamite charge was placed by a young man.

STATE:

The Peruvian government today decreed a state of emergency and

military control in four Lima provinces and extended the measure in

another five.

As a shadow economy, it is trying to become part of the state

structure.

LINES:

We have broken the defensive lines of the enemy.

In the eastern part of the country, the Lempa River Hydroelectric

Executive Commission reported that one of the country's main power

lines was out of service on the morning of 1 June because a number of

pylons were destroyed.

PLANT:

U.S. policy, and all this is very well known in Latin America,

is based on destroying the plantations of a native plant in the
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Table B.15: Test results, Camille 2.2, Assembly Line domain
Verb Meaning hypotheses

allow Inspect Repair

apply Aside Check-Object Load Lubricate Place Restock Toss

aside Check-Object Load Lubricate Restock

break Break Crumple

check Check-Object Finish-Action Load Lubricate Restock

crumple Break Crumple

fasten Fasten

fold Check-Record Fold Inspect-Record Read Tear

get Check-Object Get Load Lubricate Remove Restock

inspect Action

install Prepare-Action

load Check-Object Get Load Lubricate Remove Restock

lubricate Check-Object Get Load Lubricate Remove Restock

match Match Verify

open Open

open Open

place Install Position

position Install Position

preload Check-Object Get Load Lubricate Remove Restock

reach Reach

read Apply-Record Check-Record Fold Inspect-Record Read Tear

re�ll Re�ll

remove Check-Object Get Load Lubricate Remove Restock

repair Action

return Step Walk

route Check-Object Get Load Lubricate Remove Restock Route

secure Check-Object Load Lubricate Restock

step Step Walk

stock Check-Object Get Load Lubricate Remove Restock

tear Check-Record Fold Inspect-Record Read Tear

toss Aside Check-Object Load Lubricate Place Restock Toss

uncoil Uncoil

verify Match Verify

walk Step Walk

continent, which is coca.

Coprefa reported that two soldiers were killed during a clash with

members of the Farabundo Marti National Liberation Front in Comasagua,

about 28 km to the southwest of Salvador, where a rebel attack on

a coffee processing plant was successfully repelled.

After the set of 100 sentences was processed, Camille 2.2 recorded the following
de�nitions:
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branch: Object-or-State

lines: Action

lines: Object-or-State

others: Place

others: Human

post: Human-or-Place

post: Energy

quarter: Object-or-State

state: Object-or-State (abstract notion of state)

state: State (government body / place notion)

system: Object-or-State

system: Energy

Although some of these de�nitions are questionable (especially Action for \lines"),

those for \others", \post", and \state" are quite good. The inference of the meaning Object-
or-State is of little use to an information extraction mechanism because it is so vague. An
analysis of the semantic hierarchy reveals the reason for the vague inferences. The only verb

with a constraint that references Object-or-State is Be. Thus, as suggested in the analysis of
the limitations of the script mechanism, many of the sentences in the domain simply describe
objects. This accounts for the inferences of the Object-or-State noun meanings in this test.

The system hypothesized 5 out of 9 ambiguous de�nitions, for a Production score of

56%. Recall, counting the correct de�nitions, was 8 of 18 possible de�nitions, or 44%. Precision
and Accuracy were 8 out of 12, or 67%. Because there was only one concept in each sense of
the ambiguous de�nitions, Parsimony was the same as Recall, or 44%.

B.5.4 Creating new nodes

As described in section 4.4, the creation of new concepts for the system relies on

two other variations of Camille, Mutual Exclusivity and noun learning. The test on this

mechanism was exactly the same as the \ambiguous" test. Instead of just attaching a new
de�nition to an existing concept, however, Camille 2.3 created a new node in the hierarchy if
Mutual Exclusivity had already assigned a word to that concept. The new concept was given

the name of the word if no such concept-name already existed. Otherwise, a name was created
based on the word. The results of the test were as follows (new concepts are agged with a *
and followed by their parents in the hierarchy):

branch: Branch* (Object-or-State)

lines: Lines* (Action)

lines: Lines35764* (Object-or-State)

others: Place

others: Other30078* (Human)

post: Human-or-Place

post: Post* (Energy)

quarter: Quarter36164* (Object-or-State)

state: State33349* (State)

state: State32026* (Object-or-State)

system: System* (Object-or-State)

system: System32324* (System*)
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Figure B.16: Overall Camille performance, Terrorism domain

As previously mentioned, the Terrorism domain was a di�cult one for Mutual Exclu-

sivity. In a sense, this made it a good one for creating new nodes. Because most of the concepts
in the domain were already referents of one or more words, the occurrence of an unknown word
could signal Camille that it needed to further specify its concept structure.

The Production score was the same as for the ambiguous nouns test: 5 out of 9,

or 56%. Because there were also 8 correct de�nitions, the Recall, Precision, Accuracy, and
Parsimony scores were also the same as for the ambiguity test: 44%, 67%, 67%, and 44%.
Of the 12 de�nitions that Camille created, only two did not result in the creation of a new

concept. These two concepts, Place and Human-or-Place were so general that there were no
other words in the lexicon that referred to them.

Figure B.16 summarizes the scores of the system for all of the di�erent variations.
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