Functional Programming
and
Erratic Non-Deter minism

Corin Steven Pitcher

Trinity College

June 3, 2001

Submitted in partia fulfilment of the requirements for the
Doctor of Philosophy in Computation

Oxford University Computing Laboratory

Programming Research Group

crest.eps

Abstract

Non-deterministic programs can represent specifications, and non-determinism arises naturally
in concurrent programming languages. In this dissertation, A-calculi exhibiting erratic non-
determinism are studied in order to identify definitions and techniques that may be applicable to
higher-order programming languages for specification or concurrency.

The non-deterministic A-calculi arise as fragments of an infinitary, non-deterministic A-calculus
with countably indexed erratic choice. The operational semantics for . induces a uniform
operational semantics upon each fragment, facilitating arguments that apply to different non-
deterministic A-calculi.

The behaviour of programsin each fragment is abstracted to aform of labelled transition system
with divergence called atyped transition system. Several applicative similarity and bisimilarity
relations are defined upon the states of each typed transition system, including the fragments.
Examples that distinguish the relations are constructed in a simple typed transition system .
and are later shown to have analogues in non-deterministic A-calculi. Maps that preserve and
reflect the structure of typed transition systems are investigated because they reflect the finest
relation, convex bisimilarity, and it is proven that thereisamap to . from every typed transition
system satisfying amild condition.

Using operational techniques, the lower, upper, and convex variants of similarity are shown
to be compatible and to satisfy the Scott induction principle for every fragment. In addition,
the other relations are compatible for a useful collection of fragments. Relative definability of
non-deterministic programs is considered with respect to convex bisimilarity, and a chain of
fragments is presented for which the corresponding chain of convex bisimilarity relations are
related by strict inclusions, i.e., more expressive forms of erratic non-determinism distinguish
terms that cannot be distinguished by less expressive forms of erratic non-determinism.

Contents

Acknowledgements

vi

i CONTENTS

|4 Typed Transition Systems 85
4.1 Typed Transition &stemd; 85
4.2 Similarity and Bisimilarity 89
U3 TheTTS.Z andBisimilarity o o vovee e e e e e 99
B4 TheTTS.ZandSmilarityo oo 100
M5 ACategory Of TTSS. .« « o o oo e e e e e e e 108

|5 Programming L anguage TTSs 119
Bl Zand GEY 119
5.2 Similarity and Bisimilarit)] 122
B3 RelationsonOpenTerms o oo 125

A Compatibility e e 133

B.5 RelativeDefinability ot 152
5.6 Theory of the Langu&é 160
B7Z Fixed-Point$.o 169

6 SCUSSIO 179
Bl Summand 179
6.2 FUther WOrK . . . o o oo e e e e e 181

L Bibliography 185
Glossary of Symboal 199

[Inded 203

List of Figures

21 e-tr f ordinalsfromOto4 27
2.2 A well-foun reewithrank ¢d, 29
2. -transition -treefor {{0.{0}}. {{OWVY 31
2.4 The unlabelled transition system associated with a non-well-founded set . . . 32
25 | TSsrelatedby sSimilarityl 42
6 Ordersonrecursivetresd 47
2.7 __Action of binary choiceoperator$. 51
2.8 Monotonicity of choice operators. 53
B1 Termsandcanonical terms 57
B2 FreevariableSo 58
3.3 Type assignmeni 61
B4 Abbreviated terms.o 63
3.5 Type assignment for abbreviated TOIMS .« o o 64
3.6 Reduction CONSITUCIOMS vt vo e et e e e 65
37 Reductionrelation u 66
3.8 Derived reduction rule 67
B9 Maycomvergence 72

13 Fragm | osur 2) . e 79

I(-_3.14 Must convergence ranﬂ 80

LIST OF FIGURES

4.2 Inclusions between similarities and bisimilarities 95
.3 Equivalence classes of .# (P, (unit)) and .# (P, (P, (unit))) w.rt. <Z| 102
4.4 Equivalence classes of .7(P, (unit)) and . (P, (P, (unit)) wrt. <od 102

<7 <7 < <7l 103

.6__Equivalence classes of .7 (P, (P, (boo)) w.rt. < cand <71 104

Acknowledgements

Firstly, I would like to thank my supervisor Luke Ong for his advice and encouragement through-
out the course of my studies. His advice has proven invaluable. | am also grateful to my second
supervisor Lincoln Wallen.

| have had profitable discussions on the topic of non-deterministic A-calculi with Sgren Lassen,
Andrew Moran, and Russell Harmer. | have had enjoyable discussions on other topics with
Corina Cirstea, Thomas Hildebrandt, Dominic Hughes, Ranko Lazi¢, Ralph Loader, Michael
Marz, Guy McCusker, Richard McPhee, Julian Rathke, Charles Stewart, and James Ben Worrell.

Andrew Gordon arranged an internship at Microsoft Research, Cambridge that | enjoyed a great
deal.

The faculty at CTI, DePaul University have been very supportive during the final stages of writ-
ing this dissertation, and, in particular, | thank Alan Jeffrey and Marcus Schaefer for their com-
ments.

My parents, sister, and grandparents have unfailingly provided, sometimes undeserved, love,
support, and understanding.

Finally, | would like to thank Jessalynn. Her love and support make life worthwhile.

Vi

Chapter 1

| ntroduction

1.1 Motivation

Non-determinism is frequently encountered, or introduced deliberately, when reasoning about
specifications or concurrent systems. For example, some program development formalisms
identify specifications with non-deterministic systems; and concurrent systems can exhibit non-
determinism when timing or scheduling information is unavailable or difficult to calculate. A
non-deterministic system is generally easier to work with than a collection of systems that im-
plement a specification, or a collection of outcomes of a concurrent system under all possible
timing or scheduling behaviours.

We now examine several representative scenarios involving anon-deterministic system and rea
sonable implementations. Suppose that M and N denote state-less, deterministic systems that
accept a natural number and return another natural number or fail to terminate. The time and
space properties of M and N are left unspecified. When they exist, we write M(x) and N(x) for
the results of passing the natural number x as an argument to the systems M and N respectively.

Consider a non-deterministic system M U N that accepts a natural humber and then behaves
either as M(x) or as N(x). The system M UN could be implemented or refined by any of the
following systems:

System A isM.

System B isN.

System C reads one digit from an unbounded tape of binary digits, winds the tape on, and then
behaves as M if the digit is0 and as N if the digit is 1. Nothing further is assumed about
the tape.

System D behaves as M with probability 0.75 and as N otherwise.

System E accepts anatural number x, forwards x to systems A and B, and returns the first result
that it receives. Nothing is assumed about the relative performance of the systems A and
B or the connections to them.

2 CHAPTER 1. INTRODUCTION

System F accepts a natural number x, runs M and N on a sequential, multi-tasking system, and
returns the first result that it finds. Nothing is assumed about the scheduling agorithm in
use.

Therelationship between M and systems A and B istypical of program development formalisms,
but MUN is an atypical specification because of its simplicity. More often, the specification
(a non-deterministic system) is a term of an expressive language, and it is challenging to find
implementations.

Systems C, D, E, and F are non-deterministic because of incomplete information, but each one
can be refined to different deterministic systems when additional information is available. For
example, the behaviour of system C is determined by the contents of the tape, and system D
may be found to base its decision upon an internal counter that chooses N when the counter is
divisible by 4. In both cases, a state-less, non-deterministic system MU N isrefined by stateful,
deterministic systems.

Pursuing system C leads to a strategy for modelling non-determinism using oracles, where the
tape is an oracle that can be called upon to resolve non-deterministic choices. The probabilities
associated with the behaviours of system D can be useful, in particular for showing that the
probability of an undesirable behaviour is small. Neither oracles nor probabilistic systems are
considered in this dissertation.

System E executes M(x) and N(x) concurrently. In general, the outcome depends upon the
relative performance of the component systems and connections. Without this information, we
must consider all possible performance characteristics. However, it is possible to describe the
non-deterministic behaviour of system E without reference to performance characteristics, and
this facilitates reasoning about such concurrent systems.

There isasubtlety in system E and its permissible implementations. Suppose that x is passed to
the systems A and B, but that only system A terminates, with result M(x). In this case, system
E will aways terminate with result M(x), thus avoiding the non-termination of system B. In
contrast, system C may read 1 from the tape and then fail to terminate because it is committed
to behaving as N.

System Fissimilar to system E. The description of the system isincompl ete without the schedul -
ing agorithm. In particular, it is not known whether the scheduling algorithm is fair: are the
computations of M and N interleaved, or dove-tailed, so that a non-zero, finite number of steps
are carried out before the scheduler switches to the other computation? For example, a schedul-
ing algorithm that never schedules N is not fair. If the scheduling agorithm is known to be fair,
then system F also has the property that it can avoid non-termination of one of the computations,
and so cannot be distinguished from system E.

The non-termination avoidance property of systems E and F is relevant to many real systems
because multi-tasking operating systems with fair scheduling a gorithms are the norm for current
desktop and server computers (and are becoming more common in embedded systems). When
termination properties are important, it is useful to identify different ways of combining systems
as a single non-deterministic system. For example, the erratic choice M UN does not have the
non-termination avoidance property because it can be implemented by system C. On the other
hand, the ambiguous choice of M and N is effectively the same as system E, or system F with

12. RELATED WORK 3

a fair scheduling algorithm, and thus does have the non-termination avoidance property. The
ambiguous choice of M and N is a valid implementation or refinement of the erratic choice
MUN.

In summary, non-determinism is used to package a family of systems as a single system to
provide an abstraction from implementation details, and hence facilitate reasoning.

1.2 Related Work

There is a considerable body of research involving non-determinism. This section describes
some of the relevant literature according to the categories: non-deterministic imperative pro-
gramming languages, process calculi, and non-deterministic and concurrent functional program-
ming languages.

1.2.1 Non-Deterministic | mperative Programming L anguages

Hoare's seminal paper [Hoab9] introduces a forma method for proving the correctness of pro-
grams of a simple deterministic imperative programming language (see [Gri81] for a historical

account). The programs of the language are composed of: assignment statements (to integer-
valued variables), sequential composition, conditionals, and while loops. The expressions of
the language are expressions of the underlying logic. Programs are annotated with predicates
about the state of the machine. A program is correct if the annotations are consistent with the
behaviour of the statements.

A Hoare triple {P} S{Q} consists of a statement S, a predicate P called the precondition, and a
predicate Q called the postcondition. The Hoare triple {P} S{Q} asserts that, when started in a
state that satisfies the predicate P, the statement Swill either fail to terminate or will terminate
in a state that satisfies the predicate Q. The judgements of the proof system are Hoare triples.
For example, the axiom for assigning the value of the formula E to the variable x is:

{P[E/X}x:=E{P}

Compound statements also have proof rules. For example, the proof rule for the sequential
composition of statements § and S is (where P, Q, and R are predicates):

{Prsi{Qt {Q}S{R}
{PIsS{R}

The while loop is written as doP — Sod where the predicate P, called a guard, is the condition
that is tested before each loop iteration and Sis the body of the loop. The corresponding proof
ruleis (where |l isapredicate):

{IAP}S{I}
{I}doP — Sod{I A—P}

4 CHAPTER 1. INTRODUCTION

The proof rule for while loops depends upon the idea of an invariant predicate | that always
holds before the condition is tested, i.e., it holds before the while loop starts and after each
iteration. The proof system establishes properties of the final state of a program but does not
address termination. This can be seen in the proof rule for the while loop which alows a proof
of the following statement even though no program can terminate in a state that satisfies false:

{true} dotrue — x := xod {false}

Hoare's original system can be used for program verification, checking that an existing program
satisfies a specification. This raises the question of how the program and the verification are
obtained. For example, a developer may write a program, and pass it to an expert that verifiesit.
If the expert finds an error, then the program may have to be returned to the developer and the
cycle repeated.

Dijkstra [Dij76] pioneers an approach to program synthesis where the program and the proof
of correctness are developed hand in hand. The developer starts from a formal specification
and applies transformations to it until a program is reached. The transformations are chosen so
that the resulting program must be a valid implementation of the specification. The sequence of
transformations documents the design and the proof of correctness of the program.

In Dijkstra's framework, specifications and programs are elements of the same space. Dijkstra
uses the space of predicate transformers, but other spaces have been considered in the literature
because the choice affects the style and ease of program development. Accounts of the spaces
and the relationships between them can be found in [dB80, [Gru93]. In contrast to Hoare's proof
system, the predicate transformer framework does take account of termination and so thereisan
additional proof requirement for iteration or recursion.

Not all predicate transformers are programs. Dijkstra introduces a language of guarded com+
mands (often called the guarded command language), and gives a denotational semantics for
guarded command language programs as predicate transformers. A predicate transformer can
be implemented if it is the image of a guarded command language program and the predicates
used as guards are computable.

It is straightforward to define a non-deterministic operational semantics for the guarded com-
mand language. The non-determinism arises from the general constructs for alternation:

ifp1—>51ﬂP2—>Szﬂ...”Pn—>S1ﬁ
and iteration:
doP1 = S [P —S[...[Pn— Siod

The guards Py, P,,..., P, are predicates. Informally, if the thread of execution reaches an a-
ternation or iteration statement and one of the guards is found to be true in that state, then the
corresponding branch is executed. If none of the guards are true, then the behaviour of the alter-
nation statement is undefined (often identified with non-termination). If none of the guards are
true for an iteration statement, then control passes to the following statement. Alternation and
iteration statements are non-deterministic when two or more guards are true, because the order

12. RELATED WORK 5

in which guards are tested is not specified. For example, b may contain either 0 or 1 after the
following program is executed:

if true—b:=0
| true—b:=1
fi

The standard semantics of the aternation and iteration statements is not fair. For example,
consider the following non-deterministic program:

b:=0;

n:=0;

do b=0—n:=n+1
| b=0—-b:=1
od

The whileloop terminates when the second branch is chosen and bisassigned 1. If it terminates,
we know that b contains 1 and that n contains a natural number. However, the while loop will
not terminate if the first branch is always chosen. In the standard semantics, any of the following
programs would be valid implementations or refinements of the above program:

e b:=1n:=0
e b:=1,n:=0;,don<10—n:=n+1lod

e dotrue — n:=nod

The standard operational semantics for the guarded command language is not fair because a
branch may not ever be chosen for execution even though its associated guard is true infinitely
often. In the example above, the second guard is true whenever the first guard is true. Thus,
in a fair setting, the second branch must be chosen eventually, and so the while loop aways
terminates and n may contain any natural number. Dijkstra rejects the requirement that imple-
mentations of the alternation and iteration statements befair because fairness greatly complicates
the semantics but is rarely required to prove a program correct. Francez [Fra86] and Apt and

Olderog [AOQ91] consider fairness in the context of the guarded command language.

Assuming the standard (unfair) semantics, if aguarded command language program may assign
any natural number to a variable, then it may fail to terminate (see also lemmd3.4.8(2)). More
generally, suppose that we have a non-deterministic guarded command language program. For
each initial state, if the program always terminates when started from that state, consider the
cardinality of the set of fina states that are reachable from that state. If al of the cardinalities
are finite, then the program exhibits finite non-determinism (or bounded non-determinism). If
any of the cardinalities are w, then the program exhibits countable non-determinism. We may
then state: with the standard operational semantics, no guarded command language program
exhibits countable non-determinism.

The definitions of finite non-determinism and countable non-determinism have analogues for
predicate transformers. Dijkstra proposes that predicate transformers reflect the behaviour of
guarded command language programs and places a restriction upon predicate transformers that
prohibits countable non-determinism (p77 of [Dij76]):

6 CHAPTER 1. INTRODUCTION

The second reason for reassurance is of a rather different nature. A mechanism
of unbounded nondeterminacy yet guaranteed to terminate would be able to make
within afinite time a choice out of infinitely many possibilities: if such amechanism
could be formulated in our programming language, that very fact would present an
insurmountable barrier to the possibility of theimplementation of that programming
language.

However, it is sometimes convenient to work with specifications that exhibit countable non-
determinism and are subsequently refined to programs. In addition, if countable non-determinism
is banned then every specification must be checked for compliance. For these reasons, much of
the subsequent research [Bac80, (Gri81, Bac88, Kal90, Mor90] allows predicate transformers to

exhibit countable non-determinism. Researchers in other areas have also rejected the restriction
to finite non-determinism [Par79, [Par81, [IMW95].

This creates an occasionally awkward mismatch between the expressiveness of predicate trans-
formers that can exhibit countable non-determinism and guarded command language programs
that cannot. The mismatch can be resolved by extending the guarded command language and
operational semantics with new statements that exhibit countable non-determinism. It isstraight-
forward to do this without fair aternation or iteration. For example, the guarded command
language can be extended with a statement that always terminates and may assign any natural
number to the variable x:

Xew

This program has the same behaviour as the program above with afair semantics.

Similar imperative programming languages that exhibit countable non-determinism are studied
in [Bac80, [PIo82] [AP86, [AO9T, [dGHLP94]. Countable non-determinism turns out to be useful

for studying fair operational semantics, because it is possible to define a fair scheduler in terms
of countable non-determinism. Using fair schedulers, a syntactic translation can be defined from
the guarded command language to the guarded command language extended with x :€ w. The
important property isthat the trandation of a program with the unfair operational semantics has
the same behaviour as the original program with the fair operational semantics. For example,
consider execution of the following program with the fair operational semantics:

do P—S
[P—S
od

If we choose variables b and n that do not appear in the above program, then it can be rewritten
using a scheduler that enforces fairness:

b:ew;

n:e w

do PAb=0AN#0—-S;n:=n-1
| PAb#0AN#0—Sn:=n-1
| PAb=0An=0—b:=1Ln:cew
| PAb#0AN=0—b:=0n:cw
od

12. RELATED WORK 7

The variables b and n store the state of the scheduler. The variable b indicates whether the first
or second branch is being executed and n contains the number of iterations of that branch that
will be taken before the scheduler switches to the other branch. The third and fourth branches
of the iteration are taken when the counter n reaches 0 and switch the scheduler from the first
branch to the second branch or vice-versa. The rewritten program cannot exclude the first or the
second branch infinitely often, even when executed with the unfair operational semantics. Thus
fairness of iteration is reduced to countable non-determinism by a syntactic translation in the
same way that parallel-or can be implemented upon a sequential, multi-tasking system.

1.2.2 Process Calculi

This section highlights some of the common operational techniques used to define and reason
about process calculi such as CSP [Hoa85, Ros98], CCS [[Mil89], and the 1-calculus [Mil91],
MPW92]. Non-determinism plays an important role in these calculi because they are typi-
caly given an interleaving semantics (see WN95)), i.e., concurrency is modelled using non-
determinism.

CSP, CCS, and the trcalculus can describe erratic non-deterministic choice between two pro-
cesses P and Q using the notation P Q (CSP) or 1.P+ 1.Q (CCS and the t-calculus). These
processes evolve silently into either P or Q. In addition, CSP and CCS permit the erratic non-
deterministic choice of an infinite family of processes. If | isaset and, foreachi €1, Risa
process, then:

(3] and T.P
i 2
denote erratic non-deterministic choice between the processes of the {R|i € | } in CSPand CCS
respectively.

The process calculi are each given an operational semantics in the form of alabelled transition
relation between processes represented as terms. The labelled transition relation is defined by
induction upon the structure of terms following Plotkin [Plo81]]. A transition, labelled with a,
between processes P and Q indicates that P may evolve to Q and is written P LN Q. Thelabels
vary according to the calculus, but, in general, record an (atomic) interaction of the left-hand
process with its environment. A distinguished label T is used to record an internal interaction
that cannot be seen or influenced by an externa party. For example, the operational semantics
determines that the behaviour of the non-deterministic choice processes given aboveis.

e FOrCSP.PNQ 5 PandPriQ - Q

e For CCSand theecalculus: T.P+1.Q 5 Pand T.P+1.Q 5 P

The labelled transition relation is the basis for reasoning about a process. The branching be-
haviour of a process is an important component of the behaviour of a process, and is readily
apparent from the labelled transition relation. A process P branches when there is more than one
pair consisting of alabel a and a process Q such that P 2, Q. The non-determinism in the exam-
ples above demonstrates branching. Branching also occurs in the guarded command language

8 CHAPTER 1. INTRODUCTION

when there is more than one terminal state for a program with afixed initial state because of non-
deterministic alternation or iteration statements. For example, running the following program
results in one of two states, in one b contains 0, and in the other b contains 1;

if true—b:=0
| true—b:=1
fi

Theintermediate states of such a program’s execution are nearly alwaysignored, and so guarded
command language programs have a simple branching structure: they branch immediately to
their final states. In contragt, it is often important to know whether a process branches before or
after an interaction with the environment, and thisis captured by the labelled transition relation.
For example, consider the CCS processes:

ab.0+ac0 and a.(b.0+c.0)

The first process performs an a-labelled transition to one of the non-branching, deterministic
processes b.0 or ¢.0. The second process performs an a-labelled transition to the branching pro-
cess b.0+ ¢.0, which can in turn perform either a b-labelled transition or a c-labelled transition
to the nil process 0. The decision as to whether b or ¢ will occur is fixed once a has occurred
in the first process, but is not fixed in the second process. Of course, the branching structure
may or may not be required depending upon the application, but it is nonetheless available in the
transition relation (see [Van94] for a good discussion).

The terms and labelled transition relation of each process calculus form a labelled transition
system (LTS). An LTS consists of a set of states (the processes or terms), a set of labels, and a
labelled transition relation. A processisaterm, which isin turn a state of the LTS.

Definitions of semantic equivalence processes are often phrased as equivalences upon the states
of LTSs. The best known equivalence is strong bisimilarity ~ (see [Par79, Par81,[MT88, Mil89,

Abr91, [Ros98|). If statessandt are related by ~, then every transition from s must be matched
by atransition fromt and the two target states must also be related, and vice-versa:

s~t=— (Vo,8.s 5 § = .t L ' AS~t)A
(Va,t' .t &t = 3.5 5 g AT ~t)

However, this property is not sufficient to define strong bisimilarity, and so ~ is defined to the
greatest relation satisfying the above. This is a coinductive definition. It is necessary to use
coinduction rather than induction to define ~ because processes may have infinite sequences of
transitions due to cyclic definitions. Strong bisimilarity ensures that states (processes) have pre-
cisely the same pattern of interaction with their environments, as given by the labelled transition
relation. Many variants of strong bisimilarity have been proposed for different applications, see
[Van90, Van93].

It is easier to reason about a system built from components if some of the properties of the
composite system can be inferred from known properties of the components. The compatibility
property of strong bisimilarity allows us to infer that two processes built using the same term

12. RELATED WORK 9

constructor arerelated by strong bisimilarity whenever the immediate sub-terms of the processes
are related by strong bisimilarity. A compatible equivalence relation is known as a congruence.
Not all variants of strong bisimilarity are compatible, e.g., weak bisimilarity (see [Mi189]).

In related work, Aczel and others [Acz88, Acz94, [FHL94, BM96] use a similar definition to

construct models of non-well-founded set theory by quotienting the class of unlabelled transi-
tion systems with avariant of strong bisimilarity, thus establishing a connection between cyclic
processes and non-well-founded sets. In addition, the connection between the coinductive def-
initions of the variants of bisimilarity and certain kinds of games with winning strategies (see
[Acz77]) is applied to model-checking by Stirling [Sti97]. However, such games are not directly

comparable with the games used to give semantics to programs in [AJM 94, HOO0Q] because they

represent the proofs of bisimilarity as opposed to the processes.

1.2.3 Functional Programming, Non-Deter minism, and Concurrency
Deter ministic A-Calculi

A-calculi (see [Bar84]) provide a clean basis for reasoning about functional programming lan-
guages. Contextual equivalence is an appealing behavioural equality relation that can be de-
fined upon the programs of the pure untyped A-calculus with areduction strategy |AbroQ], PCF
[Sco93, [PIo75, [Plo77, [Plo81, [Kah87, [Pit97], or FPC [Plo85, [Gun92]. A program M is related
by contextual equivalence to another program N with the same type as M if, for all (suitable)
contexts C[—], C[M] terminates if and only if C[N] terminates. The definition of contextual
equivalence captures the intuition that two programs should be considered the same if they are
interchangeable (with respect to observing termination using tests written in the same program-
ming language). For PCF and FPC, there is some leeway in the definition because the contexts
may be restricted to ground contexts, where C[M] and C[N] must have a ground or base type
such as the type of booleans or natural numbers. This determines whether or not the divergent
program Q isidentified with the function Ax. Q that accepts an argument and then diverges.

Unfortunately, it is hard to work directly with contextual equivalence because of the quantifica-
tion over contexts. In the case of PCF, it is possible to exploit the simple type structure to find a
more convenient characterisation of contextual eguivalence. An equivalence ~ is defined upon
programs as alogical relation (see [Mit96]) by induction on the structure of types. For programs
M and N of the same type p:

e If pisthe natural number type, M~ N if and only if, for al natural numbersn, M evaluates
tonif and only if N evaluates to n. The term n represents the natural number n.

e If pisthefunction type o — T, then M~ N if and only if, for all programs M and N’ of

type o, M'~ N’ impliesMM’ ~NN’.

It can be shown that ~ coincides with contextual equivalence for PCF. Thisis useful because ~
uses a more restrictive quantification than the definition of contextual equivalence, and thusis

10 CHAPTER 1. INTRODUCTION

easier to prove. Essentialy, applicative contexts suffice for testing terms of function type, and
contexts of the following form suffice for testing terms of natural number type:

ifeq (—,n)thenQelseQ

A similar definition and result can be established for the contextual preorder, where a program
M isrelated by the contextual preorder to another program N with the same type as M if, for all
(suitable) contexts C[—], C[M] terminates implies that C[N] terminates.

In order for ~ to coincide with contextual equivalence when non-ground contexts are permitted,
it is necessary to add an additional clause to the second case stating that M terminates if and
only if N terminates.

Abramsky [Abr90, /AO93] proposes a study of pure untyped A-calculus with the call-by-name
reduction strategy. However, the strategy outlined above for PCF defines ~ at a function type

0 — Tintermsof ~ at the types o and t, and the use of ~ at ¢ is contravariant. It isnot possible
to make a similar definition for the untyped A-calculus or FPC because an inductive definition
fails at recursive types, and the contravariance prevents a fixed-point definition via a monotone
function.

Abramsky’s solution is to define an applicative similarit)@ relation, also using applicative con-
texts, and then show that it coincides with the contextual preorder using a domain-theoretic
technique. If programs M and N are related by applicative similarity <, then for every term M
such that M evaluates to Ax. M, there must be aterm N’ such that N evaluates to Ax. N’ and for
every program L, the terms M’[L/x] and N’[L/x] are related by applicative similarity, i.e.:

M<N = VM. M A M = IN".N J Ax. N’ AVL.M/[L/x] < N[L/X]

As with strong bisimilarity for processes, there are many relations that satisfy this property
(including the empty relation). Applicative similarity is the greatest relation that satisfies this
property. Intuitively, applicative similarity is defined by coinduction upon the implicit recursive
type structure of the untyped A-calculus (as demonstrated by a trandation of the untyped A-
calculus into FPC, see [Gun92]).

Applicative similarity also uses applicative contexts as tests, although it does so using a substi-
tution rather than areal application. In addition, there is a convergence test before substitution.
The convergence and application tests can be incorporated into an LTS with programs as states.
Thereisatransition M = M’[L/x] between programs M and M’[L/x], |abelled with the program
L, if and only M evaluates to Ax. M’. Using this LTS, applicative similarity can be seen as a
preorder variant of strong bisimilarity. Conceptualy, it is aso useful to consider the LTS un-
folded into an infinite tree that describes the behaviour of aterm (cf. Bohm trees for the classical
A-calculus, see [Bar84, JR97, AC98)).

There is an important difference between the applicative contexts used for the alternative char-
acterisation of contextual equivalence for PCF and those used for applicative similarity. The

LAbramsky uses applicative bisimilarity and not applicative similarity. We use the latter, for consistency with
definitions in the sequel.

12. RELATED WORK 11

former are pairs of contexts (— M) (—N’) such that M’ and N’ are programs related by ~,
whereas the latter uses a single context (— L) twice, where L is a program. This modification
makes the coinductive definition of applicative similarity possible, but makes it considerably
harder to establish that it is a compatible relation. In particular, we need to know that for all
programs M, M’, N, N’:

(MSNAM SN') = MM’ <NN’

Abramsky [AbroQ] establishes that applicative similarity is a compatible preorder (precongru-
ence) using domain-theoretic techniques, and deduces that it coincides with the contextual pre-
order.

Howe [How89,[How96] establishes the same result in an operational setting without recourse to
adenotational semantics. Howe's method turns out to be remarkably robust for variations of the
A-calculus. Gordon [Gor94, [Gor95a, (Gor95b] defines applicative similarity and bisimilarity for
FPC via labelled transition systems, and uses Howe's method to show that they are compatible
and hence coincide with the contextual preorder and equivalence respectively. Bernstein Ber9g]
proves a general compatibility result for applicative bisimilarity upon higher-order languages
defined by arule format.

Non-Deter ministic A-Calculi

We now turn to non-deterministic variants of the A-calculus. As discussed earlier, there are at
least two motivations for adding non-determinism to a programming language such as the A-
calculus: for specification and refinement, and as a prelude to studying concurrency in a higher-
order setting. Nearly al research is directed towards the latter, and can be classified by the
operational semantics of the extensions made to the A-calculus:

e “Pure’ non-deterministic operators, e.g. erratic choice.
e Paradlel operators, e.g., ambiguous choice.

e Paralld operators with message-passing primitives.

The“pure” non-deterministic extensions are usually based upon abinary erratic choice operator.
We write MU N for the binary erratic choice of M and N, but there is little consensus in the
literature where M &N, M+ N, M | N, and MON can befouncﬁ Less often, the extension isa
construct 2w that can evaluate to any natural number.

The operational semantics of MUN and ?@E can be specified via a reduction semantics or an
evaluation semantics (see [PIo8T,[Gun92)):

2The notations M & N and M + N are avoided here because of a potential overlap with categorical notation used
for describing models, and M | N and M O N are not used because they often have a different meaning in process
caculi.

3The operational semantics given for 2w in chapter@is dlightly different because of alifting construct.

12 CHAPTER 1. INTRODUCTION

MUN — M MUN — N w—-n (n€w)

M M K N |™ K
MUN |m& K MUN |ma K
The may convergence relation ||™¥ has a“may” annotation to emphasise that there can be more

than one result. Note the similarity between the reduction semantics (the top row) for M UN and
the CSP and CCS labelled transitions for Pr1Q and T.P+1.Q.

In a deterministic setting, a A-calculus program diverges (has a non-terminating sequence of
reductions) if and only if it does not converge (terminate) to a canonical program. In a non-
deterministic setting, this is no longer true because a non-deterministic program M that cannot
diverge has precisely the same convergence behaviour as the program M U Q that either run M
or the always divergent program Q. The divergence behaviour can be captured by introducing a
may divergence predicate ™.

1™ (new)

The definitions of contextual preorder and applicative similarity can be replayed with {["¥, but

it turns out that applicative similarity is a strictly finer relation than the contextual preorder in a
non-deterministic setting because applicative similarity is sensitive to more branching behaviour
than the contextual preorder (for an example, see p88 of [Las98b]). In fact, the situation is

considerably more complicated than this. The obvious contextual preorder, henceforth called
the may contextual preorder, relates M and N if:

VC[-].C[M] {"¥= C|N] ¥

The may convergence predicate is defined using the may convergence relation by saying that
M |J™ if and only if there exists aterm K such that M |J™® K. Now define a must convergence
predicate ™ as the complement, amongst programs, of the may divergence predicate ¥,
so that M ™ if and only if M always terminates. Then the must contextual preorder (see
[[Ong93, [Siev3, M ar94, [HM95, [Las97, [Las98b), IMor98, [KSS99]) can be defined as:

VC[—].C[M] 4™t C[N] st

Thisrelation is not comparable with the may contextual preorder or applicative similarity.

There are different varieties of applicative similarity also. The relation obtained by substitut-
ing ™ for || in the previous definition of applicative similarity is called lower similarity.
Three other preorders, upper similarity, convex similarity, and refinement similarity, can be de-
fined using combinations of ||™¥ and |/™. In addition, three equivalence relations, lower
bisimilarity, upper bisimilarity, and convex bisimilarity, can be defined. The bisimilarity rela
tions are strictly finer than the largest symmetric relations contained in the similarity relation
of the same name. These relations are considered for A-calculi with erratic choice operators in
[HA80,[Ong93, [Moro4, [Las97, [Las98b)| [L P98, [Mor98].

As for deterministic A-calculi, it is non-trivial to show that the similarity and bisimilarity re-
lations are compatible. Lower similarity is the straightforward case because Howe's technique
[How89] works without modification, and we find that lower similarity is compatible if one or
both of the non-deterministic operators are present. Howe [How96] extends the technique in two
ways. He gives a technique for deducing compatibility of a bisimilarity relation from a proof
of compatibility of the corresponding similarity relation, and proves that upper similarity and

12. RELATED WORK 13

convex similarity are compatible in the presence of abinary erratic choice operator but not 2w,
i.e., the A-calculus can exhibit finite but not countable non-determinism. Ong [Ong92a,(Ong92h]
independently uses the same method to obtain compatibility of convex similarity. Lassen and
the author [Las97, [LP98] independently establish that Howe and Ong's method and result can
be extended to a A-calculus that exhibits countable non-determinism. The remaining relation,
refinement similarity, is shown to be compatible in the presence of the binary erratic choice
operator or 2w in theoremBb.4.14

Concurrent A-Calculi

Milner [Mi190] defines a trandation from the pure untyped A-calculus to the te-calculus, and
proves that the equivalence induced on A-terms by the equivalence on Teterms is strictly finer
than contextual equivalence on A-terms. This demonstrates that the T-calculus is more expres-
sive for discriminating between (trandations of) A-terms. Sangiorgi [San94], Boudol [Bou93,

Bou943, BL95], and Lavatelli [Lav93] consider non-deterministic extensions of the A-calculus
with trandations to the Tecalculus. Theincrease in expressive power dueto the extensions means
that more A-terms are distinguished by the variants of contextual equivalence and bisimilarity.

Boudol [Bou94b] extends the pure untyped A-cal culus with aparallel composition operator M||N
in order to prove an expressivity result with respect to domain-theoretic models, i.e., the finite
elements of the models are in the range of the denotation functions. The parallel composition
operator interleaves reductions of its operands. Formally, K||N and M||K are canonica whenever
K is canonical, and the following reduction rules apply to the parallel composition operator
(where K is canonical):

M — M’ N — N’
M||N — M’||N M||N — M||N’
(K[[N)L — KLJ|NL (M|IK)L — MLJ|KL

The convergence behaviour of the erratic choice operator and the parallel composition opera-
tor are closely related (see [Lav93]), because whenever M U N can be reduced to a canonical
program there is a corresponding reduction sequence to a canonical program for M||N and vice-
versa. The two operators differ in when they commit to one of their branches: erratic choice
commits immediately to either the left or the right branch, whereas parallel composition never
commits to a branch. The commitment avoidance of the parallel composition alows it to be
interpreted as the join of its operands in the domain model, and so more elements of the domain
are definable via terms of the programming language.

Jeffrey [Jef99] considers an operator with behaviour in between the two extremes of commit-
ting immediately and never committing. The operator M [| N can be defined with the following
reduction rules (where K is canonical):

M — M’ N — N’
M[N—-M'[|N M[N—M[]N
KIN—K MK —K

Theterms K [N and M [K are not canonical even when K is. The operands of this parallel op-

14 CHAPTER 1. INTRODUCTION

erator are evaluated concurrently, and, when one of the operands is canonical, that operand is
chosen and the other is discarded. Note that once operands M and N are placed in parallel with
[, itis not possible to extract both. If the results of both operands are required, the best that can
be doneisto run M [| N twice and hope that the value of M is returned on one run and the value
of N on the other.

There is a mismatch between the parallel construct M [| N and the description of McCarthy’s
ambiguous choice operator [McCB3] because the latter “avoids’ divergence in one operand if the
other operand cannot diverge. From the reduction rules give above it can be shown that Q [Ax. X
can diverge because the left-hand operand may aways be chosen for reduction, i.e., the right-
hand operand is ignored infinitely often. The reduction rules are too permissive because they
allow unfair sequences of decisions between the left-hand and right-hand operands. Hence, they
cannot be used to reason about the divergence properties of terms that use ambiguous choice,
and the operator cannot be distinguished from erratic choice.

For some applications, it is important that operands are executed in parallel and that the diver-
gence properties of ambiguous choice are considered. This necessitates a modified operational
semantics that prevents unfair sequences of decisions. Plotkin [Plo82] defines a reduction se-

manticsfor aparallel operator that only allows fair sequences of decisions in anon-deterministic
imperative programming language. Hughes and Moran [Mor94, HM95, Mor98] define reduc-

tion and evaluation semantics for McCarthy’s ambiguous choice. Both approaches use resource
annotations to limit the number of reductions that can take place on one operand without the
other operand being chosen. In effect, the reduction semantics incorporate afair scheduler.

To compare the two approaches, Plotkin's strategy can be modified for ambiguous choice in
a A-calculus setting. The language is extended with two variations of the ambiguous choice
operator M m|] N and M |]m N, where mis a natural number, and the reduction rules given above
are replaced with:

MIN—-M"]N (m>0) MIN—-M]™N (m>0)
MPIN—=M[™N (m>0) MI°N—-M™]N (m>0)
M —> M/ N — N’
M™AN - MM N M]™EN - M™N
K™ N =K M]™K — K

The scheduler makes an initial decision to reduce either the left-hand or the right-hand operand,
and chooses a strictly positive number of reductions to carry out on that side. When that number
of reductions have taken place, the scheduler switches to reducing the other side. This process
repeats until the enabled operand is canonical.

Hughes and Moran use a different scheduling mechanism. The language is extended with one
operator that has two natural numbers mand n as resource annotations M"["N. Theterm M | N

can be identified with M 0|]0 N, and then the reduction rules are;

12. RELATED WORK 15

MP°N—=M™"N (mn>0)

M — M’ N — N’
Merll]nN_'> M,m”nN Mmﬂn+lN—> Mm”nN,
K™"N - K MMMK — K

This scheduler can defer part of the decision about which operand to evaluate because initialy
both operands are assigned resources and the scheduler can choose any interleaving of reduc-
tions that fitswith those resources. Unfair sequences are avoided because the scheduler will only
assign new resources when both operands have none.

Hughes and Moran define an evaluation semantics consisting of amay convergence relation and
a may divergence predicate (see aso [CC92]), and show that it captures precisely the conver-
gence and divergence properties of the reduction relation. The rules for the may convergence
relation have the same form as those for erratic choice:

M M K N ™ K
M[N{|m K M[N{ma K
The may divergence predicate is defined by coinduction. The may divergence rules for erratic
choice and ambiguous choice are:

M M N AT K
MUN fM&y MUN fmay

M fmay N fmay
M[N fma

These rules state that M UN may diverge if either M or N does, whereas M [| N may diverge only
if both M and N may diverge. This evaluation semantics also agrees with Plotkin’s reduction
semantics. Consequently, the differences in the decision-making behaviour between the two re-
duction semantics are not visible in any of the contextual preorders or equivalences nor in the
variants of similarity and bisimilarity because they are al defined in terms of the evaluation se-
mantics. In addition, the operators with resource annotations are only added to the language in
order to define the reduction relation, which isin turn used to define the may convergence rela
tion and may divergence predicate. The operators M™[N, M[|"N, and M™]" N are not needed

with the alternative characterisation via the evaluation semantics, and so can be removed from
the language. This is important because the variants of applicative similarity and bisimilarity
cannot be compatible when they are present. For example, the terms Axy. x and (AX. X) (AXy. X)

are always equivalent, but the terms Axy. x1|] ! Axy.y and (AX. X) (Axy.X) 1|] ! Axy.y arenot rel ated

because the only possible reduction sequences are:

)\xy.xlﬂl)\xy.y—> AXY. X
)\xy.xlﬂl)\xy.y—> AXy.y
(AX.X) (AXy. X) 1|]1)\xy.y—«>)\xy.xoﬂl)\xy.y—> AXy.y

(
(AX.X) (AXY. X) l|]1 AXY.Y — AXy.y

4They are related by lower similarity, but only in one direction.

16 CHAPTER 1. INTRODUCTION

The resource allocation prevents the second term from evaluating to Axy. x. The problem is that
the annotated operators are sensitive to the number of reduction steps that a computation takes,
but the variants of applicative similarity and bisimilarity are not.

The compatibility of variants of applicative similarity and bisimilarity for alanguage with (unan-
notated) ambiguous choice is more complex than for erratic choice. Lower similarity and lower
bisimilarity are compatible because the convergence behaviour of ambiguous choice is identi-
cal to that of erratic choice, and so Howe's technique applies. However, upper similarity and
convex similarity fail to be compatible because ambiguous choice is hot monotone for either
relation (see [Mor98]). Upper bisimilarity also fails to be compatible for a language with am-
biguous choic@. Compatibility of convex bisimilarity and refinement similarity for ambiguous
choice is an open problem. The proof techniques used to establish their compatibility for erratic
choice fail because they require convex similarity to be compatible.

The divergence avoidance property of ambiguous choiceis useful for constructing certain kinds
of systems (see [McC63, Bur88]). An example that recurs in the literature is the definition of a
merge operator in terms of ambiguous choice. Severa different merge operators are identified
in the setting of non-deterministic dataflow (see [Kah74, IBA81, [Fau82) IDen84, |Bro86, Sta87,

Bro88| /Abr89,[BPR90, [Sta90, M 0591, Whi94, [M0s95, M0s98]) by Moitra, Panangaden, Russell,

Shanbhogue, and Stark [MP86, PS87, [PS88b,[PS883,[Rus90,/Shad0]. Theideal mergeisthefair

merge that continually polls two input streams to see whether data is available. The infinity-fair
merge can be defined using 2w (which can in turn be defined from ambiguous choice), and will
behave perfectly if the input streams do not ever run out of data, but may block if one of the
streams doedd. Intuitively, once the infinity-fair merge examines one input stream it will not
change to the other until it has received some input. The angelic merge examines both input
streams in paralel (using ambiguous choice), and then accepts an input if any is available. If
both inputs streams always have data available, then the angelic merge may always choose the
same input stream and ignore the other. Infinity-fair merge can be defined from angelic merge,
which can be defined from fair merge, but neither of these relative definability results can be
reversed. In addition, angelic merge and ambiguous choice can each be defined in terms of the
other. Shanbhogue [Sha90] argues convincingly that these relative definability results preclude
the reduction of fairness (such as ambiguous choice) to countable non-determinism.

Dataflow computation can be modelled in afunctional programming setting using streams (lazy
lists) that connect deterministic components (norma functional programs). Merge operators
are often required, e.g., for merging streams carrying input events in functional programming
language implementations of operating systems (see [Hen82, HO89, [Tur90d]). Moran [Mor98]

defines infinity-fair merge and angelic merge in a call-by-name A-calculus. These merges have
the same trace behaviour as the dataflow operators of the same name, but because the usual
relations considered on non-deterministic A-terms are finer than trace equivalence (on terms of
stream type) there are likely to be inequivaent terms that could be called infinity-fair merge or
angelic merge, and the relative definability results from the dataflow setting are not immedi-
ately applicable. It is not clear that it is possible to define a fair merge operator using resource
annotations as with the reduction semantics for ambiguous choice, because the naive approach

SPointed out to the author by Lassen (personal communication, 1997).
6This description does not distinguish infinity-fair merge from Shanbhogue's infinity-fair2 merge [Shad0].

1.3. OUTLINE OF DISSERTATION 17

leaves resource annotations within canonical terms and causes problems with compatibility as
described above.

Modelling non-deterministic dataflow requires careful control over sharing of terms and when
the non-determinism in merged streamsisresolved. Hughes and Moran [HM95,[Mor98] develop

atheory for ambiguous choice using acall-by-need reduction strategy, based upon Launchbury’s
evaluation semantics [Lau93], to ensure that sharing occurs. This resultsin singular choice (see
[Cli82,/SS92| [KSS99)).

Concurrent A-Calculi with Communication

There is a considerable body of research on higher-order concurrent programming languages
with message-passing. The design space is large, but the majority of proposals follow one of
two related approaches. The first is to extend a A-calculus with a mechanism for starting new
threads of execution to evaluate expressions, together with primitives for passing messages be-
tween threads, e.g., Reppy’s Concurrent ML (CML) [Rep92, [FHJ95, Jef95, [Rep99] and Facile
[PGM90, Amadd4, [ALT95]. Another approach is to extend a process calculus such as CCS or
the T-cal culus with the ability to transmit and receive processes, not just values, e.g., Thomsen’s
Calculus of Higher-Order Communicating Systems (CHOCS) [Tho89, /Ama93, Tha93, AD95,

Tho95] and Sangiorgi’s higher-order T-calculus [San93], amongst others [Hen94]. Boudol's
blue calculus [Bou974d, [Bou97b] lies in between these two approaches. Various contextual pre-
orders or equivalences and variants of similarity and bisimilarity are considered for these calculi.
For similarity and bisimilarity, the challenge is to ensure that the terms passed on channels are
considered up to the semantic relation being defined, not syntactic identity. Fairnessis not ad-
dressed in the above research, except by Reppy [Rep92] who considers fairness for CML.

1.3 OQutline of Dissertation

There are many possible non-deterministic A-calculi and semantic relations. For example, the
following axes can be considered:

e Which non-deterministic operator(s), e.g., binary erratic choice M U N, countable erratic
choice 7w, indexed erratic choice as in CSP, binary ambiguous choice M || N, or fair
merge?

e Which reduction strategy, e.g., call-by-name, call-by-value, or call-by-need?

e Which semantic relation(s), e.g., contextual preorders and equivalences or variants of ap-
plicative similarity and bisimilarity?

The goa of this dissertation isto define and study non-deterministic A-calculi that can be used as
a stepping stone to higher-order specification and refinement formalisms or to higher-order pro-
gramming languages with communication primitives such as CML. The definitions and results
of interest include:

18 CHAPTER 1. INTRODUCTION

e Definitions of similarity and bisimilarity with compatibility results and additional reason-
ing principles, e.g., Scott induction for the similarity relations. How are these relations
related?

o Relative definability results between different forms of non-determinism. Results are spe-
cific to a precise language and semantic relation, but can still help to guide the design
of new languages (as happens with the dataflow relative definability results discussed in

section[1.2.3).

e How do the semantic relations vary as the form of non-determinism present in the lan-
guage changes? For example, if alanguage with binary erratic choice is extended with the
countable non-determinism operator 2w, do the semantic relations change?

In this dissertation we fill in some of the previousy unknown results for a collection of non-
deterministic A-calculi that exhibit erratic non-determinism. Thelanguages are obtained as frag-
ments of aA-calculus . that contains all of the non-deterministic terms that we consider. The
definitions and results take afragment of .# as a parameter, so that we obtain, e.g., compatibility
of convex similarity for the language fragment containing ?w as an instance of the more general
compatibility result.

The non-deterministic extensions have the form ?(M, | n < K), where K is a natural number or
w, and {M,, | n < K} isaset of terms with the same type. With this general form of erratic non-
determinism we can define 2w as ?(n | n < w), and M UN using ?(false, true) with aconditional.
It is also possible to define non-deterministic terms that serve as specifications, e.g., a program
that chooses any prime number. Thelanguage is expressive because the set of terms {M, | n < K}
need not be recursive or even recursively enumerable.

These non-deterministic extensions provide a wide range of non-equivalent non-deterministic
terms, perhaps suitable for program specification, whilst retaining asimple, uniform operational
semantics. (M, | n < K) reduces in one step to (the lift of) one of the component terms. Am-
biguous choice is avoided because some compatibility properties are open problems or known
to befase. Thelack of areasonable operational semantics prevents the use of fair merge.

The relative definability properties of the non-deterministic extensions are studied in the lan-
guage .. Relative definability can be considered with respect to any of the operationally-
defined equivalences such as convex bisimilarity. This differs somewhat from the usua ap-
proach, as used for Turing degrees (see |[Rog67, ISho71,|Odi89]) or Sazonov’s degrees of par-
allelism (see [Saz75, ILic96, [Buc97]), where relative definability of the non-definable elements
of a denotational model is investigated with respect to equality in the model. The operational
approach is possible here because the non-deterministic extensions admit a straightforward op-
erational semantics, and is appropriate because there is no known denotational model for the
most interesting relation, convex bisimilarity.

The choice of reduction strategy is important because of the need to control resolution of non-

determinism. A purely cal-by-name A-calculus does not offer sufficient control. There are
severa aternatives:

e Use acall-by-value A-calculus (see [Ong93,[How96, [Las98h]). The strictness of function
application can be used to resolve non-determinism at specific points in a program, and
non-deterministic terms can be duplicated if necessary by using athunk.

1.3. OUTLINE OF DISSERTATION 19

e Use a call-by-need A-calculus (see [HM95, [Mor98]). Non-deterministic terms can be
duplicated if necessary by using athunk (assuming that the operational semanticsis non-
optimal).

e Use the syntax of Moggi's computational A-calculus (see [Mog89b, [Mog89a, Mog91,
Pit91, ICP92]) with a call-by-name reduction strategy. Call-by-value can be simulated
using the construct for sequencing computations letx < MinN.

The last option is used here, following Jeffrey [Jef99] for a non-deterministic A-calculus and
Crole, Gordon, and Wadler [Wad92,[Gor94, [CG95] for deterministic A-calculi. Non-determinism
and non-termination can be restricted to computation types P (o) and this proves useful for
some results concerning the collapse of the variants of applicative similarity and bisimilarity at
types where the occurrences of the computation type constructor are restricted. Intuitively, the
semantics of P, (0) isPpe([0] |), where Pre(X) is the set of non-empty subsets of a set X.

Controlling the resolution of non-determinism ismore convenient in the computational A-calculus
than in a call-by-value A-calculus. For example, the following two terms can be applied to the
non-deterministic term =?(0,1) : P, (nat), but only the second can choose to add 0 and 1:

F AX:P, (nat).lety <= Xin [plus (y,Y)] : P.(nat) — P, (nat)
F AX:P| (nat).lety <= Xinletz < Xin [plus (Y, 2)] : P, (nat) — P, (nat)

Call-by-need is not used because there is no straightforward treatment of applicative similar-
ity or bisimilarity for a call-by-need A-calculus. The problem is demonstrated by the fact that
projections are insufficient for testing terms of product type. For example, the first and second
projections of the following term do not give any information about the sharing of ?(0,1) that
occurs with a call-by-need reduction strategy:

(AX.tuple (x,x)) (?(0,1))

In addition to function type and computation type constructors, the language . permits the
formation of indexed sum (coproduct) types. The indexing set can be any ordinal less than or
equal to w, and so the sum of a countable set of types can be formed. If unit is the singleton
type, then the natural number type can be defined by:

nat ® sum (unit | n < w)

An indexed case construct is used to decompose terms of an indexed sum type. For any (set-
theoretic) function f € w— w, we have the corresponding infinite term:

F AX:nat.caseXof (x.f(i) | i < w) : nat — nat

Aswith the indexed erratic choice constructor, there is no requirement that the case construct be
recursive. Thisunusual addition to the language is adopted to facilitate writing non-deterministic
programs that act as specifications. For example, the following program takes a natural number
as an argument and then returns any number between 0 and its argument:

F AXx:nat.caseXof (x.?2(n|0<n<i)|i < w) :nat— P, (nat)

20 CHAPTER 1. INTRODUCTION

The type system for the language ¢ does not include recursive or coinductive types because
some of the definitions and results in chapter/d are established viainduction on the type structure.

Variants of applicative similarity and bisimilarity are considered instead of contextual preorders
or equivalences because they can also be defined upon the abstract structures, typed transition
systems, defined in chapter[4, in the same way that applicative similarity or bisimilarity can
be defined upon applicative transition systems (see [Abra0, /AO93]). Although the type system
does not include recursive or coinductive types and it would be possible to define preorders and
equivalences as logical relations, we use the coinductively-defined variants of applicative simi-
larity and bisimilarity where possible so that the same techniques can be reused if the language
is subsequently extended with recursive types.

Preliminaries

Chapter [2 covers background material about trees, transition systems, coinduction, similarity
and bisimilarity, recursive ordinals, and some of the choice operators that appear in the litera-
ture. We discuss various kinds of transition systems (labelled and unlabelled, with and without
divergence), and consider examples generated by sets using the membership relation to define
the transition relation. In subseguent chapters, the examples are modified for more complex
transition systems that are suitable for studying a non-deterministic A-calculus. Similarity and
bisimilarity are defined for transition systems with and without divergence. For transition sys-
tems with divergence, we consider the possible variants of similarity and bisimilarity that cor-
respond to variants of applicative similarity and bisimilarity that appear in the sequel. The
relationship between recursive trees and recursive ordinals is proven in detail, in preparation for
a later result concerning the language fragment containing the countable choice operator 2w.
Finally, we define the actions of global angelic choice, ambiguous choice, erratic choice, local
demonic choice, and global demonic choice in a naive model, and show when their behaviour
cannot be distinguished by common semantic relations.

The Non-Deter ministic A-Calculus .

In chapter [3 we define the non-deterministic A-calculus &, its type system, and reduction and
evaluation semantics. Reduction is permitted on open terms to facilitate the proof of Scott
induction in chapter 5. The evaluation semantics is presented as an inductively-defined may
convergence relation ™ and a coinductively-defined may divergence predicate /™. The may
divergence predicate is the complement of an inductively-defined must convergence predicate
|must The usual properties are established such as subject reduction, normalisation of terms of
value type (as opposed to computation type), and the relationship between the two operational
semantics.

The fragments of the language that are used in subsequent proofs are defined with a closure
operator on sets of terms. The fragments must be closed under PCF-like operations, substitution,
and taking sub-terms. Fragments are shown to be closed under reduction, and thus we aobtain a
collection of non-deterministic A-calculi with a uniform operational semantics. Ordinal bounds
are proven for the heights of must convergence derivations, following similar results in [AP386) .

1.3. OUTLINE OF DISSERTATION 21

For example, the must convergence derivations for the smallest fragment containing 2w are
bounded by the least non-recursive ordinal of.

Typed Transition Systems

Chapter [4 defines the class of typed transition systems (TTS) as a subclass of the class of la
belled transition systems with divergence. Each state has a unique type, and the labels on tran-
sitions from a state are restricted according to its type, e.g., transitions from a state of function
type o — 1 are labelled with states of type 0. This builds upon previous definitions of quasi-
applicative transition systems [Abr90, [AQ93], applicative structures [Mit96], non-deterministic
applicative transition systems [Ong92a], and o-transition systems [OP93]. Four variants of ap-
plicative similarity and bisimilarity (lower, upper, convex, and refinement) are defined upon the
states of each TTS. We identify sets of states for which the relations always coincide. To show
that the relations are different in general, we define asimple TTS . by induction on the type
structure: the states of sum, product, and function type are interpreted by the set-theoretic co-
product, product, and function spaces respectively, and the states of a computation type R (o)
are the non-empty subsets of the lift of the states with type o. Finally, we investigate maps be-
tween TTSs that respect transitions. In particular, we consider a restriction operation on TTSs
that discards some states, and induces a map from the restricted TTS to the original. We show
that convex bisimilarity on the restricted TTSis coarser than convex bisimilarity on the original,
and that every sufficiently well-behaved TTS s the restriction of the TTS .. This s pertinent
because each fragment of the language determines a well-behaved TTSthat is also arestriction
of the TTSfor the full language ..

Programming Language TT Ss

We study the typed transition systems determined by the fragments of the programming language
defined in chapter[3. The open extensions of the variants of applicative similarity are shown to
be compatible for al fragments, and the open extensions of the variants of applicative bisimi-
larity are shown to be compatible for a wide collection of fragments. The compatibility proof
uses Howe's method [How89] and Howe and Ong's [Ong928, How96] extension of the method,
as well as incorporating new techniques for handling countable non-determinism, refinement
similarity, and fragments. The proof makes use of Lassen’s algebra of relations [Las98b], which
builds upon Gordon’s [Gor94] reorganisation of Howe's method.

We prove relative definability properties of some common forms of erratic non-determinism
with respect to the variants of applicative bisimilarity. These constitute lower sets of relative
definability equivalence classes for closed terms of type P (nat). We then show that convex
bismilarity is different for nearly all of the relative definability equivalence classes that we
define, e.g., convex bisimilarity for the smallest fragment containing countable choice 7w is
strictly finer than convex bisimilarity for the smallest fragment containing ?(false, true).

We also consider fixed-points for the lower, upper, and convex variants of applicative similarity
and prove the Scott induction principle for these relations for all fragments of the language .Z.

22 CHAPTER 1. INTRODUCTION
Discussion

We summarise and consider directions for future research.

1.4 Contributions

The contributions of this dissertation are:

o Chapter [2 provides an account of elementary material including trees, transition systems,
coinduction, similarity and bisimilarity, and recursive ordinals. Examples are given to
demonstrate the relationships between these objects.

e Typed transition systems abstract the structure required to define the variants of similarity
and bisimilarity. Several results are presented in this abstract setting. General inclusions
between the relations are established in lemmasid.24, [4.2.5, and A major case
study of atyped transition system is described in sections4.3 and [4.4] and this provides
arich source of examples of non-inclusions between the relations. A category of typed
transition systems is defined, and theorem[4.5.15] shows that the typed transition system
from the case study is aweak terminal in anon-trivial subcategory.

e Ong and Howe independently proved compatibility of some of the lower, upper, and con-
vex variants of similarity and bisimilarity for A-calculi that exhibit finite non-determinism,
and Lassen extended their method to countable non-determinism. This extension was
proved independently by the author. In this dissertation, the same method is used to
prove compatibility of the lower, upper, and convex variants of similarity and bisimi-
larity for . and al of its fragments (see theorem[5.4.8). However, compatibility of the
variants of bisimilarity (see theoremB.4.14) requires a new technique and some restric-
tions upon the fragments. Another new argument is used to establish compatibility of
refinement similarity, a previously open problem, for a restricted collection of fragments
(see theorem[5.4.18). In each case, the compatibility results apply to many different non-
deterministic A-calculi (fragments of .Z’).

e Theorem[5.7.9isthe Scott induction principle with respect to the lower, upper, and convex
variants of similarity for . and all of its fragments.

e A lower set of relative definability equivalence classes, with respect to convex bisimilar-
ity, is identified in lemmas[5.5.4] and[5.5.68. The approach to relative definability
is novel in that it does not require a denotational model, in contrast to the usual formu-
lations of Turing degrees and Sazonov’s degrees of parallelism. New examples are given
to show that the relative definability equivalence classes have different theories with re-
spect to convex bisimilarity (see proposition5.6.4). In particular, the addition of countable
non-determinism to afinitely non-deterministic programming language is not conservative
with respect to the upper and convex variants of similarity, mutual similarity, and bisim-
ilarity, i.e., there are programs that can be distinguished by countably non-deterministic
programs but not by finitely non-deterministic programs.

Chapter 2

Preliminaries

This chapter isareview of basic notions including trees and ordinals (sectionZT), labelled and

unlabelled transition systems with and without divergence (section2.2), induction and coinduc-

tion (section[2.3), similarity and bisimilarity (section2.4), recursive ordinals and recursive trees
(section2.5), and some of the binary choice operators that appear in the literature (section2.6).

Examples are given to demonstrate the relationships between these objects and relations. The
typed transition systems defined in chapter[d build upon the discussion and examples of transi-

tion systems in this chapter.

2.1 Ordinalsand Trees

We review ordinals and trees in preparation for a discussion of recursive ordinals and recursive
trees in section[2.5. Thorough accounts can be found in [Acz77, Kun77,[Lev79, (Gir87, |Odi89,
Kun80, [Pot90, ([Gal9T), [Joh87] .

Definition 2.1.1 A set Aisanordinal if Ce Be AimpliesC € A, and, for all B,C € A, either
BeC,CeB,orB=C holds.

Example 2.1.2 The natural numbers can be defined as ordinals. Define 0% 0 and Succ(A) o

AU{A}. Then the numbers from 0 to 4 are the sets:

0=0

1 = Succ(0) = 0U {0} = {0}

2 = Suee(1) = 1U{1} = {0,{0}}

3=Suce(2) = 2U{2} = {0,{0},{0,{0}}}

4= Succ(3) =3U{3} = {0,{0},{0,{0}},{0, {0},{0,{0} } }}

The set of natural numbers w is the least set with respect to C that contains 0 and is closed
under Succ(-) (the existence of one such set must be postulated). The principle of mathematical
induction depends on the fact that w is the least such set. The empty set® is an ordinal, and
it is straightforward to show that Succ(A) is an ordinal whenever A is an ordinal, so we can

23

24 CHAPTER 2. PRELIMINARIES

use mathematical induction to show that every natural number (element of w) isan ordinal. In
addition, it can be shown that w isitself an ordinal and that the restriction of € to wx wisan
irreflexive, transitive relation that determines a total order on the natura numbers. The set of
natural numbers wisalimit ordinal because it is neither empty nor Succ(A) for some other ordi-
nal A. Itispossible to construct ordinals greater than w by using the Succ(-) operator and taking
the least upper bounds of sets of ordinals. The arithmetic operations of addition, multiplication,
and exponentiation can be defined for al ordinals, but have some unusua properties such as a
lack of commutativity for ordinal arithmetic.

LemmalZ 1.3 states that every ordinal is the union of the successors of its elements.
Lemma2.1.3 Let Abean ordina. Then:
A=|J{Succ(B) |Bc A}

Proof Theinclusion A C [J{Succ(B) | B € A} istrivial. For the other direction, consider D €
U{Succ(B) | B € A}, so thereexistsB € Asuchthat D e BU{B},i.e,DeBcAorD=BecA
If D e Be A, then D € Abecause Aisan ordinal. Therefore AD |J{Succ(B) | B € A}. O

The total order (w,€) has the property that there are no strictly decreasing w-chains. More
generally, we say that arelation R iswell-founded relation if there are no w-chains with respect
toR %, thedual of R .

Definition 2.1.4 A binary relation R C Ax Aiswell-founded if there are no w-chains (g, € A |

n € w) such that (a,,1,a,) € R foral ne w. A well-order isatota order (A, <) such that < is
well-founded.

Well-founded strict partial orders are often of interest, but, in general, a well-founded relation
need not be transitive. It is straightforward to show that arelation is well-founded if and only if
its transitive closure is well-founded. Note that awell-founded relation must be irreflexive.

Sets with a well-founded relation admit a form of induction known as well-founded induction.
The ideais to prove that an element satisfies a property whenever al strictly smaller elements
satisfy the property.

Proposition 2.1.5 (Principle of Well-Founded Induction) LetR C A x Abewell-founded and
B C A such that:

VacA (VbeA (ba)eR = beB)=—acB

ThenB=A.

Proof Supposefor acontradiction that there existsa € A\ B. By assumption, there must exist
a; € A\ Bsuchthat (a;,ap) € R . This process can be iterated to obtain an w-chain (& € A\ B |

n € w) such that (ay,11,an) € R for al n € w, which contradicts the well-foundedness of R . [J

2.1. ORDINALSAND TREES 25

Traditional set theory is based upon the notion that sets are well-founded, meaning that € is
well-founded. Thisis ensured by the axiom of Foundation:

VAAZ0— 3B ABNA=0 (Foundation)

With this axiom we can deduce that € iswell-founded. Suppose for a contradiction that (A | i €
w) is an w-chain such that, for al i € w, A;1 € A.. LetC = {A |i € w} # 0. By the axiom of
Foundation, there exists Aj € C such that AjNC = 0. However, that contradicts Aj, 1 € AjNC.
Therefore no strictly descending w-chains can exist with respect to €. This leads to an -
induction principle (see [Joh87]), which is essentially well-founded induction on €.

One of the consequences of Foundation is that every member of an ordinal is also an ordinal.
We can also show that € coincides with ; and that € determines atotal order on ordinas, so
€ well-orders the ordinals (although the ordinals congtitute a proper class not a set, and we are
quietly assuming the axiom of Choice).

Lemma 2.1.6 If Aand B areordinals, thenB C Aif andonly if B€ Aor B=A.

Proof The right-to-left direction is trivial because A is an ordina. For the other direction,
define:

X ¥ {C e succ(A) [BS C

If B=Awearedone. Otherwise, A€ X, and by Foundation there existsD € X suchthat DNX =
0. Now D € X impliesthat there existsC € D\ B. Weclaim that B C C. Consider any E € BC D,
sothat E € D. D isan ordinal because D € Succ(A), and soC € E,C=E, or E € C. However,
C ¢ B and B an ordinal imply that C ¢ E and C # E, so we have E € C as desired. Therefore
B C C. We can then deduce that B=C because C ¢ X, and so B=C € D € Succ(A) = AU{A}.
ThereforeBe Aor B=A. O

Lemma2.1.7 If Aand B areordinas, thenAc B, A=B, or B¢€ A
Proof By lemmal2.1.6, it sufficesto show that AC B or B C A. Define:

x {C e Succ(A) | 3D € Suce(B).CZ DAD Z C}

We claim that X =0, in which case A¢ X and so A C B or B C A. For acontradiction, suppose
that X # 0. By Foundation, there exist E € X and F € Succ(B) such that ENX =0, E ¢ F,
and F ¢ E. There must exist ordinals C € E\F and D € F \ E. Suppose that C C D. By
lemmalZ1.8, this is equivalent to C € D or C = D. However, neither of these are possible
because F isan ordina, D € F, and C ¢ F. Therefore C ¢ D, and similarly D ¢ C. Thus we
have the contradiction C € ENX #£0. O

Example 2.1.8 Although € iswell-founded, it is easy to see that itsdual > isnot. For example,
consider (n | n € w), where Succ(n) > n, for al n € w.

We now turn to forests and trees. A forest is a partial order such that the corresponding strict
partial order iswell-founded and the down-set of every element istotally ordered. Thisdefinition
permits forests with limit elements.

26 CHAPTER 2. PRELIMINARIES

Definition 2.1.9 A forest is a partial order (A, <) such that {b € A|b < a} iswell-ordered by
< foralaeA. Aroot of aforest isan element of A that is minimal with respect to <. A tree
isaforest with only oneroot. A forest or tree (A, <) iswell-founded if > is aso well-founded,
i.e., there are no strictly increasing w-chains. An element b € Aisasuccessor of ac Aifa<b
and whenever a< c < b, for somec e A, wehavea=c. Anelement ac Aisalimitif it isnot
aroot or the successor of some other element.

Konig's lemma identifies a condition under which a tree is not well-founded. This result is
used in chapter[3.4.8to illustrate the difference between binary erratic choice and the countable
choice operator 2w.

Lemma 2.1.10 (Konig) If (A, <) isatree such that A isinfinite and every element has a finite
number of successors, then it is not a well-founded tree, i.e., there exists a strictly increasing
w-chain (a, € A| n € w) such that, for al n € w, a, < any1.

Proof Define:
B={acA|{be A|a< b} isinfinite}

By hypothesis, B contains the root of the tree and is thus non-empty. For any a € B, there must be
at least one successor b € B, because otherwise the finite number of successors of a would each
have finite up-sets, contradicting the fact that the up-set of aisinfinite. Pick @ € B. Thisprocess
can be iterated to obtain a strictly increasing w-chain (& € B | n € w) such that a, < an;1, for
al ne w. O

The primary examples of trees with limit points are ordinals greater than w.

Example2.1.11 Every ordina A determines atree (A, C) because € is a well-founded strict
total order. Every element has at most one successor, so the trees do not branch at al. The
root of the tree is0. If A is greater than or equal to w, then the tree is not well-founded (cf.
example2.1.8). If A is strictly greater than w, then the tree contains limit ordinals which are
limit elements.

Ordinals also determine another kind of tree that are introduced in definitionZ.1.13.

Trees are often constructed from sets of sequences, and, in general, such trees are not total
orders.

Example 2.1.12 Let A be a non-empty set and B C [J{A" | n € w} a prefix-closed set. Then
(B,C) is atree, where C is the prefix order, because a strictly decreasing chain of finite se-
guences determines a strictly decreasing sequence of natural humbers (the lengths of the se-
quences) and thus must have finite length. The empty sequence () is the root of the tree.
Although every element of B is a finite sequence of elements from A, the trees need not be
well-founded because for any element a € A thereisastrictly increasing w-chain:

(C@C(aalC(aaal...

If theinfinite sequence (a | n € w) isadded to the treg, thenitisalimit of the above chain. More
generaly, it is possible to construct trees in this manner using transfinite sequences of elements
from A, i.e, functions from ordinals to A.

2.1. ORDINALSAND TREES 27

R

Figure 2.1: e-trees of ordinalsfrom 0to 4

We now consider a specia case of example[2.1.12] Sets are often depicted as c-trees. For
example, the e-trees for the ordinals from 0 to 4 are illustrated in figure2ZIl The elements of
the e-tree for a set A are finite strictly descending chains of sets related by €, where the first
element of anon-empty chain is amember of A.
Definition 2.1.13 The e-tree of aset Aiis Tree(A) o (
is defined by:

B,C) where C is the prefix order and B

B (01U {(A0AL....A)) | NEWAAYE ANYI < N A1 € AL

e-trees are always well-founded because the axiom of Foundation ensures that there are no
strictly descending w-chains of sets. However, it is worth considering why the lack of well-
foundedness of >, demonstrated in exampl€2.1.8, does not prevent an c-tree from being atree.
In fact, the w-chain (n | n € w) becomes an w-antichain ((n) | n € w) (a sequence of singleton
sequences) in Tree(w). More generdly, if Aisan ordinal, then ((B) | B € A) isan A-antichain of
successors of the root () in Tree(A).

We can go back from trees to ordinals by associating ordinals with the elements of a set ordered
by awell-founded relation.

Definition 2.1.14 LetR C A x Abe awell-founded relation. Therank of a € A with respect to
R isan ordinal defined by well-founded induction on R :

Rank(a,R) €| J{Succ(Rank(b,R)) | (b,a) R }

The rank function is a closure operator upon sets ordered by €.
Lemma2.1.15 Let Abean ordina. Then Rank(A, €) = A.
Proof Define:

X ¥ (B € Succ(A) | Rank(B, €) # B}

ch-preliminaries.6

28 CHAPTER 2. PRELIMINARIES

If X = 0 we are done. For a contradiction, suppose X #0. By Foundation, there exists C € X
such that CNX = 0 and Rank(C, €) # C. For al B € C, we know B ¢ X, so Rank(B,) = B.
Thus, using lemmalZ 13, we have:

Rank(C, <) = | J{Succ(Rank(B,€)) | BeC} =| J{Succ(B) |[BeC} =C
Therefore we have the contradiction Rank(C, €) = C. O

Two different ordinal measures are associated with trees depending on whether the order or its
dual is used. The length of atree is a measure of how long strictly increasing chains can be,
starting from the root. The rank of a well-founded tree is a measure of its breadth, because
it is sensitive to the kind of antichains that appear in the e-trees for infinite ordinals (see the
discussion after definitionZZ1.13).

Definition 2.1.16 Let (A, <) be atree.
1. Thelength Len(A, <) (also known as the height) of the tree is defined by:
Len(A, <)% | J{Succ(Rank(a, <)) |ac A}

2. If (A, <) isawell-founded tree with root a € A, then the rank of the tree is Rank(a, >).

Example 2.1.17 Define awell-founded tree (A, <) by:
def
A= xru{(mn cewxw|n<m}
* < (m,n) and (my, M) < (Mp,Np) <= M =M ANy <n2

The strict order < and its dual > are well-founded. This tree isiillustrated in figure2.2l The
ranks of the elements with respect to the order and its dua are:

Rank(x,<) =0 Rank((m,n), <) =n+1
Rank(*,>) = w Rank((m,n),>) =m—n

In this example the length and the rank of the tree are both w. In general, the length and rank of
atree are not the same.

The length of any well-founded tree or, more generally, tree without limit elements is less than
or equal to w. The length of atree with limitsis greater than or equal to w. Therank of atreeis
only defined if the tree iswell-founded. In contrast to the length, the rank of awell-founded tree
is not bounded by w (or indeed by any ordinal). These points are illustrated in lemmdZ.1.18.

Lemma2.1.18 Let Abean ordina. Then:

1. Thelength of thetree (A,C) isA.
2. Therank of the well-founded -tree Treg(A) iSA.

2.1. ORDINALSAND TREES 29

Figure 2.2: A well-founded tree with rank w

Pr oof

1. By lemmasI.15and

Len(A,C) = | J{Succ(Rank(B,€)) | B A} =| J{Succ(B) |[BE A} =A

2. Define:
x © {B € Succ(A) | therank of Tree(B) # B}

If X = 0 we are done. For a contradiction, suppose X # 0. By Foundation, there exists
C e X such that Cn' X = 0 and the rank of Tree(C) # C. Therank of Tree(C) is:

| J{Suce(Rank((Co,C1,...,Cn),C)) [n€ wWACo € CAVI < Nn.Ciy1 € G}

For any chain (Cy,Cy,...,Cp) that is an element of Tree(C), we can consider its up-set
in Tree(C), i.e., the chains with prefix (Cy,Cy,...,Cp). With the prefix order, the up-set
is atree and is order-isomorphic to Tree(G,). Now C is an ordinal, so C, € C, and thus
Cn ¢ X. Therefore the rank of Tree(G,) = Cy. It can be shown that the rank of atreeisan
invariant under order-isomorphism, so Rank({G,Cy, .. .,Cn), =) isaso C,. Then the rank
of Tree(C) is:

U{Succ(Cn) | n€ wACoe CAVI <n.Ciyy € G}
= U{Succ(B) |BeC}

By lemma 213 this is equal to C. Thus we have the contradiction that the rank of
Tree(C) =C. O

ch-preliminaries.3

30 CHAPTER 2. PRELIMINARIES
2.2 Trandgtion Systems

Computational systems can often be modelled as a collection of states together with adescription
of the circumstances in which one state can evolve to another (see [Plo81! [M1189]).

Definition 2.2.1

1. A transition system (TS) (S, —) consists of a set of states S and a transition relation
— C Sx S

2. A labelled transition system (LTS) (S A,—) consists of a set of states S, a set of labels
A, and alabelled transition relation — C Sx Ax S, For states s, t and alabel a € A, we
write s 5 t for (s,a,t) € —. We sometimes use s — t to mean there exists a € A such
that s > t.

In chapters[3 and [4l we see examples of these structures as components of the operational se-
mantics of the non-deterministic A-calculus .. For now, we consider the relationships between
TSs, LTSs, and trees.

Example2.2.2 A TS (S —) determines an LTS (S {*},—) with asingleton set of labels {x},
where an unlabelled transition s—t corresponds to a labelled transition s=t. Conversely, an
LTS (SA,—) determinesa TS (S, —), where s—t if and only there exists a label a € A such
that s t. This TS simply forgets the |abels upon transitions. Alternatively, we can definea TS

(S+ (Ax S)+ A, —) that does encode the labelling information in an LTS (S A, —) by adding
extra states and transitions to terminal states that represent labels. We assumethat S, Ax S, and
A are pairwise digioint so that SU (A x S) UA can be used for the digioint union S+ (Ax S) +A.
Then the transition relation is defined, for states s,t € Sand alabel a € A, by:

e s— (at)ifandonlyif st
e (at) — a

e (at) —t

The TS (S+ (Ax S+ A,—) isnot entirely satisfactory as a replacement for the LTS (S A, —)
because terminal states are usually identified by operationally-defined equivalences, and so the
encodings of s 2 tands > t could not be disti nguished by considering only transitions when

a#b. For bisimilarity (see section[2.4), this could be fixed by adding more transitions and states
after each state in A, but we do not pursue this here.

Every tree (A, <) determines several TSs. For example, (A, <) and (A, <) areboth TSs. A more
useful TSis obtained viathe successor relation (cf. Hasse diagrams [DP20]).

2.2. TRANSITION SYSTEMS 31

(a) e-transition system (b) e-tree

Figure 2.3: e-transition system and -tree for {{0,{0}},{{0}}}

Example2.2.3 Atree (A <) determinesaTS (A, —), where — C Ax Aisdefined, fora,b € A,

by a — bif and only if bisasuccessor of a. There are no cycles in the resulting TS because the
transitive closure of the transition relation is contained in the strict order < and isthusirreflexive.
Limit elements and their predecessors in the tree are disconnected inthe TS.

A set A determines a TS TS(A) with transition relation >. The states of TS(A) are those sets that
are reachable from A by the reflexive, transitive closure of >.

Definition 2.2.4 The e-TSof aset AisTS(A) « (B,>), where B is defined by:
B (C|3n€ A0 AL..., AnA=AgAC = A AV < N.ALL € A)

In general, the e-TS TS(A) is not the same as the TS determined by the e-tree Tree(A) using
example[ZZ.3] because the latter has more states. Thisisillustrated in exampl€ZZ5.

Example 2.2.5 Consider the set A% {{0,{0}},{{0}}}. The e-TSTS(A) and c-tree Tree(A)
associated with A are illustrated in figure2.3l

Recall that, for any set A, the e-tree Tree(A) is well-founded. By Foundation, the €-TS TS(A)
al so hasthe property that there are no w-chainswith respect to the transition relation >. However,
the well-founded order Tree(w) differs from TS(w) in that the latter does have w-chains with
respect to €, the dual of the transition relation > (see exampl€Z.1.8), so the transition relation is
not well-founded.

We have seen how to obtain TSsfrom trees. In the other direction, there are several reasons why
aTS (S,—) may fail to be atree (assuming a state has been chosen as the root):

e Thetransition relation — may not be reflexive or transitive.

e There may be states 51, S,t such that 55—t and s, —t but there are no paths from g to
s, and vice-versa, i.e., the down-set of t is not totally ordered. The €-TSin figure2.3
provides an example.

ch-preliminaries.7
ch-preliminaries.2

32 CHAPTER 2. PRELIMINARIES

Figure 2.4: The unlabelled transition system associated with a non-well-founded set

e Thetransition relation — may not be well-founded. For example, the transition relation
of TS(w) is not well-founded.

Each TS with a distinguished root state determines a tree called a synchronisation tree (see
[WNO95]). The elements of the synchronisation tree are paths in the TS from the distinguished
state, and are ordered with the prefix order.

Definition 2.2.6 Consider aTS (S, —) and astate s€ S. The synchronisation tree of (S —)
rooted at SisST((S,—),s) = (A,C) where C isthe prefix order and A is defined by:

AL 0 U{(s0,50,...,5) [NEWAS — SAVI < N§ — Si1}

It is easy to see that e-trees are the synchronisation trees of €-TSs, i.e,, for all sets A, TS(A) =
ST(Tree(A),A). A synchronisation tree is obtained by unfolding a TS. A state in the TS will
be duplicated in the synchronisation tree if there are multiple paths to it from the root state.
This can be seen in figure2.3] Synchronisation trees do not have limit points, but need not be
well-founded. In particular, cyclesin the transition system are unfolded to create w-chainsin the
synchronisation tree. For example, the synchronisation tree of a TS ({x},—), where x — %, is
not well-founded.

Example 2.2.7 Forti and Honsell [FH83] and Aczel [Acz88] consider an axiom for set theory
that contradicts and replaces the axiom of Foundation (see aso [FHL94, BM96]). The Anti-
Foundation axiom asserts the existence of non-well-founded sets (al so known as hyper sets), upon
which the membership relation € is not well-founded. For example, the following equations
define a non-well-founded set w:

w={x} x={yz} y={w} z=0

The definitions of e-trees and €-TSs can be replayed for non-well-founded sets. The e-TS of w
is depicted in figure[2.4l Non-well-founded sets determine non-well-founded e-trees, but they
do not have limit elements.

We now consider TSs and LTSs with a may divergence predicate that partitions the states into
those that may diverge and those that must converge.

ch-preliminaries.8

2.3. INDUCTION AND COINDUCTION 33

Definition 2.2.8 A transition system with divergence (TSWD) (S ™ ,—) isa TS with a
may divergence predicate {"¥C S. Similarly, a labelled transition system with divergence
(LTSWD) (SA 1™ —) is an LTS with a may divergence predicate {"™¥C S, The de-
rived must convergence predicate ™ is the complement of ™, i.e., s (™S if and only if
SZ ™. For astate s€ S, wewrite sS{™ for s ™, and s ™ for s M,

Abramsky [Abr87b] and Walker [Wal90] consider LTSWDsthat are derived from other LTSWDs
that include the distinguished label 1. If we suppose that no states may diverge in a LTSWD,
thenitisjust an LTS. Inthis case, astate in the derived system may divergeiif it possible to begin
an infinite sequence of T-labelled transitions from that state. The transitions in the LTSWD are
derived from those of the LTS by ignoring certain t-labelled transitions.

Example[2.2.9 builds upon definition[Z.2.4] to show that sets with a distinguished urelement L
form TSWDs. This example is extended in chapter 4 to typed transition systems which are a
special case of LTSWDs.

Example 2.2.9 Consider sets (well-founded or non-well-founded) constructed using a single
urelement L. For such a set A, the definition of the e-TS TS(A) can be replayed by not treating
1 asastate. The may divergence predicate of the €-TSWD is defined, for a state B of TS(A),
by B/4™ if and only L € B. We write TSWD(A) for this e-TSWD.

As an example, consider the states of the e-TSWD TSWD({0, {0}, {_L,0}}):

{0{0;,{L,0;; {L0} {0} 0

The only state that may divergeis {_L,0} ™®. All of the other states must converge.

2.3 Induction and Coinduction

Many of the definitions and proofs for operational semantics are inductive or coinductive. In
this section we recall the fundamentals of induction and coinduction, and then consider some
definitions and results that are of particular use for operational semantics.

We present induction and coinduction abstractly in the framework of order theory (see[DP0]

for an excellent introduction to this subject). There is also an appealing category-theoretic
account of induction and coinduction (see [JR97]) that generalises the order-theoretic version
given below: categories generalise partial orders; functors generalise monotone functions; alge-
bras and coalgebras generalise post-fixed-points and pre-fixed-points; and initiality and finality
generalise least and greatest fixed-points. However, the extra generality is not required here.

Definition 2.3.1 Let (A, <) be a partial order. If F : A— A is a monotone function, then an
element a € Aisapre-fixed-point if a < F(a), and a post-fixed-point] if F(a) <a. If it exists,
the meet of aset B C A, isthe unique element of A, written[| B, such that, for all ac A,a<[|B
if and only if, for all b € B, a <b. If it exists, the join of aset B C A, is the unique element of

IWarning: in [Gun92|, this is the definition of a pre-fixed-point.

34 CHAPTER 2. PRELIMINARIES

A, written | |B, such that, for all ac A, |[B<aif andonly if, ybe B,b<a. Wewriteanb
for[]{a,b}, aL/bfor | [{a,b}, T for[]0, and L for | |0. The partial order (A, <) isacomplete
lattice if meets exist for all subsets of A. If (A <) isacomplete lattice, then elementsa,b € A
are complements if artb= L and allb=T. We writea for the complement of a € A when
it exists and it is the unique complement. A complete lattice (A, <) satisfies the meet-infinite
distributive law and join-infinite distributive law respectively if, for all ac Aand B C A:

au[{b|beB} =[|{aub|beB} (meet-infinite distributive)
arl| {b|beB}=| [{anb|beB} (join-infinite distributive)

It is straightforward to show that all joins exist in a complete lattice (A, <) because they can be
defined using meets: if B C A, then:

| |IB=[{acA|vbeBb<a}

Powersets ordered by set inclusion form an important class of complete lattices. In particular,
the similarity and bisimilarity relations defined in the sequel are constructed inside complete
lattices of thisform.

Example 2.3.2 For any set A, the partial order (P(A),C) is a complete lattice that satisfies
the meet-infinite and join-infinite distributive laws. The meet operation on non-empty sets is
set intersection. The meet of the empty set is A. The join operation is set union. Unique
complements exist for al B € P(A), and are given by B= A\ B.

Complete lattices admit inductive and coinductive definitions as the least and greatest fixed-
points (respectively) of monotone functions. The Knaster-Tarski theorem tells us that the least
and greatest fixed-points always exist. Moreover, the least fixed-point is the meet of all post-
fixed-points and the greatest fixed-point isthe join of al pre-fixed-points.

Theorem 2.3.3 (Knaster-Tarski) If (A, <) is a complete lattice and F : A— A is monotone,
then the least and greatest fixed-points of F are respectively:

ua.F(a)d§f|_|{aeA\ F(a) < a}
vaF(@)¥| [{acAla<F(a)}

Proof Wefirst show that pa. F(a) is a fixed-point. The proof for va.F(a) isdua. We clam
F(pa.F(a)) <pa.F(a). If be Aissuchthat F(b) <b,thenpa. F(a) <[][{acA|F(a)<a} <hb.
By monotonicity of F, F(pa.F(a)) < F(b). Hence, F(pa.F(a)) < b, and so F(pa.F(a)) <

[{acA|F(a) <a}=pa F(a). Forthereverseinequality, notethat F (F (pa. F(a))) < F(ua. F(a))
by monotonicity. Therefore:

he.F(a) = [{a€ A| F(a) < a} < F(ua.F ()

and it followsthat pa. F (a) = F (pa. F (a)) asrequired. By duality, we seethat va. F (a) isafixed-
point. Finally we claim that for any fixed-point b € A of F, we have ya.F(a) < b <va.F(a).
This follows immediately from the universal properties of meet and join given that b = F(b) is
a post-fixed-point and a pre-fixed-point of F. O

2.3. INDUCTION AND COINDUCTION 35

Park [Par79, Par81] and Milner [Mil89] show the importance of coinduction as a technique for
defining semantic relations upon LTSs (see section2.4 and chapter [4).

The term coinductive was in use by 1974. Moschovakis [Mos74] describes a set as coinductive
if it is the complement of an inductively-defined set (as opposed to the greatest fixed-point of
amonotone function). Lemmal2.3.5 shows that these definitions coincide for a certain class of
complete lattices. Aczel [Acz77] usesthe term kernel for the greatest fixed-point of a monotone
function.

The following induction and coinduction principles, and their strong variants, can be deduced
from the Knaster-Tarski theorem.

Lemma 234 If (A <) is acomplete lattice and F : A— A is monotone, then the following
induction and coinduction principles, and their strong variants, are valid for al b € A:

F(b)<b=paF(a)<b (Induction)
b<F(b)=b<vaF(a) (Coinduction)
(F(bMpa.F(a))Mpa.F(a)) <b=pa.F(a)<b (Strong Induction)
b<(F(buvaF(a))Uva.F(a)) = b<vaF(a) (Strong Coinduction)

Proof Theinduction and coinduction principles follow immediately from the universal prop-
erty defining the meet and join operators. We prove the strong coinduction principle. The strong
induction principle is dual. First show that:

buvaF(a) <F(buUva.F(a))
This follows from the hypothesis and:
va.F(a)=F(vaF(a)) <F(buva.F(a))
Now, by the ordinary coinduction principle:
buva F(a) <va.F(a)
Thereforeb <va.F(a) O

In the remainder of this section we derive results, concerning induction and coinduction, that
are used for reasoning about the operational semantics and semantic relations considered in the
sequel.

LemmalZ3Happearsin [Acz//,[Cev/Y], and justifies the use of the term coinductive for both the
complement of an inductively-defined set and the greatest fixed-point of a monotone function. It
isused in chapter[3to show that the inductively-defined must convergence predicate on programs
is the complement of the coinductively-defined may divergence predicate.

Lemma2.3.5 Let (A <) be acomplete |attice satisfying the meet-infinite distributive and join-
infinite distributive laws, and F : A— A a monotone function. If complements exist for every
element in A, then the complements are unique and:

pa.F(a) =va.F(a)

va.F(a) =pa.F(a)

36 CHAPTER 2. PRELIMINARIES

Proof If b,c € A are complements of a € Athen:
buc=Tn(buc)=(auc)n(buc)=(anb)uc=_Llc=c

Similarly, bLic = b and therefore complements are unique. Consequently, a = a for all ac A.
Note that we only require distributivity over finite meets and joins for unique complements. Next
we prove that the following equalities hold for all B C A:

| {b|beB}=[|{b|beB} and []{b|beB}=| |{b|beB}

For the first, we need to show that | |[{a | a € B} and[]{b | b € B} are complements:

| {alaeB}n[|{b|beB} =| |{ar| |{b|beB}|acB}
=| J{[fanb|beB} |acB}
=| [{L|aeB}
=1

Similarly, | [{a|a€ B} U[]{b| b€ B} = T and so they are complements. The second equality
follows by duality. From these equalities we deduce that, for al a,b € A, if a< b, thenb <a.
Thisis because a= arnb impliesa=arnb=1aLlb, which in turns impliesb <a. Now we can
prove the main results. For pa. F (@) = va. F(a), the above properties imply that:

vaF(@ =[[{acA|F(@) <a}
=[facAla<F(@)}
=[|{facAla<F(a)}
=| facAla<F(a)}

)
)
=va.F(a)

The casefor va.F(a) = pa.F(a) isdual. O

The next four lemmas are used later when we work with relations defined by coinduction.
Lemma [2.3.6 identifies sufficient conditions for a coinductively-defined relation to be reflex-
ive, symmetric, and transitive.

Lemma 2.3.6 For aset A, consider the complete lattice (P(A x A),C) and a monotone function
F:P(AxA)—P(AxA). If F preserves reflexivity (respectively symmetry, transitivity) of a
relation, then the greatest fixed-point of F isreflexive (respectively symmetric, transitive).

Proof

1. Because F preserves reflexivity and Id(A) C 1d(A), wehave ld(A) C F(Id(A)), i.e., 1d(A)
is a pre-fixed-point of F. Therefore Id(A) CvR .F(R).

2.3. INDUCTION AND COINDUCTION 37

2. Consider a pre-fixed-point of F, R C Ax A. Now R UR® is symmetric, and so F(R U
R %) is also symmetric by hypothesis. By monotonicity of F, we have F(R) C F(R U
R). Then we can deduce that R UR % is a pre-fixed-point of F:

RURPCFR)IUFR)NPCFR URPUFR URPHP=FR UR®)
The result follows by taking R tobevR .F(R).

3. Consider a pre-fixed-point of F,R C Ax A. Now R " istransitive and so F(R) isalso
transitive by hypothesis. By monotonicity of F, we have F(R) C F(R™). Then we can
deduce that R * is a pre-fixed-point of F:

RTC(FR) C(FR") CFR")

Theresult follows by taking R tobevR .F(R).
O

Lemmal2.3.71shows that the dual of aleast or greatest fixed-point relation is, respectively, aleast
or greatest fixed-point.

Lemma 2.3.7 For a set A, consider the complete lattice (P(Ax A),C). If F:P(AxA)—
P(A x A) is monotone, then:

WR.(FR™)® =R .FR)®

VR.(FR®)®=(WR.FR)®
Proof For thefirst equality:

BS.(F(S®)® =TS [(F(S™))® c S}
=R (FR)PCR
=[HR™|FR)C
=(THR [FR)C
=(R.FR))®

Op}
R}
RH®

The second equality is obtained by duality. O

Lemma 2.3.8 and corollary are used to show that variations of bisimilarity are always
included in the corresponding mutual similarity.

Lemma 2.3.8 Let (A, <) beacomplete lattice and F, G € A— A monotone functions. If F(a) <
G(a), for dl a € A, then:

. F (a) < pia. G(a)
va.F(a) <va.G(a)

38 CHAPTER 2. PRELIMINARIES

Proof For thefirst inequality, it suffices to show that pa. G(a) is a post-fixed-point for F, i.e.,
F(pa.G(a)) < pa.G(a). This holds because F is bounded by G, and pa. G(a) is a fixed-point,
o

F(1a.G(a)) < G(1a G(a)) = Ha. G(a)

The proof for the second inequality is similar. a

Corallary 2.3.9 Let (A, <) be acomplete lattice and F, G : A— A monotone functions. Then:

pa.F(a)nG(a) < (pa.
va.F(a)NG(a) < (va.F(a))M(va.G(a))

Proof Inboth cases, apply lemmal2.3.8 twice. O

Lemma[2.3.10] is an “up to” result for coinductively-defined relations (see Mil89, [Gor95a,
[as98d]). This result is used to simplify proofs that elements are related by a coinductively-
defined relation. It is used in chapter[5]to prove Scott induction principles for coinductively-
defined preorders (theorem5.7.9).

Lemma 2.3.10 For a set A, consider the complete lattice (P(A x A),C) and a monotone func-
tion F : P(AxA)—P(AxA) such that F(R);F(S) C F(R;S), whenever R,S C Ax A. If

T =vR.F(R),then, forany S C Ax A:
SCFT;S;T)=SCT

Proof AssumeS C F(T;S;T). Wefirst establish that T ;S;T C T. By coinduction, this
followsfromT ;S;T C F(T ;S;T), which holds because:

T;5;T CT;F(T;S5;T);T
CFT)F(T;S;T)F(T)
CF(T;T;S;T;T)
CF(T;S;T)

Thelast line requires transitivity of T . To prove transitivity, by lemm&Z2.3.6, it suffices to show
that, forany R € AxA R;R CR impliesthat F(R);F(R) C F(R). This follows from
the hypotheses because F(R);F(R) C F(R;R) C F(R). Thereforeweknow T ;S;T C T.
The result follows by applying the strong coinduction principleto S € F(T ;S;T) C F(T).
ThereforeS C T . d

24. SIMILARITY AND BISIMILARITY 39

Finaly, lemmal2.3.17 identifies a condition under which the least and greatest fixed-points of
a monotone function are the same (and thus are the unique fixed-point). Informaly, we may
consider a complete lattice of the form (P(A),C) with a well-founded relation R C Ax A. If
F : A— Alisamonotone function generated from rules where every premise of aruleis related
to the conclusion by R , then every coinductive proof must be a well-founded tree and thus an
inductive proof.

Thisresult is used to show that the variants of similarity and bisimilarity defined in chapterid are
both least and greatest fixed-points because they are defined for LTSs with a type system that
lacks recursive or coinductive types. The well-founded relation in this case is the order on the
size of the type of a state.

Lemma 2.3.11 For sets A and X C P(A), suppose that (X,C) is a complete lattice. Let F :
X — X be monotone with respect to the inclusion order and R C A x A awell-founded relation

such that, for al a € vB.F(B), there exists C C vB.F(B) such that a € F(C) and CR a, where
CR ameansthat, for all c€ C, cR a. Then:

UB.F (B) = VB.F(B)

Proof We know pB.F(B) C vB.F(B), and so it suffices to show the reverse inclusion, i.e.,
acVB.F(B) impliesa € uB.F (B). The proof is by well-founded induction on a with respect to
R . If ac vB.F(B), then by assumption there existsC C vB.F(B) suchthat a€ F(C) andCR a.

Applying the induction hypothesis to the elements of C yields that C C puB.F(B). Therefore, by
monotonicity, a € F(C) C F(uB.F(B)) = uB.F(B). O

2.4 Similarity and Bisimilarity

Park [Par79, [Par81] and Milner [M1I89] introduce bisimilarity as an equivalence relation upon
processes. Bisimilarity is a coinductively-defined relation upon the states of an LTS, and pro-
cesses are equivalent if the initial states of the LTSs that they determine are related by bisimi-
larity. It is aso possible to define a preorder called similarity in the same style as bisimilarity.
Informally, a state s is related to a state t by similarity if the possible behaviours of s and the
states that can be reached via the transition relation are “dominated” by those of t.

The concepts underlying bisimilarity have proven robust. For example, there is a treatment of
bisimilarity for CSP (see [BRW88, [Ros99]), there are many variants of similarity and bisim-
ilarity for LTSs and related structures such as LTSWDs (see [Abr87b, [Wal90, [Van90, [Abr91],
Van93]), and applicative similarity and applicative bisimilarity can be used to reason about A-
calculi even in the presence of recursive types (see [Abr90, |Gor95h]).

The definitions in this section are for LTSs and LTSWDs. They also apply to TSs and TSWD
using example2.22
Similarity for an LTS is defined as the greatest fixed-point of a monotone simulation function

(-)s on the set of binary relations on the states. Bisimilarity is also defined in terms of the
simulation function.

40 CHAPTER 2. PRELIMINARIES

Definition 2.4.1 Consider an LTS (S A,—) and arelation on the statesR C Sx S. Define the
relation (R)s € Sx S fors,ty € S by:

(s,t) €(R)g == VacAV$ eSS > =Sl > LA (h) €R

Now similarity and bisimilarity can be defined using coinduction. In addition, mutual similarity
is defined to be the greatest symmetric relation contained in similarity.

Definition 2.4.2 For an LTS (S A,—), similarity, mutual similarity, and bisimilarity are the
binary relations on Sdefined by:

<<E VR .(R)q (similarity)
~ < ns® (mutual similarity)
~ EUR .(R)N(R®P (bisimilarity)

If (SA,—)isan LTS, then the fact that similarity and bisimilarity are pre-fixed-points (actually
fixed-points by theorem[2.3.3) means that for all states ,t; € S

1Sl =VacAVSESS 5 =TSt > AL
sivgti = (Vac AV €S8 5 = I € St & hAS g th) A
(VacAVheSti > b= 3% €S8 & AR h)
However, these properties do not define similarity or bisimilarity. There are many relations

that are pre-fixed-points, including the empty set, but similarity and bisimilarity are the greatest
pre-fixed-points.

We can use the results developed in section[2.3 to obtain generic results about similarity and
bisimilarity.
Lemma2.4.3 Forany LTS, similarity Sqisapreorder, and mutual similarity ~ and bisimilar-

ity ~, are equivalence relations.

Proof It is straightforward to show that (-); preserves reflexivity and transitivity, and that

(R — (R)sN(R™P) preserves reflexivity, symmetry, and transitivity. The results follow by
lemma2.3.6 O

It is often necessary to compare states from different LT Sswith respect to similarity or bisimilar-
ity. The states can be compared inside the disjoint union of the LTSs. Define the digoint union
of LTSs (S1,A1,—,) and (S, A2, —,) to be (SA,—) where s S+ S and AY A +A. If
S and S (respectively A; and Ay) are digoint so that S (respectively A) can be represented by
S US (respectively A UAp), then — C Sx Ax Sis—, U—,.

Example[2.4.4 shows that a state with a transition to itself and no other states is bisimilar to a
state that has an infinite sequence of transitions without cycles.

24. SIMILARITY AND BISIMILARITY 41

Example 2.4.4 Consider the TSs ({x},—,) and (w,—,) where the transition relations are de-
fined by x—,x and n—,n+ 1, for dl n € w. We show that x>~ n, for al n € w. First define
S % ((x,n) | ne wl. It suffices to show that S is a pre-fixed-point of (R — (R)N (R PP,
in which case (x,n) € S C ~, for al n € w. However, S is clearly a pre-fixed-point because,
for any (x,n) € S, the only transitions from x and n are * = X and n—,n+1, and we have
(x,n+1)€S.

The states in these TSs are greater than states in any other TS with respect to similarity. To
see this, suppose that (S —,) isaTSand s€ Sisastate. Then s<*, because « aways has a

transition to itself. Formally, S o {(s,x) | s€ S} isapre-fixed-point of (-).
We now examine the inclusions between the three relations.

Lemma2.4.5 Forany LTS, ~; C ~e C 55.

Proof By definition, ~¢ C <. By lemmalZ3.7land corollary [2.3.9, we have:

C (VR <)s) (VR <R°p>§p)
=(WR.(R)g)NVR.(R)9)*

Example2.4.6 shows that the inclusions in lemmalZ. 4.5 are strict.

Example2.4.6 DefineLTSs (S,A,—,), (S,A,—,), and (S3,A,—,), where A= {a,b, c}, by:

s1 ¥ {(0),(a,0),(a,1),(a,b).(ac)}
€10, (@), (ab), (ac)}
{0.(a,0),(a,1),(a,b,0),(a,b,1),(ac)}

And the transition relations by:

2.0 (2@l @02 @b (@l (ac
05,08 (@>,ab) (@>,@c

2.0 (3l (a0>,ab0 (&L>,(abl) (a1l)>,(ac)
These LTSs are illustrated in figure[Z5. Now write (); for () € §, wherei is 1, 2, or 3. Recall

that they are distinct elements in the digjoint union of the LTSs. The relationships between these
states are:

015025003 (s#g(2Zsn

42 CHAPTER 2. PRELIMINARIES

Figure 2.5: LTSsrelated by similarity

In particular, (); and (), are related by similarity but not mutual similarity, and (), and ()3 are
related by mutua similarity but not by bisimilarity. Thus mutual similarity is strictly finer than
similarity, and bisimilarity is strictly finer than mutual similarity.

Similarity and bisimilarity are defined coinductively (as greatest fixed-points) rather than in-
ductively (as least fixed-points) because there may be infinite paths in an LTS (the dua of the
transition relation of a TS may not be well-founded), and in such cases the least fixed-point is un-
satisfactory. For example, the least fixed-point of (R +— (R }sN (R ®)Q) isirreflexive upon the
TS ({x},—) where x — x. By lemma[2.3.5 the complements of similarity and bisimilarity can
be given an inductive definition. Informally, this means that a proof of similarity or bisimilarity
may be represented by a potentially non-well-founded derivation tree, whereas a proof of the
complement of either similarity or bisimilarity may be represented by a well-founded deriva-
tion tree. Thisis related to the difference between the winning strategies for game-theoretic
characterisations of inductively and coinductively-defined sets (seeJAcz77,[BM96, [Sti97]).

In the case of &-TSs obtained from well-founded sets, lemmaZ.3.11] and the axiom of Founda-
tion can be used to show that similarity and bisimilarity are also least fixed-points, and so could
have been defined by induction. In addition, Extensionality and Foundation can be used to show
that bisimilar well-founded sets are equal.

Proposition 2.4.7 Consider (well-founded) sets A and B. We have A= B if and only if A~ B
in the digoint union of the e-TSs TS(A) and TS(B).

Proof Bisimilarity is reflexive, so we only have to show A~ B implies A= B. We write
C e TS(A) to mean C isa state of the e-TSTS(A). Define:

X ¥ {CeTSA)| 3D € TYB).C~,DAC+#D}
We claim that X = 0, in which case we are done. For a contradiction, suppose that X #0. By
Foundation, there exist E € TS(A) and F € TS(B) such that ENX =0, E~gF, and E # F.
Because ENX = 0, we know that, for all Cc E and D € TSB) 2 F, if C~, D then C = D.
Using E~gF, we have that, for al C € E, there exists D € F such that C~; D. Therefore

C=D, so ECF. Similarly, for al D € F, there exists C € E such that C~,D. Therefore
C=D,soF CE. ThuskE =F, contradicting E € X. O

ch-preliminaries.14

24. SIMILARITY AND BISIMILARITY 43

Foundation is required in the above proof, which precludes asimilar proof for non-well-founded
sets. However, the various approaches to axiomatising non-well-founded sets force the Super
Srong Extensionality Axiom, which states that sets are equal if they are related by bisimilarity
(see [FH83,/Acz88,[FHL 94, [BM96]).

Sets are also arich source of TSs. Thisis demonstrated by the fact that for any TS and every
state that does not have an w-chain of transitions, there is a bisimilar well-founded set.

Proposition 2.4.8 Consider a TS (S,—) and a state s € S such that s4”, i.e., there are no
chains (s, € S| n € w) such that §, — sy1, for dl n € w. Then there exists awell-founded set
A such that s~ Aiin the disjoint union of the TSs (S, —) and TS(A).

Proof Thedua — of thetransition relation — iswell-founded on {t € S| s—"t}. For every

t; € Ssuch that s—"t;, we use well-founded induction on —* to define the set f (t;) by:

f(ty) € {f(t2) [ti—1t2)

It is straightforward to show that for all t € Ssuch that s—"t, t~ f (t) in the disioint union of
the TSs (S, —) and TS(f(t)). Theresult follows by taking A= f(s). O
The next result shows that the root of a synchronisation tree of a state in a TS is bisimilar to

the state itself. This means that only trees need to be considered when studying bisimilarity
invariant properties of TSs.

Proposition 2.4.9 Consider a TS (S, —) and astate s€ S. Then s~ () in the digjoint union

of (S —) and the TS determined by the synchronisation tree ST((S,—),s) via the successor
relation (see example2.2.3).

Proof We assume without loss of generality that the TSs are digoint. Define:
R {(s ()} U{(S (0,51, .., S)) |NE WAS = AVi <N.§ — S41}
Itis straightforward to show that R is a pre-fixed-point, and so s~ (). O

We now consider TSWDsand LTSWDs. There are several variants of similarity and bisimilarity
when divergence is introduced.

Recall that similarity and bisimilarity for LTSs are defined in terms of (-);. For LTSWDs, the
variants of similarity and bisimilarity are generated by alower simulation function (-} 5 and an

upper simulation function (-) ;.

44 CHAPTER 2. PRELIMINARIES

Definition 2.4.10 For an LTSWD (S A ™, —) and arelation on the statesR C Sx S, define

therelations (R), o, (R) s € Sx Shy:

(st) €R) ge=>VacAVeSs 5 9= TSt > A (k) €R

(si,t1) € R)yge=s1 ™ =
(tl umust A

VacAV eSSt S th=35€Ss > A (sp12) €R)

For LTSWDs where no states may diverge, and a binary relation on the states R, the lower
simulation function (R), ¢ isthe same as (R)g, and (R) isthe same as (R)...

There are four variants for each of similarity, mutual similarity, and bisimilarity obtained from
combinations of the lower and upper simulation functions.

Definition 2.4.11 ForanLTSWD (S A, {™¥,—), the lower, upper, convex, and refinement vari-
ants of similarity, mutual similarity, and bisimilarity are the binary relations on S defined by:

S ZWRL(R)

~

LS (lower similarity)

~ T NS (mutual lower similarity)

~ s ZVR.(R) NRP® (lower bisimilarity)

Sus B VR (R)s (upper similarity)

~ e ¥ SusNSR (mutual upper similarity)

~ s ZVR (R)N RPN (upper bisimilarity)

Ses ZVR LR GNR s (convex similarity)

~ e E S NSR (mutual convex similarity)
~s EVR (R) sNR)NRPDRARPE, (convex bisimilarity)

Srs ZVR.RPI®AR) (refinement similarity)

e <o (mutual refinement similarity)

~rB “VR. (R °'°>E';m (R)usN(R) sN(R °p>ﬂps (refinement bisimilarity)
It is straightforward to show that the variants of similarity are preorders, and that the variants of

mutual similarity and bisimilarity are equivalences using lemmaZ3.6

The variants are named lower, upper, and convex because of the correspondence with construc-
tions used to obtain the lower (Hoare), upper (Smyth), and convex (Plotkin) powerdomains,
e.g., using the Egli-Milner construction on preorders (see [Plo76,|Smy78, [Plo83, (Gun92, |A.J94,

AC98]). Lassen [Las98b] proposes naming the final variant refinement similarity because it
seems to be the most suitable order for refining non-deterministic programs that use ambiguous
choice.

By definition, convex bisimilarity and refinement bisimilarity are identical, but, in general, the
variants of similarity, mutual similarity, and bisimilarity are distinct. ExampleZ.4.12] briefly

2.5. RECURSIVE ORDINALSAND RECURSIVE TREES 45

illustrates some of the differences between the variants of similarity on TSWDs arising from
well-founded sets with a L urelement. The relations are also used in section2.6/to examine the
relationship between different binary choice operators, and are studied in detail in chaptefdl

Example 2.4.12 Amongst the €-TSWDs obtained in example[2.2.9, the following inequalities
hold:

{1} Ss05s{L} (L Ss{h0h 2 s}
{1} Sys@Zus{t} {1} Sus{h: 0 Sys i)
{1} Scs0Zcs it} {1} Ses{ 0 Bes {1}
{1} Sprs0Zrs L} {1} Zrs{ 1,0} Spe{ L}

2.5 Recursive Ordinalsand Recursive Trees

Some countable well-orders are recursively decidable. Ordinals that are order-isomorphic to
such awell-order are called recursive, and constitute a down-set (a proper subset) of the count-
able ordinals. There is a close correspondence between recursive ordinals and well-founded
trees for which membership of the underlying set of the tree is decidable. This correspondence
is exploited in chapter 3 when non-deterministic operators are classified by countable ordinals
associated with derivation trees for the operational semantics. The texts [Rog67, [Gir87, (Odi89]
are good references for recursion theory, recursive ordinals, and recursive trees.

Definition 2.5.1 Anordinal isrecursiveif it is order-isomorphic to arecursive well-ordering of
asubset of w, i.e., there exists aset A C w, awell-order < C Ax A, and a recursive function
f : wx w— wsuch that, for al m,n € w, f(m,n) is defined and:

f(mn) = 0 ifmAnvmgAvVngZA
"7)1 ifm=n

Example 2.5.2 The ordinal w® is recursive. To see this, note that any ordina A < of° has
unique Cantorian normal formA=o"-a,+ " 1 -an_1+---+ w-a; +ag, where ag, ay, ..., an
are natural numbers and a, # 0 (see [Pot90]). Hence the ordinals strictly less than «§° can be
represented as finite sequences of natural numbers, and there is an order-isomorphism between
w® and (B, <), where B is defined by:

Bd:ef{(ao,al,...,an> InewAa, Z0AVi <n.g e w}
The strict order < C B x Bisdefined, for 8 = <ao,a1,...,am>,5: (bo,by,...,bn) € B, by:
da<b¥m< nvim=nAdicwi<mAg <bAVjewi<j<n= a =b)

A finite sequence of natural numbers can be encoded as a number, so the order < is decidable
on such encodings. Therefore of° isarecursive ordinal.

46 CHAPTER 2. PRELIMINARIES

Lemma2.5.3 If Aisarecursive ordinal and B € A, then Bisarecursive ordinal.

Proof LetCCw, X1 CCxC,and f:wx w— wbetheset, well-order, and recursive function
associated with A as in definition[2.5.11 Suppose that ¢c € C corresponds to B in the order-
isomorphism, and defineD ¥ {deC|d=<jc}and <> ©<in (Dx D). Then (D, =>) isawell-
order that is order-isomorphic to B. We can now define the total recursive function g: wx w— w,
formn e w, by:

def |O if f(mn)=0Vf(n,c)=0vn=c
g(m,n) = :
1 if f(mn)=1Af(n,c)=1An#c

It can be verified that g and =<, are related as required by definition[25.1l Therefore B is a
recursive ordinal. O

Using exampleZ5.2and lemmalZ5.3 we can find many infinite recursive ordinals. However, a
diagonalisation argument can be used to show that not all countable ordinals are recursive, and
so there must be aleast non-recursive ordinal.

Definition 2.5.4 Theleast non-recursive ordinal is denoted «§X.

Church and Kleene [CK37, [Chu38, [KIe38] identified the ordinal ofX. In the literature both
wa and wy; are used for the least non-recursive ordinal. We use wy for the least non-countable
ordinal. The subscript 1 is present because it is possible to define a sequence of countable
ordinals by defining «X; in terms of wS¥. From this perspective «f¥ is w.

There are many different characterisations of of. We now work towards a characterisation in
terms of trees consisting of finite sequences of natural numbers (see exampleZ 1.12) with the
prefix order. The Kleene-Brouwer order on the elements of such atree is used to construct an
ordinal from that tree (see [G1r87,[0di89, [M0s90]). The definition of the Kleene-Brouwer order
is similar to that of the well-known lexicographic order, so both are defined in definition2.5.9
for the sake of comparison.

Definition 2.5.5 Consider atree (A,C), where AC J{w" | n € w}, Aisprefix closed, and C is
the prefix order. Thelexicographic order < , and the Kleene-Brouwer order <, . (also known
asthe Lusin-Sierpinski order) are defined, for 8 = (&, ay, ... ,am>,5 = (bo,by,...,bn) €A, by:

é<LXBd§f§|:B\/(3i cwi<mnnag <bAYj<ia =b)
a<KBBd:efB[av(3i cwi<mnnag <bAYj<i.a =b)

The lexicographic and Kleene-Brouwer orders differ in whether or not a prefix & of a sequence
b is less than or greater than b. For example, the empty sequence () is the bottom element for
the lexicographic order, and the top element for the Kleene-Brouwer order. Figure2.8illustrates
the successor relation for the orders on finite trees.

The lexicographic and Kleene-Brouwer orders are total, and are well-orders whenever the tree
is well-founded. However, the reverse implication only holds for the Kleene-Brouwer order,
because of their different behaviour with respect to .

2.5. RECURSIVE ORDINALSAND RECURSIVE TREES 47

PR N PR N PR N PR N
0 10 1 0 10 1
4 ' VoA \
I \ I oy |
AVAMY \IAS
\ \\ \\ // // //

S0 e 027 1*

A |

| I

\ /
~0 0*

(a) Lexicographic order (b) Kleene-Brouwer order
Figure 2.6: Orders on recursive trees

Lemma 2.5.6 Consider atree (A,C), where AC J{w" | n € w}, Aisprefix closed, and C isthe
prefix order. The following properties hold of the lexicographic and Kleene-Brouwer orders:

1 (A< x) and (A <,g) aretota orders.
2. If (A,C) isawell-founded tree, then < x ad <, are well-founded on A.

3. If < iswell-founded on A, then (A, C) is awell-founded tree.

Proof

1. The relations are reflexive by definition, and it is straightforward to show that they are
transitive. If &= (ag,as,...,am),0 = (bo,bs,...,by) € Asuchthat a7 band b7 & then
there exists aunique i € wsuch that i <mmMn, g # by, and, for al j € w, j <iimplies
aj = b;. It follows that dandb are comparable by </x and <kg’ and so both orders are
total.

2. Consider <, first. For a contradiction, suppose that (A,C) is a well-founded tree and

that there exists an w-chain (g | i € w) such that g1 <, &, foral i € w. Set & =
(@0,8i1,-..,8 m), foral i € w. We define an w-sequence of natural numbers (b | i € w)
such that (bg,bs,...,b;) € A for all i € w. If such asequence exists, then ((ky,ba,...,b;) |
i € w) isastrictly increasing w-chain in A with respect to C, and thus (A,C) is not a
well-founded tree. How can we define by € w? For al i € w, & # () because () is the
bottom element for <, , . Hence there is an w-sequence (ao | i € w) of the first elements

from each sequence. This sequence isdecreasing becaused 1 < &, forali € w, and so
must eventually be constant. Thus there exists k € w such that, for all i € w, & = a4+ 0.
Set by = ax 0. We know that (bp) € A because A is prefix-closed. To define the remainder
of the sequence (b | i € w), consider the sequence ((&i 1, 8+i 2, - --»8+im) | | € W) (the
sequence obtained by removing the first element ky from each sequencein (& | i € w)).

It can be verified that this is a strictly decreasing sequence with respect to < ., and so

ch-preliminaries.12
ch-preliminaries.13

48 CHAPTER 2. PRELIMINARIES

we can iterate this process to obtain (b | i € w) such that, for al i € w, there exists j € w
such that, for al k € w, k> j implies (kp, by, ...,b;) C &. Therefore (by,by,...,b) € A,
for al i € w, because A is prefix-closed. This contradicts the assumption that (A,C) isa
well-founded tree, and so <x iswell-founded on A. A similar argument shows that <kB

is well-founded on A. The only difference is that () is the top element for <, and so it
may appear at the start of a strictly descending w-chain, in which case it can be removed
without affecting the rest of the proof.

3. Let <, bewell-founded on A. For a contradiction, suppose that that there exists an w-
chain (g € Alic w)suchthat & C &4, foral i € w. Butd C &1 implies &1 <,z &,
andso (& € A|i € w) isadtrictly decreasing w-chain with respect to <, . Thiscontradicts
the assumption that <, is well-founded, and therefore (A,C) isawell-founded tree. [

Example[2.5.7 shows that the lexicographic order can be well-founded on a non-well-founded
tree.

Example 2.5.7 Consider the tree (A,C), where C is the prefix order and A¥ {0}" is the set

of all finite sequences of O (including the empty sequence). The strict Iexicographic order <
is well-founded on A x A, but the tree is not well-founded because of the w-chain () = (0) C
0,00C...

A well-founded tree iswell-ordered by the Kleene-Brouwer order, so we can compare the ranks
of elements of the tree with respect to J and <.

Lemma 2.5.8 Consider atree (A,C), where AC J{w" | n € w}, Aisprefix closed, and C isthe
prefix order. If the tree (A,C) is well-founded, then, for all & € A, Rank(d, 1) < Rank(d, <)
(whentherelations arerestricted to A x A). In particular, therank of thetree, given by Rank((), 1),
isless than or equal to Rank((), <,g)-

Proof By well-founded induction with respect to <,z on Ax A. Consider d € A. If we
also have b € A such that @ C b, then b <, & By the induction hypothesis, Rank(b,) <
Rank(b, <) Then we deduce:

Rank(&, 1) = J{Succ(Rank(b, 1)) |be AAb T &}
< U{Succ(Rank(b, 1)) | b€ AAb <, &}
< U{Succ(Rank(b, <, 5)) | b€ AAD <, d}
= Rank(d, <,g)

2.5. RECURSIVE ORDINALSAND RECURSIVE TREES 49

Therefore, a well-founded tree determines a well-order that, as an ordinal, is greater than or
equal to the rank of the tree.

The alternative characterisation of ¥ isin terms of recursive trees.

Definition 2.5.9 A tree (A/C) isrecursive if AC J{w" | n € w}, Ais prefix closed, C is the
prefix order, and the characteristic function of A isrecursive (with respect to a suitable encoding
of {w" | ne w} inw).

Proposition[25.10 gives an alternative characterisation of «f* asthe least ordinal that is greater
than the rank of every recursive well-founded tree. The Kleene-Brouwer order is used in the
proof to construct a recursive ordinal from a recursive well-founded tree, and, by lemmd2.5.8,

that ordina is greater than or equal to the rank of the tree.

Proposition 2.5.10 Anordinal Aisrecursiveif and only if there exists a recursive well-founded
tree (B,C) such that the rank of the tree is A, i.e., Rank((), J) = A (when 1 is restricted to
B x B).

Proof Suppose that A is a recursive ordinal, so there exists B C w, awell-order < C B x B,
and arecursive function f : wx w— w asin definitionZ5.1l Recall that the e-tree Tree(A) has
rank A by lemmal2.1.15. The underlying set of Tree(A) is

{)}U{(ag,a1,...,an) |In€EwNag e AAVi<n.a i €a}

The order-isomorphism between (A, C) and (B, <) induces an order-isomorphism between Tree(A)
and the tree (C,C), whereC C [J{w" | n € w} isdefined by:

Cd:ef{<>}u{(co,c1,...,cn> |ne wA f(co,Co) =1AVIi <n. f(Gi1,6) =1AC1#C}

Therank of atreeisinvariant under order-isomorphism, so the rank of thetree (C,C) isalso A.
By the fact that f isrecursive, (C,C) isarecursive tree, and we are done.

For the other direction, suppose that A is an ordinal, (B,C) is a recursive well-founded tree,
and therank of (B,C) isA, i.e, Rank((),J) = A (when restricted to B x B). We need to show

that A is a recursive ordinal. Using lemmas[2.5.6 and [2.5.8, the Kleene-Brouwer order <,
is a well-order on A, and Rank((),<,g) > Rank((),) = A (when redtricted to B x B). By

lemma[2.5.3] it suffices to show that Rank((), <,g) is arecursive ordinal. A finite sequence of
natural numbers can be encoded as a natural number, and, by the fact that (B,C) is arecursive
tree, the Kleene-Brouwer order <kB is decidable on the encodings. Of course, we can decide
whether one sequence is less than another with respect to the Kleene-Brouwer order even if the
tree is not recursive. However, we also need to be able to decide membership of B in order to
construct arecursive ordinal. Therefore we have arecursive ordinal greater than or equal to A,
and so Aisaso arecursive ordinal. O

50 CHAPTER 2. PRELIMINARIES
2.6 Binary Choice Operators

In this section, we consider some of the binary choice operators considered in the literature. The
discussion isbased upon asimple set-based model of non-deterministic computation, as opposed
to an operational semanticsfor the choice operators. We assume that non-deterministic programs
can be modelled within Ppe(w,) (the set of non-empty subsets of w,), and a non-deterministic

program is represented by A € Pre(w,) if, for al n € w, the program may terminate with result

n if and only if n € A, and the program may fail to terminate if and only if | € A. Binary
choice operators are modelled by functions Pre(w,) x Pre(w)) — Pre(w,). After defining these

functions, we show that there is a natural LTSWD for Pne(w,), and so we have definitions of

the variants of similarity and bisimilarity upon P,e(w,). We then describe representations of

the equivalence classes with respect to lower mutual similarity and upper mutual similarity, and
identify which choice operators are well-defined on the equivalence classes.

The binary choice operators that we consider are:

1. Global angelic choice: returns a value that one of the arguments can return, but only fails
to terminate if both arguments always fail to terminate.

2. Ambiguous choice: evaluates both arguments and returns the value returned by the first
argument to terminate (the relative speed of evaluation is deliberately unspecified).

3. Erratic choice: chooses between the arguments before evaluating just one of them, and
returning the value if it terminates.

4. Local demonic choice: evaluates both arguments and, if both terminate with a value, it
returns one of those values, otherwise it fails to terminate.

5. Global demonic choice: always fail to terminate if either argument may fail to terminate,
but otherwise returns a value that one of the arguments can return.

The descriptions above are rather imprecise, so we define a function for each operator.
Definition 2.6.1 The binary choice operators are represented by functions:

GANg, Amb, Err,LDem, GDem: Ppe(w)) X Ppe(®w)) — Pre(w))
which are defined, for A,B € Ppe(w,) by:

GANg(AB) ¥ {1 |AUB={L}}U{mew|meA}U{new|ne B}
AmMb(A,B) ¥ {1 | L cAnB}U{mew|meAlU{ncw|ne Al
Err(AB) ¥ {1 |LecAUBlU{mew|meAlU{ncw|ne Al

LDem(A,B) ¥ {1 | L e AUB}U{me w|me AA(3n€ w.n€B)}

U{new|(I3mew.meA)Ane B}
GDem(A,B) © {1 | L e AUB}U{me w|me AA L ¢ AUB}
U{new|neBAL¢AUB}

2.6. BINARY CHOICE OPERATORS 51

GAng Amb Err LDem | GDem
{0yand{1} {01} | {01} | {01} | {01} | {01}

{0} and {1} {0} {0} {L.0} {1} {1}
{O}and {L,1} | {0,1} | {0,1} | {L,0,1} | {L,0,1} | {L}
{Lyand{Ll} | {L} | {1} {L} {1y | {1}
{Lyand{L,1} | {1} | {L,1} | {L1} {L} {1}

{L,0}and {L,1} | {0,1} | {L,0,1} | {L,0,2} | {L,0,1} | {L}

Figure 2.7: Action of binary choice operators

We have the following equalities, for al A,;B € Pne(w,):

GANgG(AB) — {L} if AUI??: {L}
(AUB)\{L} otherwise
Amb(A, B) AUB if LeANB

(AuB)\{L} otherwise
Err(A,B) =AUB
{L} ifLeAUB

GDem(A,B) = .
(A.B) {AUB otherwise

Figure[2.7] shows the behaviour of the choice operators on a representative collection of sets.

The set Pne(w)) can be considered as the set of states of an LTSWD. Asbefore, a L urelement
signifies divergence, but now the natural numbers are treated as urelements, not as sets. Defini-
tion[2.6.2 describes an LTSWD for the special case Pne(w),), but amore general definition could
be given for arbitrary sets of urelements.

Definition 2.6.2 Thee-LTSWD for Ppe(w,) is(P(w,), w, ™¥, —), where the may divergence
predicate and labelled transition relation are defined, for A C w , by:

o AN if and only if L € A.

e Foralnew AL 0if andonly if ne A

Note that it is necessary to add a terminal state in the LTSWD for Pye(w,), and the empty set
serves this purpose.

The variants of similarity, mutual similarity, and bisimilarity apply to the states of the e-LTSWD
for Pre(w,), but it is useful to have an elementary definition. The following equivalences hold

52 CHAPTER 2. PRELIMINARIES

for the variants of similarity, for all A;B € Pre(w,):

A5 B=VncwneA=necB
ASsB+—= LZA= (L¢BAVNneEwNEB=n€cA)
AScsB+<= (Y/ncwnc A=neB)A

1A= (Lg€BAVNEewNEB=n€cA)

ASpsB+<= (Y/ncwneB=necA)A
1A= (Lg€BAVNEewWNEB=n€cA)

For lower similarity and refinement similarity, we can smplify to:
ASLs

ASks

B« A\{L} CB\{Ll}
B<BCA

For upper similarity and the second part of convex similarity, we have that, for all A,B €
Pne((})J_)

1A= (L€BAVNEew.NEB=necA)
— L ¢A=— (L¢ZBABCA)
< (LeB=1LcAA(LeAVBCA)
<~ (LeB=LlLeAA(VnewneB= 1L cAvneA)

In the -LTSWD for Ppe(w),), €ach variant of mutual similarity coincides with the correspond-
ing variant of bisimilarity, because there no sequences of transitions with length greater than one
(asimilar result is proved in lemmal4.2.5). In addition, convex bisimilarity, which is the same as
refinement bisimilarity, coincides with equality. It follows that convex similarity and refinement
similarity are anti-symmetric, and thus partial orders.

Lower similarity and upper similarity are not anti-symmetric, and so lower bisimilarity and
upper bisimilarity have non-trivial equivalence classes. All of the non-trivial equivalences are
generated by:

o For Ac Pre(w), A~ s AU{L}.
e ForABeP(w), AU{L}~ gBU{l}.

For lower bisimilarity and upper bisimilarity, the above equivalences imply that thereis aunique
member of each equivalence classin Pne(w) U{L}, and so lower similarity and upper similarity
are partial orders on this set. The bijection between Pe(w) U {_L} and P(w) that maps L to the
empty set can be turned into order-isomorphisms for lower similarity and upper similarity by

defining partial orders < ¢ € P(w) x P(w) and < ;g € P(w) x P(w), for A,B € P(w), by:

ASLSB<:>AQ B
ASUSB@)A:OV(B;&Q)/\BQA)

2.6. BINARY CHOICE OPERATORS 53

GAng | Amb | Err | LDem | GDem
Lower Similarity O O O O O
Upper Similarity O O O O O
Convex Similarity a O O O O
Refinement Similarity O O O O O

Figure 2.8: Monotonicity of choice operators

Then (Pre(w) U{L},<,) is order-isomorphic to (P(w),<, o), and (Pre(w) U{L},<q) is
order-isomorphic to (P(w),<). The partial orders on P(w) are used more often than those
on Pre(w) U{L} in the specification and refinement literature. In particular, the partial order

(P(w),<,g) isoften embedded into the space of predicate transformers which, in this case, isa
subset of P(w) — P (w).

If the choice functions are monotone for lower similarity and upper similarity, then they deter-
mine well-defined monotone choice functions on the equivalence classes of P(w). The choice
functions and their monotonicity properties for the different variants of similarity are presented
in figure2.8. Counter examples for the non-monotonic combinations are:

GDem({0},{1}) = {0,1} %, o {1} = GDem({.L,0},{1})
GAng({ L}, {1}) = {1} Zys{0,1} = GAng({L,0},{1})
Amb({1},{1}) = {1} Zys{0,1} = Amb({ 1,0}, {1})
GAng({L},{1}) = {1} Zcs{0,1} = GAng({ 1,0}, {1})
Amb({ 1},{1}) = {1} Zcs{0,1} = Amb({L,0},{1})
GAng({ 1,0}, {L}) = {0} Zgs{ L} = GAng({ L },{L1})
GDem({L,0},{1}) = {1} Zrs{0,1} = GDem({0}, {1})

Global angelic and global demonic choice are unusual because they require knowledge of all
possible terminating and non-terminating behaviour of their arguments. Adding a terminating
or non-terminating behaviour to one of the arguments of global angelic or global demonic choice
may remove aterminating or non-terminating behaviour from the result, as demonstrated by the
lack of monotonicity of global angelic and global demonic choice with respect to refinement
similarity.

Informal operational accounts of global angelic and global demonic choice are sometimes de-
scribed, and a formal semantics can be given (see [CC92]). However, these choice operators
are normally studied in conjunction with lower similarity and upper similarity (respectively).
Then there is no need to give an operational account of the global choice operators because they
coincide with the erratic choice operator which has a straightforward operational semantics. It

54 CHAPTER 2. PRELIMINARIES

can be shown that, for al A/B € Pre(w,):
GANg(A,B) ~ s Amb(A,B)~ o Err(A,B)
Err(A,B)~ g LDem(A,B) ~ ; GDem(A, B)

The monotonicity of erratic choice with respect to lower similarity and upper similarity ensures

that it induces well-defined monotone functions on the equivalence classes for those relations.
The image of those functions on the partia orders (P(w), < o) and (P(w),<,,) are given by
LErr,UErr : P(w) x P(w) — P(w), which are defined, for A,B € P(w), by:

LErr(A,B) = AUB

verap [0 TA=0vE=0
"7 | AUB otherwise

Chapter 3

The Non-Deterministic A-Calculus .

We define a non-deterministic A-calculus . with a call-by-name operational semantics. The
type system and syntax are based upon Moggi's computational A-calculus Mog89b, Mog89a,
Mog91] in order to control the resolution of non-determinism. Non-determinism is introduced
viaindexed erratic choice terms. The non-deterministic terms that can be formed are not equally
expressive, and in chapter[5we study relative definability properties of such terms. A family of
non-deterministic A-calculi is obtained by considering fragments of .. In the sequel, we show
that the convex bisimilarity relations for the A-calculi in this family are not simply restrictions
of convex bisimilarity for .Z.

Sections[3.1 and 8.2 introduce the type system and syntax of ., and section3.3presents atype
assignment system. Sections3.4 and define operational semantics via a reduction relation
and an evaluation relation with a may divergence predicate. Section3.6 proves that the terms
of certain types aways terminate. Section[3.7] states the closure conditions needed to obtain
reasonable fragments of .#’, and section[3.8]proves results about the ranks of derivation treesfor
the operational semantics in certain fragments of .Z.

3.1 Types

This section defines a type system for the non-deterministic A-calculus . introduced in sec-
tion It is a Church-style type assignment system (see [Bar92]), where terms are annotated
with types in such away that the type of aterm can be inferred.

The set of typesincludes indexed coproducts and products, where the indexing set may be count-
ably infinite. The natural numbers type can be defined as a coproduct type, as opposed to an
inductive or recursive type. However, it is necessary to consider infinite termsin order to make
full use of such types. For example, a case statement upon aterm of natural numbers type must
have a branch for each natural number. The map from the natural numbers to (codings of) the
branches need not be computable, and this provides aricher structure in which to study relative
definability.

The programming language is based upon Moggi’'s computational A-calculus and thus has a
computation type constructor P (). Programs that are non-terminating or non-deterministic

55

56 CHAPTER 3. THE NON-DETERMINISTICA-CALCULUS.Z

must have atype of the form P, (o), for some type 0. For example, there is a program with type
P, (nat) that sometimes fails to terminate, sometimes terminates with result 0, and sometimes
terminates with result 1.

Definition 3.1.1 The set of types is defined by:

‘= sum(op |Nn<K) (indexed coproducts, K < w)
| prod(on|n<kK) (indexed products, K < w)

| o0—T1 (functions)

| PL(0O) (non-terminating, non-deterministic computations)

The computation types are those of the form P, (o). The remaining types are called value types.

The variable K ranges over cardinals less than or equal to w, and hence is always a natura
number or w. This restricts n to natural numbers. The set of types is well-defined even though
the indexing set for coproducts and products may be countably infinite.

The following type abbreviations are used in the sequel:
unit & prod ()
bool d:efsum(unit,unit>
def .
nat = sum (unit | N < W)
ox1¥ prod (0, T)
0+Td:efsum(0,T>

In section[4.2we require ameasure of the occurrences of the computation type constructor R (-)
in atype. A suitable measure is formalised in definition3.1.2.

Definition 3.1.2 The P-order of atype o isan ordina defined by induction on o:

POrd(oc — 1
POrd(P, (o)

The P-order of atypeis the rank of a tree derived from the type by discarding the source type
from function types, and folding coproduct, product, and function types into the nearest enclos-
ing computation type. It can be shown that the image of the P-order function is (3.

3.2 Language

We define the syntax of the non-deterministic A-calculus - and discuss features of the language.

3.2 LANGUAGE 57

L,M,N = X (variable, x € Var)
| injn,0of M (injection into component n, N < w)
| caseMof (Xn.Nh | N < K) (case, X, bound in Ny, K < w)
| tuple(Mp|n<K) (tuple, K < w)
| projnofM (projection of component n, n < w)
| Axo.M (abstraction, x bound in M)
| MN (application)
M (unit)
| letxo<=MinN (sequencing, x bound in N)
| fixxo.M (fixed-point, x bound in M)
| 2Mnp|n<K) (indexed erratic choice, 0 < K < w)
K = injn,oof M
| tuple(Mp | n<K)
| Axo.M
LY
Figure 3.1: Terms and canonical terms

Definition 3.2.1 A set of variables Var with cardinality wy isassumed. Thetermsand canonical
terms of the language ¢ are defined in figure3.1. The scope of variable binding constructs
extends as far to the right as possible. The free variables of a term are given by a function
Fv(-) defined in figure3.2 by induction on terms. A term M is closed if Fv(M) =0, and open
otherwise.

Set-theoretic tuples of terms are written (M, | n < K), whereas tuples of the language have the
form tuple (M, | n < K). A term of ¥ may be an infinite object and should be thought of as a
countably-branching well-founded tree, where each instance of aterm constructor corresponds
to a node in the tree, rather than as a sequence of symbols. Formally, the set of terms can
be constructed as the least fixed-point of a monotone function (determined by the grammar in
figure[3.1) on a set of trees composed of sequences (see example2.1.12).

Infinitary languages have been used for mathematical and program logics with infinitary con-
junctions, digunctions, or quantifiers (see [Kei77,IMil89,/Abr874]). Several process calculi also
permit infinitary term constructors: CCShasy i, B, and CSP with unbounded non-determinism
[Ros88,[Ros98| has| |;, P In contrast with these languages, . allows only natural numbers or
w as indexing sets. This does not reduce the expressiveness of . and makes it easier to work
with the definition of compatibility in chapterd. However, it does imply that, in general, the
terms ?(M,N), ?2(N,M), and ?(M, M, N) are not syntactically identical, although they are iden-
tified by all of the semantic relations we consider because binary erratic choice is expected to
be commutative, associative, and idempotent (cf. the non-idempotent category-theoretic seman-
tics for erratic non-determinism in [Leh76, /Abr83, [PR88, [Rus90]). Note that ?() is not a term
because k must be non-zero for indexed erratic choice.

As with types, a set-theoretic tuple of terms (M, | n < K) that appears in another term need
not arise as a computable map with respect to some coding. For the indexed erratic choice

58 CHAPTER 3. THE NON-DETERMINISTICA-CALCULUS.Z

Fv(x) £ {x}
Fv(injn, O'OfM):efFV(M)
Fv(caseM of (X0.Np | N < K)) & Fv(M) UU{FV(N0) \ {Xu} | N < K}
Fv(tuple (My | n < k) EU{FV(Mp) | n < K}
Fv(projnof M) & Fv(M)
Fv(Ax:o.M) Z Fy(M) \ {x}
FYMN) E Fv(M) UFV(N)
FV(IM)) Z Fy(M)
Fv(letx.a <= MinN) Z Fv(M) U (Fv(N)\ {x})
Fy(fixxa.M) E Fy(M)\ {x}
Fv(2(M | n < k) ZU{FV(My) | n < K}
Figure 3.2: Free variables

constructor this is reasonable because we intend to reason about families of implementations,
and there is no suggestion that a single implementation should be able to generate all possible
outcomes (or test whether an outcome is possible). For indexed coproducts and products, we
expect to write specifications using the full language and subsequently refine them to afragment
of the language that uses only a restricted collection of countably infinite case statements for
arithmetic.

In the presence of countably-infinite term constructors it is necessary to assume an uncountable
set of variables if the usual variable renaming and capture-free substitution conventions are to
be used. For example, if Var = {x, | n € w}, then tuple (X, | N < w) would exhaust the supply
of variables. In fact, such terms cannot be typed using the system defined in sectiori3.3 because
environments are finite and there are no term constructors that bind infinitely many variables
simultaneously in the same subterm. A Martin-Lof style “split” term constructor (see [Tho91,
Gor94)) would have to bind infinitely many variables.

A set of variables with cardinality wy is adequate because every term uses only countably many
variablesin free, bound, or binding occurrences. This can be shown by induction on the structure
of terms, making use of the fact that wy is aregular cardi nal This property implies that fresh
variables can aways be chosen, even for a countable set of terms, and so we can establish the
usual naming convention for bound variables. each variable appears at most once in a binding
occurrence within a term. Every term is a-equivalent (see [Bar84]) to a term satisfying the
naming convention, and henceforth terms are considered up to a-equivalence instead of syntactic
identity. Capture-free substitution (or just substitution) can be defined in the usual way upon the
equivalence classes with respect to a-equivalence (see [Cro93)).

Substitution into a canonical term clearly results in another canonical term. Conversely, if a
canonical term isthe result of a substitution it can be shown that one of the original terms must
have been canonical.

1A cardinal k isregular if it is not the limit of a set of ordinals strictly less than K unless the set has cardinality
greater than or equal to K (see [Kun80]).

3.3. TYPEASSIGNMENT 59

Lemma3.2.2 If M[N/x] is canonical, then either M is canonical, or M = x and N is canonical.
Proof Caseanalysisof M. O

The unit and sequencing term constructors are taken from Moggi’s computational A-calculus
[Mog89b,|Mog91]. The computational A-calculus arose from the observation that there is com-
monality between the abstract structures used to model programming languages with different
notions of computation. The common structure can be formulated as a finite product category
with a strong monad and additional structure that depends on the notion of computation embod-
ied by the programming language. For example, in a category of predomains the lifting functor
(). forms part of a strong monad (see [Fio94]).

Thereisawell known correspondence between many-sorted equational logic and finite product
categories (see [LS86, ICro93]). Moggi shows that there is a similar correspondence between
the computational A-calculus and the class of finite product categories with a strong monad
and certain exponentials (if the functor component of the monad is T, then every exponential
of the form T(B)* must exist, for objects A and B). Terms of the form [M] are interpreted
using the unit of the monad, allowing values to be converted into computations. Terms of the
form letx <= MinN are interpreted using the functor and multiplication of the monad, alowing
computations to be composed.

Cenciarelli and Moggi [CM93] propose structuring complex denotational semantics as a se-
quence of computational A-calculi ML(Z3),...,ML(Z,), with signatures %,...,%,, and a se-

quence of syntactic translations @: ML(%) — ML(Z;;1). If thereis asyntactic translation from
the programming language to ML (%), and adenotational model of the computational A-calculus
ML(Zn), then adenotational semantics for the programming language can be given viathe trans-
lations. The benefit of using the computational A-calculus for this approach is that the unit and
sequencing constructors are factored out of the signatures.

Wadler [Wad92] shows that a mechanism for sequencing) computations is useful for introduc-
ing notions of computations such as state or input/output into a lazy functional programming
language. Independently of Moggi and Wadler, Spivey [Spi89, [Spi90] also observes that list
comprehensions and exceptions form monads.

The computational A-calculus has a natural call-by-name operational semantics with strict se-
quencing (see sectionsf3.4land B.5). For example, the term letx <= MinN is evaluated by eval-
uating M, substituting the result for x in N, and then evaluating the result of that substitution.
Crole and Gordon [Gor94, [CG95] use this operational semantics for deterministic A-calculi with
input/output, and Jeffrey [Jef99] usesit for anon-deterministic A-calculus.

A call-by-name operational semantics with strict sequencing for the non-deterministic A-calculus
Z provides an adequate degree of control over the resolution of non-determinism, whilst still
permitting definitions of semantic relations as applicative similarity and bisimilarity (see the
discussion on pagel19).

3.3 TypeAssignment

The type assignment system for ¢ is adapted from those of PCF and the computational A-
calculus following [Gor94, [CG95, |Jef99]. We define the system and introduce some useful

60 CHAPTER 3. THE NON-DETERMINISTICA-CALCULUS.Z

abbreviations for terms.

A typeis assigned to aterm with respect to an environment, which determines types for afinite
collection of variables that may be free in the term. It suffices to consider a finite collection
because we are primarily interested in terms that have no free variables, and there is no way to
bind an infinite collection of free variablesin aterm.

Definition 3.3.1 An environment is afinite partial function from Var to types. The symbols I
and A range over environments. When x ¢ Dom(I™), the environment that extends I" by mapping
xto o isdenoted I',x: 0. The environment I',A is defined similarly for environments I and A
such that Dom(I") " Dom(A) = 0. The empty environment is denoted by 0.

Definition 3.3.2 The type assignment judgement, term M has type o in environment I, written
=M : o, isdefined inductively by the rulesin figure3.3 The notation T = M = N : 0 means
that the terms M and N are equal (up to a-conversion), and both' M :ocand - N: o can be
derived. Define the set of well-typed terms .#, the set of well-typed, closed terms .4, and the
set of well-typed, closed, canonical terms Cary by:

¥ M |3ro.r-M:a}
2% (M| 30.0-M:0}
Canod:ef{K]Ho.(I)F K :oAK canonical }

Henceforth, terms are assumed to be well-typed. A term M is a program if M € .4, and in
this case the empty environment is omitted from the type assignment judgement, i.e., we write
FM:oforOFM:o.

The fixed-point and erratic choice term constructors are always assigned a computation type. In
sections[3.4 and 3.6, it is shown that there is no way to use the other constructors to introduce
non-termination or non-determinism at value types.

The type assignment system satisfies the usual properties such as weakening and contraction.

Lemma3.3.3 Let " and A be environments such that Dom(I") N Dom(A) = 0. Then:

If '+ M: o, then Fv(M) C Dom(I").
fr-M:candlN-M:1,theno=r1.
Ifr-M:o,thenl,A-M:o.

Ifr,A-M:oand Fv(M) C Dom(l),thenT - M : o.

o > W b P

IfI,X1:01,..., % :0n0FM:tandl - N;:gj, for 1 <i < n,then
ME MINg,...,Nn/X1,... . %] : T.

Proof Ineach case, by induction on the type assignment derivation for M. (2) makes essential
use of the type annotations. (3) uses the bound variable naming convention to ensure that the
bound variables of M do not appear in A. O

3.3. TYPEASSIGNMENT

61

NN=x:o0 (MF(x)=o0)

N =M:on
I Einjm,sum (On | N < K)of M :sum (0, | N < K)

(M<K)

MEM:sum(on|n<K) {F % :onFNy:T|n<K}
I caseMof (Xp.Nh [n<K) 1 T
{TFMp:on|n<k}

I F tuple (Mp | N < K) : prod (Op | N < K)

M M:prod(on | n<K)
I+ projmof M : o,

Nx:oFM:1
FrEAxXo.M:o—Tt

rMN-M:o0—rt l=N:o
MFNEMN:1

rN-M:o
M= [M]:P.(0)
r'EM:P.(0) Mx:o0FN:P. (1)

Ik letxo < MinN: P (1)

x:P.(0)FM:P.(0)

I fixx:P.(0).M : P, (0)

{T-Mp:o|n<k}

M=?2(Mp | n<kK):P (0)

(m<K)

Figure 3.3: Type assignment

62 CHAPTER 3. THE NON-DETERMINISTICA-CALCULUS.Z

Although type annotations within terms are necessary to ensure uniqueness of types, we often
omit them for brevity.

Lemma[3.3.4 describes an equivalence between terms with successive substitutions. The type
assignment judgements are used only to restrict the free variables appearing in terms, and so a
dightly more general statement could be given for untyped terms.

Lemma3.34 Let I and A = X; : O1,...%, . O, be environments such that FNA = 0. If the
variablesys,...,ym aenot in the domains of I or A, and:

e Ay T1,....¥m:TmFL:O
e Foradl1<i<m T AFM:T
e Foral1<i<n T+ N:oj

Then, withM = My,...,Mmand N = Ny, ..., Ny:
M LM/YIN/S] = LIN/R[M1[N/X],...,Mn[N/X] /y1,....Ym] 1 O

Proof The equality is proven by induction on the term L. The type assignment follows from
lemmal3.3.3 O

We now consider abbreviations for frequently used terms. The abbreviations defined in Fig-
ure[3.4linclude constants for the ground types unit, bool, and nat, as well aslogical and arith-
metical operators. Variables that appear only on the right-hand side of definitions are fresh.

In addition, every non-empty set of natural numbers determines a program of type R (nat).
For A Cpe , let (a, | N < K) be the unique strictly increasing sequence of natural numbers that
enumerates the elements of A. Then define:

A28, | n<K)

For example, 2w =?(n| n < w).

The terms x, false, true, n are canonical, for al n € w. The boolean terms false and true are
distinct from the numerical terms 0 and 1 because their type annotations differ.

The definitions of the arithmetic operators illustrate how functions on w determine terms. More
generally, any function f : o' — w determines aterm x; : nat,..., Xy : nat = M : nat composed
of nested case statements.

With the exception of conditiona terms if Lthen M elseN, the third group of definitions in fig-
ure[3.4] create or manipulate computations. Terms of the form Qg never terminate. The call-

by-value abbreviation AYx:a.M combines the default call-by-name abstraction with strict se-
guencing to evaluate the argument before it is substituted into M. The “function” versions of the
sequencing and fixed-point constructs flet; X:T <= M in N and ffixs f:1.M are used to define recur-

sive functions with type 0 — P, (). In contrast, a program of the form fixx. M would have type
P, (0 — P, (1)). The call-by-value abstractions and the “function” sequencing and fixed-point
constructs are always canonical terms.

3.3. TYPEASSIGNMENT

63

*d:eftuple(>
def. .
false =inj0, bool of x

true® inj1, bool of x

Ddginjn,natof* (ne w)
def
not (M) = caseM of (Xg.true, x;.false)
or (M,N) e caseMof (xo.case Nof (yp.false,y;.true), X .true)
and (M,N) e caseMof (xo.false,x;.case Nof (yo.false,y;.true))
pIus(M,N)dgcaseMof(m.caseNof(yj.ﬂ| j<w)|i<ow)
minus(M,N)d:efcaseMof(xi.caseNof<yj.Li7j lj<w)|i<ow)
i
where Lij = =l I I_J
’ 0 ifi<j
eq(M,N)dgcaseMof(xi.caseNof<yj.Li7j lj<w)|i<ow)
false ifi+#j
where L= 2 I I#J
true ifi=j
It(M,N)dgcaseMof(xi.caseNof<yj.Li7j lj<w)|i<w)
false ifi>]j
where L= 2 I I_J
true ifi<j

Qodﬁffixx:o.x
AVx:0.M d:ef)\y:Pl(o). letx:0 <= yinM
if Lthen M elseN % case L of (X0-N, x1.M)
fletsxT<<=M inNd:ef}\y:o. letxT < MinNy
ffixg f:1.M OI:efﬂet0 f:1 < (fixg:P.(1). [flets f:T <= ginM])inM
M UN et x:bool <?(false, true) inif XthenMelseN

Figure 3.4: Abbreviated terms

64 CHAPTER 3. THE NON-DETERMINISTICA-CALCULUS.Z

=% unit I" - false : bool
I F true : bool NFn:nat (New)
=M :bool
IFnot (M) : bool
"M :bool " N:bool "M : bool " N: bool
I+ or(M,N) : bool I+ and (M,N) : bool
N M:nat I N:nat N M:nat I N:nat
I F plus(M,N) : nat I minus(M,N) : nat
=M :nat =N :nat N=M:nat M= N:nat
' eq(M,N): bool I 1t(M,N) : bool

M+ QPL(G) . PL(O')

Fx:oFM:P.(1)
MEAXo.M: P (0) = P.(T)

=L :bool N-M:o IN-N:o
N ifLthenMelseN : o

FrEM:P(11) MX:1aEN:o— P (12)
IF fletgXTy <= MinN:0 — P/ (T2)

rf:o—-P()FM:0— P, (1)
[ffixg f:0 = P, (T).M: 0 — P, (1)

NrEM:P.(0) MEN:P (o)
F-MUN:P, (0)

r F’)A PJ_(nat) (A gne (A))

Figure 3.5: Type assignment for abbreviated terms

The abbreviation M UN serves as the binary erratic choice constructor for .Z. It isaso possible

to define MUN & Jetx <?(M,N)inx. However, the latter definition would cause problems
when we consider fragments of ., because a fragment that contains M U N would also have to
contain ?2(M,N). The definition in figure[3.4]is more useful because it only requires a fragment
to contain ?(false, true).

Derived type assignment rules for the abbreviations are given in figure3.5.

3.4 Reduction Semantics

In this section we present a reduction semantics for . and a novel treatment of reduction con-
texts, and then discuss some of the properties of reduction. The reduction semantics follows

34. REDUCTION SEMANTICS 65

case(—)of (X,.Np | n < K)
projnof (—)
(=N

letx:0 <= (—)inN

Figure 3.6: Reduction constructors

Plotkin's [PIo81] guidelines for a structural operational semantics because the behaviour of a
term M depends only upon the behaviour of terms formed from subterms of M.

The reduction semantics consists of areduction relation — C ¥ x ¥ and afiner deterministic

reduction relation —,, C —. Reductions are permitted on open terms to facilitate a proof tech-
nique used in chapterBl The relations are defined by induction from a collection of rule schema.
Reduction constructors are used to specify where reduction can take place, and this ssimplifies
the rule schema because only one rule schema is needed to express that reduction may take
place inside a reduction constructor. Felleisen and Friedman [FE86] introduced this approach
to defining reduction relations, as well as the terminology reduction context for nested reduc-
tion constructors. Reduction contexts do not require atreatment of variable-capturing contextual
substitution (see [Pit97]).

Definition 3.4.1 Thereduction constructors are defined in figure3.6. They contain exactly one
occurrence of adistinguished symbol (—) ¢ . When E is areduction constructor and M isa
term, wewrite E(M) for the term that is obtained by replacing the occurrence of (—) by M. This
induces a well-defined function on a-equivalence classes of terms.

Reduction constructors determine a reduction strategy, or a path through each abstract syntax
tree to the next redex, and so each term has at most one redex. Only one rule schema can apply
to aredex, but reduction is non-deterministic because the rule schema for indexed erratic choice
may be instantiated in more than one way. The deterministic reduction relation is obtained by
excluding the reduction rule for indexed erratic choice.

It is sometimesinconvenient to work with reduction contextsin proofs. For thisreason, we define
a blocking relation 4 C .Z x Var and a blocked substitution operation. A term M is blocked
at a variable x, written M 4 X, if there is a reduction context E(—) = E1(Ex(...En(—)...))
such that M = E(x). The blocked substitution of N for the blocked variable x in M satisfies
M[x— N] = E(N), i.e., substitution only happens at the occurrence of x corresponding to the
distinguished symbol (—).

Definition 3.4.2

e Thereduction relation — C ¥ x . (adso known as atransition relation or a small-step
relation) is defined inductively from the rulesin figure3.7.

e The deterministic reduction relation i © is defined inductively from the rulesin
figureB 7 with the rule 2(Mp, | n < K) — [Mpy,| removed.

66 CHAPTER 3. THE NON-DETERMINISTICA-CALCULUS.Z

M— N
E(M)— E(N)
case (injmof M) of (Xn.Np | N < K) — Np[M /X
projmof (tuple (Mp | N < K)) — Mn,
(AX.M)N — M[N/X]
letx < [M]inN — N[M/X]
fixx.M — M[fixx. M /]
?2(Mp | n<K) = [My (M<K)

Figure 3.7: Reduction relation

e Aterm M convergesto aterm N if M —" N and N has no reductions.

e A term M diverges, denoted My —, if there exists an w-sequence of terms (M | n < w)

such that M, — My, for al n e w.

e Theblocking relation 4 C .# x Var is defined inductively from the rules:

M 4 x
Xix E(M) 7

If M 4 X, then we say that the term M is blocked on x.

e FortermsI,x:t-M:ocandI,x:TH N: 1 suchthat M 4 X, define the blocked substi-
tution of N for the blocked occurrence of x in M, denoted M [x+— N], by induction on the
derivation of M 7 x:

E(M)[x— N] € E(M[x—N])

Example [3.4.3 demonstrates the use of the sequencing construct for controlling resolution of
non-determinism.

Example 3.4.3 Consider the following programs of type P, (nat) — P, (nat):
Mm% AX:P| (nat).lety <= Xin [plus (y,Y)]
N % AX:P (nat).lety < Xinletz < Xin [plus (Y, 2)]

When M is applied to (0, 1), a possible reduction sequence is:
M?2(0,1) — lety <=0, 1)in [plus(y,y)]

—> lety < [O]in [plus (y,y)]
— [plus(0,0)]

34. REDUCTION SEMANTICS 67

Q- 0
AX-M)N —, letx<= NinM
if falsethenMelseN —,, N
if truethenMelseN — . M
(fletx <= LinM)N —, letx <= LinMN
(ffix f.M)N —>, (M[ffix f.M/f])N
MUN —"M
MUN - N
?A—[n] (neA)

Figure 3.8: Derived reduction rules

The only other reduction sequence gives M 2(0,1) —" [plus (1,1)]. Similarly, for N2(0,1), we

have N2(0,1) — " [plus (0,0)] and N2(0,1) — " [plus (1,1)]. In addition, there is a reduction se-
guence in which two different choices are made:

N?(0,1) — lety <=?(0,1)inletz<=2(0,1)in [plus(Y,2)]
— lety <= [0]inletz<=?(0,1) in [plus (y,z)]
— letz<=?2(0,1) in [plus (0, 2)]
— letz <= [1]in[plus (0,2)]
— [plus (0, 1)]

Reversing the two choices gives afourth reduction sequence N 2(0,1) —" [plus (1,0)].

Appropriate reduction rules can be derived for the arithmetic operators. For example, it can be
shown that for all programs M,N € %, if M —" mand N —" n, then plus(M,N) =" m+n.
Note that the arithmetic expressions in example[3.4.3 are not reduced unless they are placed
inside another context because, e.g., [plus (0,1)] is canonical.

The reduction rules in figure[3.8 can be derived for the other abbreviations in figure3.4. In
addition, the conditional construct is areduction constructor if (—)then M elseN. Call-by-value
abstractions and the “function” sequencing and fixed-point constructs do not form reduction
constructors because they immediately reduce to a sequencing construct when applied to aterm.

The derived reduction rules have the expected properties. For example, Q aways diverges,
ffix f.M is afixed-point for recursively-defined functions, binary erratic choice M U N reduces
to either M or N, and the erratic choice ?A of a set of numbers A G w reduces to any number
inA.

The reduction relation preserves the type of aterm, and, if aterm of value type has a reduction,
then it must be a deterministic reduction.

68 CHAPTER 3. THE NON-DETERMINISTICA-CALCULUS.Z

Lemma 3.4.4 (Subject Reduction) If ' -M:ocand M — N then:

1. TEN:o

2. If oisavauetype, then M —, N.
Proof By induction on the derivation of M — N. O

The reduction relation determines a TS (., —) with terms as states (or configurations). The
terms are partitioned according to their type, and the subject reduction property implies that
the reduction relation does not cross partitions. The TS has a complex structure. For example,
there are terms that diverge and terms that have infinitely many successors. However, much
of the reduction behaviour of terms is ignored, because only the convergence and divergence
properties of programs are considered in chaptersidland[5. Other approaches based on higher-
order weak bisimilarity, such as [FHJ95, [Jef99], are more sensitive to reductions (they become
T-labelled transitions).

Lemmal[3.4.5 shows that the blocking relation only relates a term to its free variables, and so
programs are never blocked. Blocked substitution of aterm N for the blocked occurrence of x
in M only replaces that occurrence of x. There may be other free occurrences of xin M and free
occurrences of xin N.

Lemma34.5 IfT-M:tand M 4 x, then x e Dom(I"). If inaddition " (x) =cand M- N: o,
then - M[x— N]J: 1.

Proof Provexe Fv(M) by induction on thederivation of M 4 x, and then apply lemmd&3.3.3(1).
The second part is also proven by induction on the derivation of M 7 x. O

The “progression” property for the reduction relation tells usthat every program is either canon-
ical or has at least one reduction to another program. More generally, every term is canonical,
has at least one reduction, or is blocked on afree variable.

Lemma3.4.6 If I - M : g, then exactly one of the following holds:

1. Miscanonical; or
2. There exists N such that M — N, and the term N is unique if M et N; or

3. Thereexists x € Dom(I") such that M 4 x.
Proof By induction on the derivation of ' - M : ©. O

It follows immediately from lemmas[3.4.4 and that a term of value type can reduce to at
most one other term. The majority of terms that have reductions with respect to the reduction
relation, but not the deterministic reduction relation, can reduce to more than one term because
they are indexed erratic choice terms inside reduction contexts. The exceptions are singleton
erratic choices, e.g., ?(x) only reduces to [|.

By iterating lemmal3.4.6, we can show that every program diverges or converges to some canon-
ical program (possibly both).

34. REDUCTION SEMANTICS 69

Lemma 3.4.7 If M isaprogram, then M converges to some canonical program or M diverges.

Proof Let X C % bethe set of programs that cannot converge to a canonical program:
def x
X={Me % |4 € Cang.M —" K}

Consider a program M, € X. The program M, cannot be canonical or blocked, and so, by
lemmaB.4.G, there exists M1 such that M, — Mp,1. If M1 converged to some canonical
program, then M, could as well, contradicting M, € X. Therefore M, € X. We can then
construct an w-sequence of programs (M, | n € w) such that M, — Mp;1 and M;, € X, for all
n € w. Therefore a program must diverge whenever it cannot converge to a canonical program.

O

The reduction relation is certainly not Church-Rosser (see [Bar84, [HS86]) because of erratic
choice terms such as ?(false,true). The deterministic reduction relation is trivially Church-
Rosser because each term has at most one deterministic reduction.

In a deterministic setting, programs M and N are said to be Kleene equivalent (see [Pit97,
Las98n]) if, for al canonical programs K, M converges to K if and only if N converges to
K. Non-divergent terms are Kleene equivalent if and only if they are related by the reflexive,
transitive closure of the union of the reduction relation and its dual. In contrast, the relation
(—U —«>°p)* is not useful for . because it relates many programs with the same computation

type, e.g., [false] «?(false,true) — [true]. The definition of Kleene equivalence can be replayed
for ., but it is not sensitive to some of the divergence properties of programs. For example, the
programs Q U [x] and [x], both of type P, (unit), are Kleene equivalent, but only the first program
can diverge. Taking the divergence properties of programs into consideration leads to a family
of equivalences (and preorders) based upon Kleene equivaence that corresponds to the family
of variants of similarity and bisimilarity for LTSWDs (see definition2.4.17)).

Lemma [3.4.8 establishes cardinality bounds upon the set of canonical programs to which a
program can converge.

Lemma 3.4.8 Consider aprogram M.

1. The set of canonical programs {K | M converges to K} is countable.

2. If M does not contain any occurrences of infinite indexed erratic choice term constructors
and M does not diverge, then the set of canonical programs {K | M convergesto K} is
finite.

Pr oof

1. Each state has a countable set of successors with respect to reduction, because indexed
erratic choice is restricted to finite or w-sequences of terms. So, for al n € w, the set of

programs related to M by —" is countable. Therefore J{{N |M —"N} |n € w} isaso
countable. It isasuperset of {K | M converges to K} and we are done.

70 CHAPTER 3. THE NON-DETERMINISTICA-CALCULUS.Z

2. If {K| M converges to K} isinfinite, then the synchronisation tree with root M obtained by
unfolding the TS (.Z, —) has an infinite set of nodes. The synchronisation treeisfinitely-
branching, and so, by Konig's lemma (lemmalZ.1.10), there exists an infinite sequence of
reduction steps from M, i.e., M diverges.

O

Erratic non-determinism is sometimes classified into finite non-determinism and countably in-
finite non-determinism. For example, ?(false,true) and ?(0,1,...,n), for n € w, are finitely
non-deterministic, whereas 7w is countably non-deterministic. This classification is based upon
the maximum cardinality of non-divergent programs constructed using the non-deterministic
operator. Example3.4.9illustrates the importance of the non-divergence condition.

Example 3.4.9 Finite non-determinism can be used to construct programs that converge to a
countably infinite set of canonical programs. Lemmal3.4.8 ensures that such programs aways
diverge. For example, define the program M of type P, (nat) by:

M = fixx.[0] U (lety <= xin [plus (, 1))

For any n € w, there is a program N such that M —" [N] and N —" n, but M can also diverge.
The program M has the same convergence and divergence behaviour as QU?w. If divergence
behaviour isignored, these programs are aso identified with 2w, in which case the distinction
between finite non-determinism and countable non-determinism is lost. Finally, if ambiguous
choiceisused instead of erratic choice in the definition of M, then the resulting program is equiv-
alent to 2w because of the divergence avoiding properties of ambiguous choice (see[Mor9g)).

There are different forms of countable non-determinism arising from countably indexed erratic
choice, and 7w is the least expressive. The differences are formalised as relative definability
results in sectionB.5. For example, if A Cre w is not recursively enumerable, then 2w can be
defined in terms of ?A using PCF-like programs, but not vice-versa.

This section concludes with two lemmas, used in section[5.7, that concern reduction, substitu-
tion, and blocked substitution for a blocked occurrence of avariable. Lemma3.4.10(1) shows
that if an open term reduces to another, we can deduce that performing the same substitution
on both terms also gives a valid reduction. In other words, a reduction of an open term can
be instantiated in different ways by substituting for the free variables. Part (2) of the lemma
is apartial converse. If an open term with a substitution can reduce, then that reduction either
involves the substituted term, in which case the open term must be blocked on the substitution
variable, or it does not involve the substituted term, in which case the open term can perform the
same reduction.

Lemma34.10 If TFL:candlM,x:0F My : T then:
1. If My — M5 then Ml[L/X] —> Mz[L/X].

2. If My[L/x] — N, then M1 4 x or there exists aterm M, such that My — My and M[L/X] =
N.

34. REDUCTION SEMANTICS 71

Pr oof

1. By induction on the derivation of M; — My, making use of lemmal3:3:4.

2. By induction on the derivation of I',x: o = My : T, making use of lemmas[3.2.2 and[3.3.4,.
O

Lemma [3.4.11(2) shows that, with some restrictions on free variables, a substitution into a
blocked term can be written as a blocked substitution followed by the origina substitution. Part
(3) essentially states that reduction takes place inside reduction contexts presented as blocked
terms. Part (4) shows that substituting a fixed-point for a blocked variable gives aterm with a
known reduction in which the fixed-point is only unwound once. This property is used in the
proof of the Scott induction principle.

Lemma 3.4.11 Consider terms:
Nx:oFL:T Nx:oF-kMi:0 NN-N:o

such that L 4 x. Then:

1. L[x—M][N/x] = L[x— My|N/x]][N/x]
2. L[N/x] = L[x— N][N/x]

3. If My — My, then L[X*—> M]_] —> L[Xl—> Mz].

4. If o isacomputation type, then L[fixx. My /X] — ., L[X+— My][fixx. My /X].

Pr oof

1. By induction on the derivation of L 7 x.
2. Followsfrom (1) by taking M; = x and observing that L[x— X] = L.
3. By induction on the derivation of L 4 x.

4. Using prior results:

L[fixx.M1/x] = L[x— fixx.My][fixx.M1/X] (8411(2))
—> g LX= My [fixx. My /X]] [fixX. M1 /X] (B.411(3),3410(1))
= L[x— My][fixx.M1/X] (3411(1))

O

72 CHAPTER 3. THE NON-DETERMINISTICA-CALCULUS.Z

K™K (K e Canp)

L ™ injmof M Nm[M /Xm] 4™ K
caseLof (Xn.Np | n < K) M K

M U™ tuple Ny [n<K) Np ™ K
proj mof M |} K

LUm™ Ax M M[N/x ™ K
LN ™ K

L™ M) NM/X ™K
letx<=LinN ™ K

M[fixx.M /x] | & K
fixx. M ymay K

2Mp | n<K) ™ [My] (M<K)

Figure 3.9: May convergence

3.5 Evaluation Semantics

The evaluation semantics describes the convergence and divergence behaviour of programs with-
out mention of the intermediate states in a sequence of reductions. Evaluation semantics are
also known as natural semantics or big-step semantics (see [Kah87, IGun92, \Win93|). Conver-
gence behaviour is given by an inductively-defined may convergence relation, and divergence
behaviour by a coinductively-defined may divergence predicate. In contrast to the reduction
relation, the may convergence relation and the may divergence predicate are restricted to pro-
grams.

Definition 3.5.1 The may convergence relation ||™ C % x % is defined inductively from
the rulesin figure3.9. For aprogram M, we write M ||™ if and only if there exists a program
N such that M |J™® N.
Lemmal(3.5.2 establishes the connection between the reduction semantics and the may conver-
gence relation. In particular, may convergence only relates program to canonical programs so
M C % x Cang, and, if M |™¥ K, then M and K have the same type.
Lemma 3.5.2 For programs M and N:

1. If M "™ N, then M —" N and N is canonical.

2. If M- Nand N ™ K, then M ||™¥ K.

3. M ™ N if and only if M —" N and N is canonical.

3.5. EVALUATION SEMANTICS

73

M ™
E(M) g

L™ injmofM N[/Y] 1™
caseLof (Xn.Nn | n < K) {M&

M ™ tuple (Nn | N < K) N &

proj mof M {m&y
L ™M Ax.M M[N/x] M
LN fmay
L™ M] N[M/x ™
letx < LinN fym&
Mfixx. M /x] ("
fixx. M fymay

Figure 3.10: May divergence

Pr oof

1. By induction on the derivation of M {|™ N.

2. By induction on M — N, using case analysis of N ™ K in the inductive step.

3. The forward direction is established in (1). The reverse direction is established by an
induction on the length of the sequence of reductions, using (2) for the inductive step. O

In a deterministic programming language the may divergence predicate can be defined as the
complement of the may convergence predicate. In . the relationship between the may di-
vergence and may convergence predicates is weaker: by lemma3.4.7, every program may
converge or may diverge. The may divergence predicate is defined coinductively following

[CC92,HM95, [Las97, 1S98].

Definition 3.5.3 The may divergence predicate "™¥ C % is defined coinductively from the
rulesin figure@3.10l The may convergence judgements are side conditions rather than premises.

In section[3.8it is shown that programs of value type cannot diverge, and consequently we can

replace the rule:

M
E(M) fme

with:

L fmay
letx < LinN may

74 CHAPTER 3. THE NON-DETERMINISTICA-CALCULUS.Z

However, the original formulation is more convenient for the statement and proof of the com-
patibility theorems in chapter[5

The may divergence predicate coincides with the notion of divergence arising from the reduction
semantics.

Lemma3.5.4 If M isaprogram, then M 4™ if and only if M —.

Proof We prove the forward direction first. By coinduction it suffices to prove that M (™
implies there exists a program N such that M —"NandN M This is proven by induction
on the type assignment derivation of M, making use of lemmal3.5.2l The reverse direction
is aso proven by coinduction. We need to show that the conclusion of one of the rules in
figurel3.10 matches M and that the premise of that rule (not the may convergence side conditions)
is contained in —*. This is proven by case analysis on the derivation of the first reduction. The

base cases are straightforward. For the remaining case, suppose that E(M) — E(N) —” and
M — N. If M —“, then the may divergence rule for E(M) applies. Otherwise, there exists a

canonical program K suchthat M —" K and E (M) —" E (K) —“. By lemmaB5.2 M | ™ K,
and it can be verified that one of the may divergence rules applies for each of the four forms of
reduction constructors. O

The must convergence predicate is the complement of the may divergence predicate, so a pro-
gram must converge if it cannot diverge. By lemma2.3.5 the complement of the coinductively-

defined may divergence predicate is the least fixed-point of some monotone function on pro-
grams, and this function can be defined in terms of the monotone function induced by the may
divergence rules. In fact, the must convergence predicate is also inductively-defined from a
collection of rules.

Definition 3.5.5 The must convergence predicate ||™ C % is defined inductively from the
rulesin figure@.11

As with the may divergence rules, the must convergence rules do not take advantage of the fact
that programs of value type cannot diverge.

Example[3.4.9 demonstrates that some programs may converge to infinitely many canonical
programs. Consequently, some instances of the must convergence rule schema for programs of
the form letx <= MinN have an infinite collection of premises, and so the derivation trees for
must convergence judgements may have nodes with an infinite set of successors. The derivation
trees for inductive definitions are always well-founded and so have a rank. In this case, the
rank may be greater than w because of infinite branching. The rank of derivation trees for must
convergence judgements is investigated in section3.8

Finally, we consider derived rules for binary erratic choice. The binary erratic choice of M and
N may converge to a canonical program if either M or N can:

M M K N M K
MUN ™ K MUN |Jmay K

3.6. NORMALISATION 75

K |mst (K € Cang)

Lyms {Nm[M /Xm] 4™ L 4™ injmof M }
caseLof (x7.Ny | n < k) {must

M | must {Nm umust’ M ™ tuple (Nn | n < K)}
projmof M || must

Lyms {M[N/ Y™ L ™ Ax. M}
LN umUSt

Lyms {N[M/x] Y™ L Y™ [M]}
letx <= LinN |must

M{fixx. M /x] {|must
fixx. M {must

2AMp, | n < k) |must

Figure 3.11: Must convergence

The binary erratic choice of M and N may diverge if either M or N can;

M ﬂmay N ﬂmay M llmUSt N U[mui
MUN {}may MUN fmay MUN [jmust

The may divergence (equivalently, must convergence) behaviour of binary erratic choice differ-
entiates it from binary ambiguous choice (see [Las98b, Mar98] and section[28), because the
binary ambiguous choice of M and N may diverge only if both M and N may diverge.

3.6 Normalisation

Programs of computation type can exhibit non-termination or non-determinism. In this section
we prove that these behaviours are restricted to computation types because a program of value
type always converges to a unique canonical program.

There are a number of techniques for proving normalisation of typed functional programming
languages. For example, Girard [GLT89] describes both an elementary proof of weak normali-
sation and his extension of Tait's method to System F. Gordon [Gor94] proves a normalisation
result for a variant of the computational A-calculus with restricted recursive types via atransla-
tion to astrongly normalising A-calculus.

The normalisation result for . requires some care because of infinitary terms. Reduction cannot
be permitted inside constructors unless they form a reduction context, even for value types,
because it may lead to infinite sequences of reductions for canonical programs. For example,
each instance of (Ax.x) in the following program could reduce to x:

tuple (AX.X)* | N < w)

76 CHAPTER 3. THE NON-DETERMINISTICA-CALCULUS.Z

The proof of normalisation given here is based upon Tait's method. We first define a type-
indexed family of reducibility candidates.

Definition 3.6.1 For each type o, define a set of programs Red(o) by M € Red(o) if and only if
M is aprogram of type o and one of the following holds:

e 0=sum (0, | N<K)ATMN.(M ™ injmof N) AN € Red(ay,)

0 = prod (Op | N< K) AF(Nqp | n < K).M ™ tuple (Nn | n < K) AVn < K.N, € Red(op)

e 0=07— 02AVN € Red(o7).3L. (M "™ Ax.L) AL|N/X] € Red(02)

O isacomputation type.

Lemma3.6.2 If M and N are programs such that M — N and N € Red(0), then M € Red(0).

Proof Immediate for programs of computation type. For programs of value type, apply

lemma3.5.2(2). O

Tait’'s method involves showing that the reducibility candidates contain all programs, and so
every program of value type must converge to a canonical program.

Proposition 3.6.3 If M is a program of a value type, then M ™ and there exists a unique
canonical program K such that M || K.

Proof We show that every program of type o is a member of Red(o), and deduce that there
exists a canonical program K such that M ™ K. The uniqueness of K and the must con-
vergence property follow because reduction is deterministic at value types (see lemmd3.4.4).
To show that every program of type o is a member of Red(o), we prove a more general re-
sult. For an environment ' = x; : 01,...,X,: 0p and aterm ' = M : T such that, whenever
N; € Red(0y),...,Ny € Red(ap), we have M[N/x] € Red(1). Thisisastraightforward induction
on the derivation of ' = M : T, making use of lemmal3.6.2 when M has value type and is not
canonical.

O

3.7 Fragmentsof ¥

The non-deterministic A-calculus . is more expressive than most of the non-deterministic
A-calculi in the literature because of countably infinite coproducts, products, and indexed er-
ratic choice (the notable missing features are call-by-need parameter-passing and parallel non-
determinism such as ambiguous choice). If we were only to consider semantic relations such
as contextual equivalence and bisimilarity for ., then the results may be inapplicable to less
expressive calculi because the semantic relations may be too fine for higher-order terms. For
example, in chapter B it is shown that binary erratic choice cannot distinguish some programs
that can be distinguished using 2w (cf. programs that cannot be distinguished by sequential pro-
grams but can be distinguished using parallel-or, see [Gun92]). Fortunately, the definition of the

3.7. FRAGMENTSOF ¢ 77

syntax and operational semantics of the coproducts, products, and indexed erratic choice per-
mits a straightforward treatment of fragments of ., where each fragment is a non-deterministic
A-calculusinits ownright. The compatibility and Scott induction proofs in chaptefS are param-

eterised by afragment of .Z. In this section, we define the collection of fragments viaa number
of closure conditions upon sets of terms of .Z.

The expressiveness of % can aso be exploited for a study of relative definability of different
forms of indexed erratic choice in an operational setting (see sectiorf.5). Previous treatments of
relative definability rely upon a denotational model as a source of non-definable elements. For
example, the theory of Turing degrees |[Rog67, ICut80, [0di89] is concerned with relative defin-
ability of the characteristic functions of sets of natural numbers in the space of partial functions
U{w"— w| n € w}. The definable elements of the space are the partial recursive functions. As
another example, Sazonov’s degrees of parallelism [Saz75,[Lic96, [Buc97] is based in a space of
directed-complete partial orders. The definable elements are the (sequential) denotations of PCF
terms.

The fragments of % that we consider are not arbitrary sets of terms, but must satisfy certain
closure conditions. The definition of afragment must satisfy at least three criteria. A fragment
should not constrain the existing operational semantics for . (see lemma3.7Z.2), it should be
possible to prove compatibility for variants of applicative similarity and bisimilarity, and each
fragment should be at least as expressive as PCF. The first and second criteria can be satisfied
by insisting that every fragment is closed under substitution and taking subterms. The third
criterion is satisfied by closing fragments under finite constructors and the abbreviated arithmetic
operations.

Definition 3.7.1 Consider a set of terms E C .¥. The notation ' - M € E : 6 means that

N'EM:oandM € E. The fragment containing E, written £ (E) C ., isthe least set closed
under the rules of figures[3.12 and[3.13, and aso closed under subterms (including subterms of
infinitary terms). The set of programsin . (E) is defined by %4(E) o Z(E)N%. Wewrite
Z(My,...,My) for Z({My,...,Mpn}).

The final condition in figurel3.13 forces fragments to be closed under substitutions that replace
asubset of variable occurrences. This ensures that fragments are closed under blocked substitu-
tion.

Fragments may be smaller than . because there are no closure rules for indexed erratic choice,
and the closure rules for terms involving coproducts and products are restricted to arithmetic
operators or finite kK by the side conditions k < w.

The substitution and subterm closure conditions ensure that the operational semantics for . is
well-behaved within each fragment.

Lemma3.7.2 ForE C ZandM € Z(E):

1. IfM—NthenNe Z(E).

2. 1f M ™ K then K € % (E).

78

CHAPTER 3. THE NON-DETERMINISTICA-CALCULUS.Z

r-xe (E):oc (F'(x)=o0)
r-Me ZE):on
IEinjmofM € Z(E) :sum(on | n<K)
rEMe Z(E):sum(on | n<K)
{F X :on-Nye Z(E):1|n<k}
I caseMof (xo.Ny | n< k) € Z(E):1
{TEMpe Z(E):on|n<kK}

(K < w)

(K < w)

(K < w)
[+ tuple(My | n<K) € Z(E) : prod (o, | N <K)

r-Me Z(E):prod(on| n<K)

(K < w)
It projmofM € Z(E): o

rx:obkMeZE):t
Fr’-xxoMeZE):o—-rt
rF-MeZE).oc—1 rENeZ(E):o
r-FMNeZE):t
r-MeZE):o
r-MjeZE):P.(0)
r-Me%(E):P. (o) rx:c-ENeZ(E):P.(1)
Meletxo<=MinNe Z(E): P (1)
rx:P(o)FMeZ(E):P.(0)
M fixx:P (0).Me Z(E):P.(o)

Figure 3.12: Fragment closure (part 1)

3.7. FRAGMENTSOF ¢ 79

r-Me¥E):.c r-MekE:o)
NrNEne Z(E):nat (new)
r-Me Z(E):nat NrN-Ne.Z(E):nat
[plus(M,N) € Z(E) : nat
r-Me Z(E):nat NrN-Ne.Z(E):nat
I = minus(M,N) € Z(E) : nat
r-Me Z(E):nat rN-Ne.Z(E):nat
eq(M,N) e Z(E) :bool
r-MeZ(E):nat NrN-Ne2(E):nat
[1t(M,N) € Z(E) : bool

X1:01,...,%:0nFM:T
r-My/xle ZE): 1
{TENeZE):0|1<i<n}
Fr-M[N/X € Z(E):1

Figure 3.13: Fragment closure (part 2)

Proof By induction on the derivation of M — N, and then apply lemma3.5.2. O

The arithmetic closure conditions provide enough terms for atrandation of PCF (call-by-name
or cal-by-value) into £ (0). The call-by-value trandation can be used to show that for every
partial recursive function f : o' — wthere is a program:

FMe Z(0):nat — ... — nat — P, (nat)

such that, for al mmy,...,m, € w, f(m,...,m,) isdefined and equal to mif and only if there
exists aprogram N such that Mmy ... my 4™ [N] and N | m.

The set of terms used to define a fragment must be chosen carefully because of the subterm
closure condition. For example, any fragment that contains:

proj Oof tuple (x, ?(false, true))

must also contain ?(false, true), even though that program will be discarded in every reduction
sequence. For this reason, when we consider fragments of % that are strictly less expressive
than those containing binary erratic choice we use, for example:

E = {letx <2(Q, [*])inx}

rather than E = {Q U [x]} because the latter uses binary erratic choice which forces ?(false, true)
into the fragment.

80 CHAPTER 3. THE NON-DETERMINISTICA-CALCULUS.Z

K {|™*0 (K e Cang)

LM A LU™ injmofM Np[M /% ™ B
caseLof (Xp.Ny | n < K) M (A4 1)U (B+1)

MUMSEA M ™ tuple(Ny [n<K) Npd™sB
projmof M Mt (A+ 1)U (B + 1)

LUMSE A L™ A M MN/X ™S B
LN ™S (A+1)U(B+1)

LY™SA {N[M/x] {™ By | L U™ M]}
letx < LinN ™S (A4 1) UU{By + 1 | L J™ [M]}

M[fixx. M /x] || Must A
fixx. M [Jmust (A 1)

2AMp | n< k) M0

Figure 3.14: Must convergence rank

3.8 Rank of Must Convergence

In this section we investigate the rank of derivation trees for must convergence judgements. The
must convergence predicate is defined by induction, so the derivation trees are well-founded and
the rank always exists. The rank of the derivation trees can be used to classify programs and
provides a measure of the proof-theoretic strength of arguments involving induction on must
convergence judgements, such as the compatibility theorem in chapterdsl Lassen [Las98b] gives
unwinding and syntactic continuity results for a non-deterministic A-calculus with an operator
equivalent to ?w. The results make use of transfinite unwindings of fixed-point terms, and the
operational semantics of such termsis based upon the rank of the derivation trees of must con-
vergence judgements.

Therank of awell-founded tree is defined in definitionZ.1.16. However, it is convenient to have
adirect definition of the rank of a derivation tree for amust convergence judgement.

Definition 3.8.1 Let M be a program such that M /™. The must convergence rank of M is
an ordinal defined inductively from the rules in figure3.14] where M |J™% A means that M has
must convergence rank A.

The must convergence rank of a program is well-defined because each program has at most one
must convergence derivation tree.

Proposition[3.8.2 proves that the supremum of the must convergence ranks of programsin . is
w1, the least uncountable ordinal. In addition, the supremum is shown to be w when programs
are only drawn from deterministic or finitely non-deterministic fragments.

Proposition 3.8.2

3.8. RANK OF MUST CONVERGENCE 81

1

2.

Pr oof

1

If E C Zissuchthat Z(E) does not contain any occurrences of infinite indexed erratic
choice term constructors, then:

J{A|IM € H(E).M U™ AL =w
If E C Zissuchthat Z(E) = then:

{A]IM € L(E).M U™ A} =y

With the exception of therule for the sequencing term constructor, all instances of the must
convergence rule schema have a finite number of premises, no matter which fragment of

the language is considered. If % (E) does not contain any infinite erratic choice term con-
structors, then lemmal3.4.8(2) applies to every must convergent program M € 4(E) and
therefore the restriction of the must convergence rule schema for the sequencing term con-

structor to % (E) must also be finitely-branching. By induction on the proof of M (™St A
it can be shown that A < w. To see that the supremum is w, consider the sequence defined

by:
Mo = [+]
def .
Mni1 = letx < [Myp]inX (n€ w)
Then, for al n € w, M, ™S n.

By lemmal3.4.8(1), the instances of the must convergence rule schema for the sequencing
term constructor may have at most acountably infinite family of premises. It can be shown
by induction on the proof of M ™ Athat A < wy. For the other direction, we would like
to define a transfinite sequence of must convergent programs by induction:

def
Mo = [x]
Ma 2 letx =2(Mg | B< Ainx (0< A< wy)

However, letx <?(Mg | B < A)inx is not a term when A > w, and so we have to use
the fact that A is countable to obtain an w-sequence of programs that is a reordering of
?(Mg | B < A). It is then straightforward to prove by induction that, for all A < &,
Ma MUt A, O

There is an analogue of proposition for countably non-deterministic fragments such as
Z(?w). For each fragment, the supremum of the must convergence ranks is the least non-
recursive ordinal € (see section[25). Proposition[3.8.3)is based upon a similar result given by
Apt and Plotkin [AP86] for an imperative programming language with an operator equivalent

to 2w.

Apt and Plotkin prove that the reduction sequences of a non-divergent program form a

well-founded tree with rank? cS.

2Warning: Apt and Plotkin [[AP86] use height of a well-founded tree for the ordinal called the rank of awell-
founded tree here.

82 CHAPTER 3. THE NON-DETERMINISTICA-CALCULUS.Z

Proposition 3.8.3 Consider E C ¢ such that every termin E isaprogram of type P (nat) and

has the form ?2(Mp, | n < K), where {m € w | 3n < K. My J™¥ m} isarecursive set. If at least one
of these subsets of wisinfinite, then:

J{A|IM € L(E).M ™ A} = oof

Proof To prove that the supremum is less than or equal to ufK we show that, for every pro-
gram M € Z(E) such that M {™= A, we have A < oK, i.e. Aisarecursive ordina. By
proposition[2.5.10, it suffices to show that each derivation tree isisomorphic to arecursive tree.
It is not necessarily possible to encode al terms in .Z(E) as natural numbers because there

could be infinitely many terms in E that determine the same recursive set. However, a fixed

must convergent program M € Z(E) uses only afinitesubset EE CE,so M € Z(E’). By an

argument similar to that of lemmal3.7.2 it can be shown that all terms present in a derivation of

must convergence for M (including may convergence side conditions) can be encoded as natural
numbers. The terms in E’ are treated as constants rather than infinite terms. Building upon
the encoding of terms, derivation trees for may convergence judgements can also be encoded
as natural numbers so that they form a recursive set—it is decidable whether a natural number
represents a valid may convergence derivation. This requires the hypothesis that all of the terms
inthefinite set E’ determine recursive sets. Finally, branches in the must convergence derivation
tree for M can be encoded as sequences of natural numbers so that it is decidable whether a se-
guence represents avalid branch. It is necessary to encode the may convergence side conditions
to ensure decidability. Therefore, a must convergence derivation is isomorphic to a recursive
tree, so itsrank is a recursive ordinal, and the supremum of all of the must convergence ranks
for programsin %4(E) islessthan or equal to 5.

For the other direction, we may assume 2w € E without loss of generality, because there is
always a program with the same convergence and divergence behaviour. To see this, suppose
that F?2(Mp | n < k) € E : P (nat) determines an infinite subset of w. Then there is a program

with the same convergence and divergence behaviour as ?(false, true), defined by choosing two
numbers and testing whether the first isless than the second:

letx <=?(Mp | n < K)inlety <?2(My | n < K) inif It (X,y) then [false] else [true]

Hence, the binary erratic choice term constructor can be defined in terms of 2(M, | n < k). Now
define the program N of type nat — P, (nat) by:

N % ffix f. Ax. if eq (x, 0) then [0 else ([X] U f (minus (x,1)))
Then 2w has the same convergence and divergence behaviour as the program:
lety <=?2(Mp | n <K)inNy

This program chooses a natural number y from an infinite set, and then Ny chooses a number
between 0 and y. It is an acceptable substitute for 2w in the argument below because its must
convergence rank is always greater than or equal to w, as opposed to 2w " 0, and weintend to

3.8. RANK OF MUST CONVERGENCE 83

show that for every recursive ordinal A thereisaprogram with a must convergence rank greater
than or equal to A.

Consider a recursive ordinal A. Suppose that a set of natural nhumbers B C w, a well-order
< C Bx B, and apartia recursive function f : wx w— w specify arecursive well-order that is
order-isomorphic to A, and g : B— Aisacomponent of that isomorphism. We assume aprogram
Ma € % (0) of type nat — nat — P, (bool) that implements f. Define aprogram slow € % (?w)

with type (nat — nat — P, (bool)) — nat — P, (unit) by:

slow & Ah. Ax. lety <7?win
letz < hyxinif (and (z,not (eq(X,y)))) then (slow hy) else []

The program slow takes as arguments a partial order h on the natural numbers and a natura
number X, and then chooses anew number y. If y is strictly less than x, with respect to the partial
order h, it recursively callsitself with h and y as arguments. Otherwise, it converges to [x|. Thus
al sequences of natural numbers starting with x that are strictly descending with respect to h
can occur during the evaluation of slowhx. Now, if n € w)\ B, then slowMan ™ because
Mamn ||™ false, for all me w. Then, by well-founded induction on n € B with respect to <, it
can be shown that there exists an ordinal A > g(n) such that slow Man | ™ A, Therefore, for
some ordinal A’ > A we have that:

let X <=2winslow Max Mt A/

Consequently, the supremum of the must convergence ranks of programs in .%4(?w) is greater
than or equal to oK. O

Infinite coproducts that are not arithmetic operators are excluded from E for proposition3.8.3
because it would be possible to use infinitary case statements to construct programs that de-
termine non-recursive sets. For example, if {m, € w | n < w} is a non-recursive set, then the
program:

let X <=?win caseXof (yn.[My] | N < W)

has the same convergence and divergence behaviour as ?(m, | n < w).

84

CHAPTER 3. THE NON-DETERMINISTICA-CALCULUS.Z

Chapter 4

Typed Transition Systems

We introduce and investigate a class of LTSWDs (see definition[2.2.8), called typed transition
systems, that are suitable for studying non-deterministic A-calculi such as.# and its fragments.
Each state of a typed transition system has a unique type from the type system for .. Typed
transition systems are asimply-typed variant of Ong’s (quasi-)non-deterministic applicative tran-
sition systems, which in turn draw upon analyses of process calculi viatheir LTS structure and
A-calculi viaapplicative structures, pre-frames, (quasi-)applicative transition systems, and LTSs.
The variants of similarity and bisimilarity defined for LTSWDs apply to typed transition sys-
tems, and give rise to variants of applicative similarity and applicative bisimilarity on the typed
transition systems derived from non-deterministic A-calculi.

In section[4.1 we define the class of typed transition systems, discuss basic properties of typed
transition systems, and review other classes of applicative structures that appear in the literature.
In section[4,2] we recall the definitions of the lower, upper, convex, and refinement variants of
similarity and bisimilarity for LTSWDs, and consider identifications between the relations that
hold in degenerate cases, e.g., for states of a type with P-order 0 or 1. Sections/4.3 and 4.4

provide a case study of a typed transition system . that extends e-TSWDs with coproduct,
product, and function types. The states of . can be defined by induction on their type because
the type system for . does not include coinductive or recursive types. For example, the states of
function type o — 1 in . are set-theoretic functions from the states of type o to the states of type
1. Simple examples that differentiate the variants of similarity and bisimilarity are constructed
in.~. In sectionld.5 we investigate maps between typed transition systems, and show that there
isamap from every typed transition system satisfying certain conditionsto ., so . is aweak
terminal in a non-trivial subcategory of the category of typed transition systems. In chapteris,

we show that many of the typed transition systems derived from fragments of . satisfy these
conditions.

4.1 Typed Transition Systems

Typed transition systems abstract the computational behaviour of programs of ., and serve the
samerolefor . and its fragments as LTSsdo for CCS. Intuitively, the abstraction combines the

85

86 CHAPTER4. TYPED TRANSITION SYSTEMS

evaluation semantics with a decomposition of the canonical programs resulting from evaluation.
Individual reduction steps are not part of the structure of atyped transition system.

A typed transition system can be presented as an LTSWD where each state has a unique type.
The transitions from a state are restricted by its type because a transition indicates convergent
behaviour and information about the result. For example, a state of type sum (@, | n < K) must
have exactly onetransition. Thelabel on the transition identifies the component of the coproduct
in which the result lies, and so must be anatural number m < k. The target state of the transition
must have type oy,. On the other hand, a state of type prod (on | N < K) must have exactly one
transition labelled with n, for each n < k. The target state of atransition labelled with n must
have type o,. A state of function type o — 1 must have exactly one transition labelled with @s
for each state s of type g, and the target state of the transition must have type 1. States of type
P, (o) may have zero or more transitions, but they must be labelled with || and the target states
must have type 0. A state may only diverge if it has a computation type, and every state with a
computation type must be able to diverge if it has no transitions. This reflects the fact that every
program of computation type must have at least one convergent or divergent behaviour.

Definition 4.1.1 A typed transition system (TTS) isan LTSWD .7 = (S A (\™¥ —) such that:

1. Every state has a unique type. The set of states with type o is denoted .7 (o). We aso
write Z for S.

2. If s{™¥, then s has a computation type.

3. The set of labels A satisfies:

A=wU{@s |se 7}U{l}

4. 1f s 2 t, then:

(@ se 7
(b) se 7
(c) se 7
(d se T

sum (0 |N<K)) = (acw)A(a<K)A(te T (0a))
prod (On | N<K)) = (acw)A(a<K)A(t € T(0q))
0—1)=— (Jue J(0).a=@u)A(te (1))
P.(0)) = (a=) A(te Z(0))

~~ o~

5. For all statess:
(@ s€ .7 (sum(0n|N<K)) = IM<K.3t € T (0).5 >t
(b) se Z(prod (0n | N < K)) = VN < K.Tt € T (0p).5 > t
(c) se ﬂ(o—w)ﬁVUeﬂ(o).Hteﬂ(r).s@—%t

(d) se Z(P.(0)) = (s1™)V (3t e T(0).s 5 1)

6. If s> t, s uandt # u, then s has acomputation type.

4.1. TYPED TRANSITION SYSTEMS 87

For a state s € .7 (prod (0, | N < K)) and m < K, we write s@m for the unique state such that

s s@m. For states se .7 (0 — 1) and t € .7 (o), we write s@t for the unique state such that

SQ s@t.

Thedual — of the transition relation determined by the labelled transition relation of a TTSis
always well-founded, so there are no infinite sequences of transitions. This is because the type
system provides a well-founded measure upon states, and the target state of a transition always
has atype strictly smaller than the type of the source state.

Itisuseful to pick out the states of a TTSthat cannot diverge or are deterministic at computation
types, and that have the same property at al successor states. By lemmaZ.3.11] and the well-
founded measure on the transition relation given by the type system, these sets of states can be
defined inductively or coinductively.

Definition 4.1.2 Let .7 beaTTS. The hereditarily total states Total (.7) C .7 and the heredi-
tarily deterministic states Det(.7) C .7 are the greatest sets such that, for all states s, t:

1. (a) IfseTotal(7)ands — t, thent € Total(.7).
(b) If se Det(.7) ands — t, thent € Det(.7).

2. (a) If se Total(.7") and s has a computation type, then s ™,

(b) If se Det(.7) and s has a computation type, then s{™® and there are no transitions
from s, or s ™ and there is exactly one transition from s.

Of coursg, if a state has type o and POrd(o) = 0, then the state must be hereditarily total and
hereditarily deterministic. Hereditarily total and hereditarily deterministic states are considered
inlemmal4.2.5

Non-deterministic A-calculi determine TTSs. In chapter§ we show that . determines a TTS,
as does each fragment of .. The states of the TTSs are programs, and transitions are defined in
terms of the evaluation semantics and a decomposition of the outermost constructor of canonical
programs. For example, a program M of type sum (0, | n < K) has atransition to N, labelled by
m, whenever it may converge to injmof N.

However, not al TTSs arise from a programming language with an operational semantics. In
sections[4.3 and 4.4 we study a TTS .~ that is related to the e-TSWDs described in exam-
ple2.2.9 If the set of states of type 0 is.7(0), then the set of states of type P, (o) is defined by

(P (0)) « Pre(#(0)). The states of coproduct, product, and function types are similarly
defined in terms of the states of their component types.

TTSs are related to a number of other structures that abstract the application of an object rep-
resenting a function to an argument. In the remainder of this section, we describe some of
those structures. Such structures can be broadly classified according to whether or not they
have a well-founded type system, where coinductive or recursive types are considered to be
non-well-founded even though their syntax is well-founded. If there is awell-founded type sys-
tem, then inductive techniques such aslogical relations can be employed, otherwise coinductive
techniques such as similarity and bisimilarity must be used.

88 CHAPTER4. TYPED TRANSITION SYSTEMS

Applicative structures, pre-frames, frames, and Henkin models (see [Gun92Z, [Mit96]) use well-
founded type systems. They are defined with reference to a signature consisting of a set of
symbols for constants, and a set of ground or base types. The type systems are obtained by clos-
ing under the function type constructor (and sometimes product types). An applicative structure
is a family of sets indexed by types, say (A(0) | o atype), a family of application functions
indexed by pairs of types (App®' : A(oc — 1) x A(0) — A(T) | 0,T types), and an element in
A(0o) for each constant symbol of type 0. The other structures impose additional constraints.
Specifically, each A(o) may be required to be non-empty, the sets A(o — 1) may be restricted to
subsets of A(o) — A(T) so that elements of A(o — 1) are equal if they have the same applicative
behaviour (extensionality), or the structure may be required to support an interpretation of the
simply-typed A-calculus. The syntax and operational semantics of asimply-typed A-calculus de-
termine an applicative structure. In addition, there are many examples of syntax-free applicative
structures, e.g., based on interpreting the function type constructor as the set-theoretic function
space, the continuous function space between directed-complete partial orders, or as a set of
partial recursive functions.

An applicative structure determines an LTS with the digoint union of the sets A(0) as states.
The labelled transition relation replaces the family of application functions because there is a

labelled transition a 22 App®T(a,b) if and only if a € A(o — 1) and b € A(0).

Logical relations can be defined upon the elements of an applicative structure. We say that
elementsa;,b; € A(o — 1) arerelated if and only if App”T(ay,a2) and App® (b, by) arerelated,
for all related ap, by € A(0). The type system must be well-founded for this definition to make
sense because of the (contravariant) requirement that g and b, are related.

In contrast to applicative structures and the other structures mentioned above, (quasi-)applicative
transition systems, (quasi-)non-deterministic applicative transition systems, o-transition sys-
tems, and LTSs can be used to abstract the application operation in a setting with no types,
or coinductive or recursive types. There are also untyped variations of applicative structures or
applicative structures with divergence (see |Bar84, HS86, |AbroQ]).

A quasi-applicative transition system (gATS) consists of a set A and a partia function Ev :
A— (A— A) (see [Abra0]). Closed terms of the lazy A-caculus form a gATS. For a closed
term M of the lazy A-calculus, Ev(M) is defined if there exists aterm N such that M converges
to Ax.N. In this case, for all closed terms L, Ev(M)(L) = N[L/X]. There are also syntax-free
examples of gATSs, e.g., those arising from domain-theoretic models of the lazy A-calculus.

A preorder, applicative similarity, and an equivalence, applicative bisimilarity, can be defined
upon the states of a gATS by coinduction (see [Abr90, /AO93]). However, afunction similar to
the one used to define alogical relation is not monotonic without a well-founded type system
because of the need to test states a;, b1 € A by applying them to related states a, b, € A. Abram-

sky’s definition sidesteps this issue and only tests states a, by € A by applying them both to the
same state ¢ € A. This raises the question of whether or not the gATS satisfies a compatibility
property: if a,b,c € A are such that Ev(a) is defined and b and c are related by applicative sim-
ilarity, then are Ev(a)(b) and Ev(a)(c) aso related by applicative similarity? If so, the gATS is
called an applicative transition system (ATS), and the Ev function is well-defined on the equiva-
lence classes of A with respect to applicative similarity. Abramsky [Abro0] uses a domain logic

4.2. SIMILARITY AND BISIMILARITY 89

to prove that the gATS obtained from the lazy A-calculusis an ATS. Howe [How89] proves the
same result using a syntactic technique, variations of which are used in chapter5

A gATS can aso be presented as an LTS or an LTSWD (although the may divergence predicate
is redundant because a gATS models deterministic behaviour). For a,b € A, thereis atransition
a @, Ev(a)(b) if and only if Ev(a) is defined. Applicative similarity and applicative bisimilar-
ity on gATSs correspond to similarity and bisimilarity on such LTSs. Gordon [Gor94] introduces
this idea by presenting a specific LTS for an FPC-like language (see aso [Gar953a]). Note that
these LTSs do not have t-labelled transitions, and so there is no notion of weak similarity or
weak bisimilarity.

Ong [Ong92a, Ong92b;, (Ong93] generalises gAT Ss to quasi-non-deterministic applicative tran-
sition systems (QNATS) by incorporating amay divergence predicate and alowing the evaluation
operation to be arelation instead of a partial function, so EvC Ax (A—A). Every ac Aisre-
quired to either diverge or be related to at least one function by Ev. gNATSs can be used to
study untyped non-deterministic A-calculi as gATSs can be used to study untyped deterministic
A-calculi. Every gNATS determines an LTSWD, and the relation on the gNATS called “ap-
plicative bisimulation” in [Ong92a, [Ong92k, [Ong93] corresponds to convex similarity on the
LTSWD.

For consistency with the terminology of gATSsand gNATSs, TT Ssshould be named quasi-TTSs
to indicate that application need not be well-behaved with respect to a coinductively-defined
relation. However, that convention is not followed here because severa variants of similarity
and bisimilarity are used with TTSs, and it is possible that application is well-behaved with
respect to some relations but not others.

Ong and Pitts [OP93] also propose g-evaluation systems, with coinductively-defined relations
o-simulation, to unify LTSWDs, gATSs, and gNATSs. For each type o, they generate a class
of structures called o-evaluation systems, and a preorder, o-simulation, on the states of those
structures. The type o can be chosen so that LTSWDs, gATSs, and gNATSs are o-evaluation
systems.

4.2 Similarity and Bisimilarity

The lower, upper, convex, and refinement variants of similarity and bisimilarity are defined in
section[2.4 for LTSWDs. In this section we review and study these relations in more detail, and
focus on the specia case of TTSs. The discussion covers the inclusions between variants of
similarity and bisimilarity on LTSWDs, and conditions upon the states of a TTS under which
the inclusions collapse to equalities. We conclude with a definition of applicative compatibility
for TTSsthat permits a quotient structure to be constructed.

Recall that the variants of similarity and bisimilarity are defined in terms of a lower simula-
tion function (-), 5 and an upper simulation function (-) ;5 (see definition[2.4.10). When these
functions, or the variants of similarity and bisimilarity, are used with TTSs we annotate them
with the TTS, e.g., (->|'i and <->U‘75, because the TTSs arising from fragments of . can have
common states of function type that behave differently in different TTSs. For example, in the
TTS determined by the fragment .#(0), a program M of type P, (bool) — P, (bool) can only

90 CHAPTER4. TYPED TRANSITION SYSTEMS

be applied to programs from .#(0), which are always deterministic. However, inthe TTS de-
termined by .Z(?(false, true)), M has transitions labelled with non-deterministic terms such as
?(false, true). Consequently, the variants of similarity and bisimilarity need not be conservative

between fragments .Z(E;) and .2 (E,), evenwhen E; C E,. That is, if the TTSsdetermined by
those fragments are denoted by %4 (E;) and £ (E), there may be programs M, N € . (E;) such
that M :‘gg(El) N and M qé”éfg(EZ) N. The relationship between relations on overlapping TTSsis
examined in sectionsi4.5 and[5.6

The definitions of (-) s and (-),, are modified slightly for TTSs because states should only be
related if they have the same type. In definitionid.Z.T]the functions are presented for TTSsusing
the labelled transitions specific to each type. The two functions have the same behaviour upon
states of value types. States of a coproduct type are related if they are in the same component of
the coproduct and their target states are related. States of a product or function type are related
if every pair of projections is related. Using this definition means that we have to prove that
function application in a TTS behaves reasonably with respect to the variants of similarity and
bismilarity. Thisisthe purpose of the compatibility theoremsfor TTSsdetermined by fragments
of .Z (see chapter B).

It istempting to make use of the fact that . has awell-founded type system by defining alogical
relation. However, we do not have a proof of the fundamental theorem of logical relations
for a non-deterministic programming language. Operationally-based proofs for deterministic
languages are usually based upon a syntactic unwinding lemma, and the status of such properties
in the presence of non-determinism is not yet clear. In addition, the logical relations approach
would not extend to recursive types.

Definition 4.2.1 Let 7 beaTTSand R C 7 x 7. The relations (R >|i‘ C 7 xZ and

(R)JsC 7 x T aredefined, for sty € 7, by:
1. If 5 and t; have the same value type, then (s,1;) € (R >L5/:s and (s1,t1) € (R >5s if and only
if:
(@ s1,t1 € T (sum(0n | N<K))A
Im< K. 35, tr € T (Om).S1 — At A (1) €R
(b) s1,t1 € T (prod (0 | N<K)) AVM< K. (s5@m,t;@m) € R
(©) si,t1€ (0 —T1)AVue 7(0).(5@u,t;@u) € R
2. If s; and t; have the same type P, (0), then:
@ (si,t1) € (R)if and only if:
Vs € 7(0).1 4 S, = dth e 7(0).11 4 toA(s,t2) €R

(b) (s1,t1) € (R)i if and only if:
Sl‘umug:
(t U™ AV € T(0).h 5t = 35 € T(0).51 5 A (So,t) €R)

4.2. SIMILARITY AND BISIMILARITY 91

In definition[4.2.1] the clause for (-)'55 at a computation type can be rewritten to emphasise that
every divergent or convergent behaviour of t; is matched by a suitable behaviour of 5. For

si,t1 € 7 (P.(0)), we havethat (s;,t1) € (R >5s if and only if:

(ts M"Y =51 V) A
(Vi € 7(0).11 4 th—= (s t"¥)V (I € 7(0).s1 4 S A {($,h) ER))

The functions <-)|'i and <-)'5S are monotone with respect to the inclusion partial order. In addi-
tion, they satisfy the following property with respect to relational composition:

Lemma4.2.2 ForaTTS .7 andrelationsR ,S C .7 x .7

L (R)G(S)sC (RiS)s

T T T
2. (R)is(S)us € (R:S) s
Proof Straightforward. O

In definition 2.4.11} lower, upper, convex, and refinement variants of similarity, mutual simi-
larity, and bisimilarity are defined for LTSWDsin terms of (-) ¢ and (-), .. The same variants

can be defined for aTTS .7 using <‘>|i‘ and <->'55. We use the same names for the relations
defined on TTSs, even though they may be finer than the corresponding relationswhenaTTSis
considered as an LTSWD because the latter can relate states of different type. In practice, this
should cause no confusion because we only ever consider whether states of the same type are
related.

Definition B.2.3 uses coinduction to define the relations, but the well-founded type system and
the fact that every transition decreases the size of the types of the states, in conjunction with
lemma23.11 implies that the relations are the unique fixed-points. However, in the sequel,
coinductive methods are used whenever possible to make it easier to extend results to structures
with recursive types.

Definition 4.2.3 For aTTS .7, the lower, upper, convex, and refinement variants of similarity,

92

CHAPTER4. TYPED TRANSITION SYSTEMS

mutual similarity, and bisimilarity are the binary relations on .7 defined by:

SEVRR)G

L7 df T 7 \op
—LS — SLSH(SLS)

~7 EVR LRGN IR)™

T def T
Sus = VR.(R){s
LT def 7 7 \op
—us NUSm (SUS)

7 def VR .<R >§ ﬂ((R op>§)op

—uB — us us
T def T T
Ses = VR(R)sN(R) s

L7 def -7 T \op
—Cs NCSm (SCS)

= VR RSN RGN R P)HTN(R™)

=cB ~ us
T def op\ 7 \0 T
Srs = VRL(R p>|_s) "n(R s

LS

—RS — ~Rs' '\~Rs
T def . . .
~es ZVR(RP)IPAR)N RS

N(R*)

T

us

T
us

)*

)%

The names of the relations are summarised in the table below:

(lower similarity)

(mutual lower similarity)
(lower bisimilarity)

(upper similarity)

(mutual upper similarity)
(upper bisimilarity)
(convex similarity)
(mutual convex similarity)
(convex bisimilarity)
(refinement similarity)
(mutual refinement similarity)

(refinement bisimilarity)

Lower | Upper | Convex | Refinement
similarity | <75 | S | S <rs
Mutual Similarity | ~7, | ~7 [~Z ~ns
Bismilarity | ~75 | ~05 | ~& ~d5

Refinement bisimilarity and convex bisimilarity are identical by definition.

By lemmal2.3.6, the variants of similarity are preorders and the variants of mutual similarity and

bisimilarity are equivalences.

Definition[4.2.3]is concise, but it is useful to have expansions of each combination of the simula-
tion functions. For valuetypes, all of the variants of similarity, mutual similarity, and bisimilarity
have the same expansion. If R isany variant of similarity, mutual similarity, or bisimilarity on

J and 5,11 € 7 have avalue type, then:

1. If 5,1y € F(sum (0, | N < K)), then (s1,t1) € R if and only if:

IM< K. It (S) At >) Al ta) €R

2. If sp,t1 € F(prod (On [N < K)), then (s, t1) € R if and only if:

Vn< k. (ss@n,t;@n) € R

4.2. SIMILARITY AND BISIMILARITY 93

3. If si,t1 € 7 (0 — 1), then (s1,t1) € R if and only if:
Yue 7(0).(s@u,t;@u) € R

In general, therelations are different at computation types. The expansions are given in figuréd.1l
for states 5,t1 € .7 (P, (0)).

We now examine the rel ationshi ps between the variants of similarity and bisimilarity. Lemmad.2.4
identifiesinclusions that hold in all TTSs. In exampl€4.4.5, we show that some of the inclusions
are strict.

Lemma 4.2.4 Theinclusions between the lower, upper, convex, and refinement variants of sim-
ilarity, mutual similarity, and bisimilarity depicted in figurd4d.2holdinany TTS .7.

Proof By corallary[2.3.9] and the fact that the mutual similarities and bisimilarities are equiv-
alences. O

Under certain conditions on states, there are identifications between the relations. For example,
if the P-order of atype is 0, then the restrictions of the variants of similarity, mutual similarity,
and bisimilarity to states of that type are al the same. Also, if the P-order of a type is 1,
then the restrictions of the mutual similarities coincide with the restrictions of the bisimilarities.
Lemma [4.2.5 proves these identifications, as well as some for hereditarily deterministic and
hereditarily total states.

Lemma4.25 ForaTTS .7 and s1,t; € .7 (0):
1. If POrd(o) = 0, then:

T T T T
s st = s150sh &= 15t = 1SRt <=
T T T T
S].:Lstl — SCI.:UStl — SCI.:CStl — S].:Rstl —
T T T
SZL:LBtl — SCI.:UBtl — SCI.:CBtl

2. If POrd(o) = 1, then:
€Y Slﬁétl = Slﬁthl
(b) s1~psh <= S~ gt
(© Slﬁgstl — slzgstl “— 31ng t
3. If 51,1 € Total (.77), then:
(@ 515/t = s =t Spest
(b) Slzétl — 51255'[1 “— Slzzstl

T T
(c) aggstl <— Sl:cystl <— S
Sl:LBtl < Sl:UBtl < Sl:CBtl

94

CHAPTER4. TYPED TRANSITION SYSTEMS

T
s st =

V.5 4 S = dto. 1y 4, tz/\SQSLystz

T
Sﬂ.gustl —

S UM (1 Y™ AVt sty = T8 2 A% Sst)

S1 ggstl —
U U T
(VSQS]_ — = dtr.t1 — tz/\SQSCStZ) A

(S1 M= (ty 4™ AVt ty 5t = T8 5 AH Sgl)

S gRyStl =
(s1 ™=t J™) A

U v 7
(Vi.ts = th = 3%.51 — LA Sasl)

T
S~ gl =
4 4 T
(VSQS]_ — = dtr.t1 — t2/\Sg:LBt2)/\
(Vio.t1 L th— 3.5 A Sz/\SQZﬁgtz)

T
S gl <=
(s ™Y At AT Vv

(
(VSQS]_ i S = dth.1y i t2/\92258t2)/\
3 U .

(Vtz.t]_ — th=—3ds.51 — SQ/\SgﬁgBtz))

7
Sp gl <=
(S_L umust : > tl umust) /\
(3 (3 T
(VSQS]_ — = dbh.t; — t2/\Sg:CBt2)/\
3 (3 T
(Vo.ti — b= 3%.81 — AR~)

Figure 4.1: Unfoldings of similarity and bisimilarity foraTTSat P_ (o)

4.2. SIMILARITY AND BISIMILARITY 95

T
(Ses)™

Figure 4.2: Inclusions between similarities and bisimilarities

Note that the order of 5, and t; isreversed for upper similarity and refinement similarity.
4. If s1,t € Det(.7), then:
T T T
@ sSsh=saS)sh = 51355t
T
(b) SrJ.SRStl —

T T T T
Srlﬁl_stl <~ SELQUStl = Sl:CStl = SlﬁRstl <~
T T T
Sl:LBtl S Sl:UBtl S Sl:CBtl

Proof

1 IfR € 7 x 7 andst € .7(0), where o isavaue type, the following equivalences hold:

(st)e R)se (st) e (RP)HP < (st) e R) g (st) e (RP)[HP

The result follows by coinduction.

2. By lemmald. 24, it suffices to prove by coinduction that the mutual similarities are con-
tained in the bisimilarities. We show that q:‘gstl implies s; :’gB t1. The other cases are
similar. If 51 and t; have computation type P, (o), then, by s; :‘gstl, we have that s, ||
if and only if t; ™, In addition, if there exists $ such that s; 4, $, then, using slg(‘:ystl,
there exists t; such that t; A tband s g’gstz. But s, and t, have type o with P-order O,
and so SQ:ZBtZ, by (1). The other direction is similar, so siz'gB t;. Otherwise s; and t;

ch-tts.19

96 CHAPTER4. TYPED TRANSITION SYSTEMS

have avalue type with P-order 1. It is straightforward to show that whenever § 2 s, and
t; & t, wehaves, :'gstg, and s, and t; have the same type with P-order 1. Therefore, by
coinduction, we are done.

3. The proofs are by coinduction and are straightforward at value types. For computation
types, the results follow easily from g {|™* and t; ™,

4. The proof is by coinduction and is straightforward at value types. For computation types,
recall that if s, has a computation type, then s, #™® and s; has no transitions, or s ||

and s; has exactly one transition. We give the case for a<Rst1 implies 5 gB If
s ™ then s <Rst1 impliesty MU, If ty MU, then, becauset; € Det(.7), there exists

to such that t; 4 t. By g N‘Rstl, there exists s, such that 5 4 s, and 525@2, S0
s1 ™ because s; € Det(.7). Therefore, s, ||™ if and only if t; ™. Now whenever
thereisastate s, such that s; 4 S, we havethat s; ™, sot; ™ and there is aunique
to such that t; 4 t2. By 51 ggstl and the fact that the transition from g is unique, we
have szgRyStz For the other direction, suppose that there is a state b such that t; 4 to.
By slg’zstl, we immediately get a state $ such that i s, and 52<Rst2 Applying
coinduction, we have that 5 :CB 1. O

Representatives of the maximal equivalence classes with respect to the upper, convex, and re-
finement variants of similarity can be identified via the hereditarily total and hereditarily deter-
ministic properties.

Lemma4.2.6 Let 7 beaTTSand st € .7 states with the same type. Then:

1 If sggst and s e Total (.7) NDet(.7), then s:th.

2. If sggst and s € Total (.7), then s

~gt.

3. If st and s€ Det(.7), then s~ t.

Pr oof

1. By coinduction. DefineR C .7 x .7 by:

R« {(st) € 7 x .7 |Jo.(ste T(0))A(se Total(.T)NDet(7)) A (sggst)}

We need to show that, for all (s;,t1) € R, we have (s1,t:) € (R)isM (R ®)Je)®. The
cases when s; and t; have a value type are straightforward. If g and t; have type P, (o),
then s, € Total(.7") and Sl<USt1 imply that s; ™ and t; ™. Now consider any

t, € 7(0) such that t; L to. By s ™ and slgustl, we have that there exists $ €

4.2. SIMILARITY AND BISIMILARITY 97

7 (0) such that 5 LA s and szgfstg However, s, is the unique successor of 5 because

s1 € Det(7), 30 (s1,t1) € (R)isN (R) 7o) ®, and we are done.

2. Proceed asin (1), redefining R for thepremisesof (2). If §,t; € R havetypeP, (o), then

s € Total(.7) and s S¢ tllmplythatsliimUSt andty ™, By sl< we have, for all

cstl’
$ € 7 (0) such that 5 4 S, there existst, € .77 (0) such that t; 4 to andsQ<CSt2 The

opposite direction aso holds, because s M 5o, for al t, € .7 (0) such that t; E to,
there exists g € .7 (0) such that 5 4 s, and 92<Cst2 Therefore:

(st.t) € R)GENRITSNRPHDPN (R ®)T)™

3. Proceed as in (1), redefining R for the premises of (3). Suppose that §,t; € R have
type P, (0). If 51 f™®, then s; € Det(.7) impliesthat s; has no succrs Moreover, {
cannot have any successors either and so t, 1™, because sl< st1. Otherwise sl Jmust

S0t ™ also because slgRStl. Now consider any t; € ﬂ() such that t; 4 to. By

slg‘gstl, we have that there exists $ € .7 (0) such that 5 A s, and sQ<RSt2 However,
S, isthe unique successor of § because s; € Det(.7), so:

(s.t1) € R)JSNR)TSN(R PPN (RPTH™ .

If the application operation in a TTS is well-behaved with respect to one of the variants of
similarity and bisimilarity, then it is possible to define a quotient structure with a well-defined

application operation (see section4.5). Consider a TTS .7, arelation R which is one of the
variants of similarity or bisimilarity on .7, and states §,t; € 7 (0 — 1) and $,t; € 7 (0) such
that (s1,t1) € R and (s,t2) € R . In this case, we can deduce that (5 @s,,t1@s;) € R and
(s1@t2,t1@t2) € R, but not (51@s,,t1@t,) € R (although, by transitivity of R , we do have that

if (55@%2,51@t2) € R or (1@s,,t1@t2) € R, then (5,@s,,t1@t,) € R). Thisis analogous to
the property that must hold for agATS to be an ATS (or for agNATS to be a NATS). However,
it is possible that the property holds for one of the variants of similarity and bisimilarity but not
another. For this reason applicative compatibility is defined with respect to aparticular relation.

Definition 4.2.7 Consider aTTS .7 and arelation R which is one of the variants of similarity,
mutual similarity, or bisimilarity on .7. Therelation R is applicatively compatible for a state
se 7 (o —1)if, for dl t,ue (o), (t,u) € Rimplies (s@t,s@u) € R . Therelation R is

applicatively compatible with respect to .7 if R is applicatively compatible for every state of
function typein .7.

98 CHAPTER4. TYPED TRANSITION SYSTEMS

Example 4.2.8 We define a finite TTS .7 for which convex bisimilarity is not applicatively
compatible. The states of .7 are defined by:

{*1,%2} if 0 =unit
7(0) def {ff,tt} if 0 =bool
{s} if 0 = unit — bool
0 otherwise

The states x; are x, have no transitions because they have type unit = prod (). The transitions
of the other states are:

S%ﬁg*l

s @2, 1

Then :'gB is not applicatively compatible because x :gB *7, but:

S@~1 = ff £ tt = s@+;

If the states of a TTS have the property that no distinct states have the same behaviour, then
the behaviour is called extensional. Behaviour is measured using the variants of mutual simi-
larity and bisimilarity, and so extensionality of an equivalence relation simply means that every
equivalence class contains exactly one state.

Definition 4.2.9 Consider a TTS .7 and arelation R which is one of the variants of mutual
similarity or bisimilarity on 7. The relation R is extensional if, for all states s;t € .7 (0),

(s,t) R impliess=t.

Convex bisimilarity for the TTS .7 in examplel4.2.8 is not extensional because *1:?5 *2. In
fact, it could not be extensional because extensionality implies applicative compatibility.

Lemma4.2.10 Consider a TTS .7 and a relation R which is one of the variants of mutual

similarity or bisimilarity on .7. If R isextensional, then it is also applicatively compatible.

Proof Consider s€ 7 (0 — 1) andt,ue .7 (0) suchthat (t,u) € R . By extensionality, t = u,
S0 s@t = s@u. Therefore (s@t,s@u) € R , because R isreflexive. O
In chapter B it is shown that the variants of mutual similarity and bisimilarity upon the TTSs

determined by (some of) the fragments of . are applicatively compatible but not extensional,
and so the converse of lemma4.2.10 does not hold.

4.3. THETTS.” AND BISIMILARITY 99
43 TheTTS.¥ and Bisimilarity

In this section we define a syntax-free TTS . for which convex bisimilarity is extensional. The
construction of . relies upon the type system of . being well-founded because the set of states
for each type is defined in terms of the sets of states for smaller types. For example, .’ (0 — 1)
isthe set-theoretic function space .’ (o) — . (1), and . (P.(0)) isPne(-#(0) 1), the set of non-
empty subsets of . (0),. The TTS.¥ resembles full set-theoretic Henkin models (see [Mit96])
and the e-TSWDs defined in section2.2. In section[4.4] a number of examples are given in .
to show that the inclusions between the variants of similarity, mutual similarity, and bisimilarity
can be strict. Using an embedding result proved in section[4.5, these examples can be pulled
back to the TTSs arising from the fragments of .Z.

Definition 4.3.1 The states of the TTS.¥ are defined by induction on types:

#(sum (on | n< k) < fsum (G [n< K)} x (3 -#(0n))

n<k

7 (prod {on| n < k) € {prod (o [n < k)} x ([-#(on))

n<k

F(0-1)E {01} x(#(0) - 7(1))
Z(PL(0)) & {PL(0)} x Pre(:#(0),)

The purpose of the first component of each state is to ensure that the sets (.’(0) | o atype) are
pairwise disoint, and is omitted when it can be inferred from the context. A state A € . may
diverge if and only if it has a computation type and | € A. The labelled transition relation is
defined by:

(MA) € .¥(sum(on [n< k) B Ac.Z(om)
(An|n< k) e.Z(prod(0n | N<K)) 5 Ane.#(Om) (M<K)
fey(c—ﬂ)@—&f(Aes(1) (AeZ(0))
Ac #(P.(0)) - Be.7(0) (BeA\{L})

We write x € .#(unit) for the unique element of the unit type, and ff,tt € .#(bool) for the
elements of the boolean type such that ff 9 sandtt L

In the remainder of this section, we consider properties of the variants of bisimilarity on .%.
Convex bisimilarity is straightforward because it is extensional.

Lemma4.3.2 Convex bisimilarity ~~. on . is extensional, and hence applicatively compati-

ble.

_CB

Proof By induction on the type of states. We give the case for states of a computation type
P, (o). Consider A,B € . (P, (0)) such that A:CBB Now L € Aif and only L € B, because
Aﬂmay if and only if BA™¥. For C € Asuch that C # L, thereexists D € B such that D # | and
C:CBD By the induction hypothesis, C = D, so AC B. Similarly, B C A. Therefore A= B.
Applicative compatibility follows by lemmal4.2.10, O

100 CHAPTER4. TYPED TRANSITION SYSTEMS

In contrast, neither lower bisimilarity and upper bisimilarity are extensional or applicatively
compatible with respect to .. The failure of extensionality is due to identifications that are
almost identical to those considered in sectionZ8 for the e-LTSWD for Ppe(w,). For example,

the states { L}, {L,*}, {x} € Z(P.(unit)) satisfy:

[}t {hort o (5}
{1} = (Lot (5}

More generally, for al A Cpe .#(0), we have A:’LyE;AU {L}. Also, for al A/BC .¥(0), we

have AU { L} :’UVB BU{L}. In contrast to the €-LTSWD for Pne(w,), these are not the only
identifications, because other computation types may appear in 0. For example, the states

{{L,%}},{{x}} € #(PL(P, (unit))) do not fit the schema above, but {{ L, «}}~7 {{x}}.

The examples above can also be used to demonstrate the failure of applicative compatibility. For
lower bisimilarity, consider the function f : .7 (P (unit)) — .7 (P, (unit)) that maps {_L} and
{L,x}to{L}, and {x} to {x}. Thefunction f isastate of type . (P, (unit) — P, (unit)) and
lower bisimilarity is not applicatively compatible for f because of the states { L, x} e’f; {x} that

are mapped to {L};ﬁfg {x}. A similar function can be used to show that upper bisimilarity is
not applicatively compatible.

It is possible to construct a TTS for which both lower bisimilarity and upper bisimilarity are
extensional by modifying the definition of the set of states at a computation type. Using the
approach taken in section[2.6] the states of a computation type P, (o) are either { L} or a non-
empty subset of the set of states of 0. Of course, there are states of ., such as the function f
above, that do not correspond to any statesinthis TTS.

44 TheTTS.Y and Similarity

In this section we investigate the variants of similarity and mutual similarity for the TTS .
defined in sectiond.3l Extensionality and applicative compatibility fail for al variants of simi-
larity and mutual similarity because there are non-trivial equivalence classes. We give examples
at finite types to show that the general inclusions of lemmal4.2.4| can be strict, and investigate
when meets and joins exist with respect to lower similarity and upper similarity. The examples
are elementary but generic, and have analogues in the TTSs determined by the fragments of the
programming language .. This methodology has provided new examples to distinguish some
of the variants of similarity, mutual similarity, and bisimilarity for ., aswell Lassen’s|Laso8h]
non-deterministic A-calculi.

The types P, (unit) and P, (P, (unit)) have P-orders of 1 and 2 respectively, and there are only
finitely many states with one of these types in .. With respect to either lower similarity or
upper similarity, the equivalence classes of the states .”(P, (unit)) form chains of length 2:

L Slslhrt =l s}
{1}l L x} SUs{x}

44. THETTS.Y AND SIMILARITY 101

Similarly, with respect to either lower similarity or upper similarity, the equivalence classes of
(P (P, (unit))) form chains of length 3.

Convex similarity and refinement similarity are more complex than lower similarity and upper
similarity. The partial orders on their equivalence classes are depicted in figures4.3 and [4.4]
(only one representative from each equivalence classis given@.

Thepartial orders on the equivalence classes of .’ (P (bool)) with respect to all of the variants of
similarity are depicted in figureld.5 Figureld.d contains the partia ordersfor . (P, (P, (bool)))
with respect to lower similarity and upper similarity, and figureld.7] contains the considerably
more complex partial order for convex similarity equivalence classes.

The members of the equivalence classes in figuresi4.3 and 4.6 have been chosen to illustrate
lemmas.2.5(3)(a) and[4.2.6] i.e., lower similarity isthe converse of upper similarity and refine-
ment similarity when restricted to hereditarily total states, and there are representatives of the
maximal equivalence classes that are hereditarily total and/or hereditarily deterministic.

Lemmal4.2.5(2)(c) ensures that mutual convex similarity and mutual refinement similarity co-
incide with convex bisimilarity on states of type P (unit) or P, (bool), because those types
have P-order 1. However, this property does not hold for the states of type R (P, (unit)) or
P, (P, (bool)). The non-trivial equivalence classes of states of type P (P, (unit)) with respect to
convex similarity and refinement similarity are:

1. Mutual convex similarity:
@ {1 {L g {L {Lh{L*}
(b) {L. {%}} e (L {1 e { AL e G (L L) {Lth)
© {H{Lh S L (o1
2. Mutua refinement similarity:
@ {1, {1 #}} ~pe{ L { Lo {1} (o} s {1 L wh {L g L (L (1
(b) {{L,x}} e Lo b AL} () e {{Lowd { L s {{ Lok {3

Examplel.4.7lgives more general examples to show that the variants of bisimilarity are strictly
finer than the variants of mutual similarity.

Example4.4.1 If AB e 7(0) are such that Agf;B and BZ,.A, then {A B}~,{B} and
{AB}£ (B} a .7 (P.(0)). Similarly, if A<{sB and BZ{ <A, then {A}~.{A,B} and
{A} géffB {A,B}. The assignment A= {1} and B = {x} satisfies both conditions for 0 =
P, (unit). It is aso possible to give assignments that rely only on non-determinism instead
of non-termination:

I a2 ((F0) and ({10} o4 ({10}
[M =0 (4 1), ()} and ({10} } o4 ({1 2}, 1))

1The diagrams in this section were generated using the Possum [Ear97] system.

102 CHAPTER4. TYPED TRANSITION SYSTEMS

{3}

{4} {x}}

/N

{1} {x}) {{L*}}

SN/

{1 {3} {{Lh{L 1}

NN

{x} H&L*{ /{{i}}
{Lx} {L AL
{1} {L}
(@ (P (unit)) (b) (P (P, (unit)))
Figure 4.3: Equivalence classes of .7 (P, (unit)) and . (P, (P, (unit))) w.r.t. Né

{1} {1 {{x}1}

> >

{L {1} {L {x}} {Lh {3}

N L

{l}\ /{*} {L {l}ﬁ ;L %)}
{L,*} {L{L,+}}
(@ (P (unit)) (b) - (PL(Py (unit)))

Figure 4.4: Equivalence classes of .7 (P, (unit)) and . (P, (P, (unit))) w.r.t. g-é’;

ch-tts.4
ch-tts.5
ch-tts.18
ch-tts.14

44. THETTS.Y AND SIMILARITY

{fr} {L.ff, et}

NSNS

{107} {L, it}

N/

{L}

7
(©) Scs

103

{ry {tt}

N/

{ff 1t}

{1}

7
() Sys

{Lty gy {w}

XX

{Lary {L it} {ff, it}

V4

{L.fftt}

7
(@ Sgrs

- : ; S S S 5%
Figure 4.5: Equivalence classes of . (P, (bool)) w.rt. $/'q, Sl Scer @d Spe

ch-tts.7
ch-tts.8
ch-tts.9
ch-tts.13

104 CHAPTER4. TYPED TRANSITION SYSTEMS

{7, e} {71} {{#t}}
\ N4
{Hrr et} oy {eeh}
VRN
{73} {{tt}} {{1r, e}
A4
{{L}} {{L}}
{1} {L}
G ®) <Us

Figure 4.6: Equivalence classes of .7 (P, (P (bool))) w.r.t. g’é and 5’53
Mutual refinement similarity behaves in the same way as upper similarity. |If ASZSB and
BZnsA then {A} =7 (A B} and {A} £, {A,B}. Theassignment A= {ff, tt} and B= {ff } sat-
izfiesthe conditions. Finally, if A,B,C € . (c) are such that A</ BSC and CZZBEIA,
then:

{ABCI~{ACH ad {ABCI#L{AC
A suitable assignment isA={L},B={L,x},andC = {x}.

Theidentifications made by mutual lower similarity and mutual upper similarity in exampléd.4.1]
can be extended to lower and upper sets. The lower and upper setsturn out to be useful for prov-
ing the existence of certain meets and joins, with respect to lower similarity and upper similarity,
in . at computation types. First we show that the result of taking a lower set is related to the
original set by mutual lower similarity, and similarly for upper sets and mutual upper similarity.

Lemma4.4.2 For A€ . (P.(0)), extend the partial orders gf; and gj”s from (o) to 7 (0) |

in the usual way, and then define | s(A), Tus(A) € .#(P.(0)) by:

ILs(A) € {Ce.7(0). | 3B ACS/sB}
fus(A) € {C e #(0). | IBEABZC)

ch-tts.10
ch-tts.11

105

44. THETTS.Y AND SIMILARITY

&r&»‘/’ %
AN
2N QNS

A

XLNTALY
CNOK HTNEAT
N O g oY

: “"/4\,%»! WM\\’"
Nvawd

.\/’ /'\sz m
S 7

ch-tts.12

106 CHAPTER4. TYPED TRANSITION SYSTEMS

Proof WehaveA<LSLLs() because lower similarity isreflexive, and if C € || s(A) such that

C+# L, sothereexists B+# L such that CNLSB € A then | s(A)NLSA Therefore A—leLS().
For upper similarity, first notethat | € Aif and only if L € Jys(A). If L € A, thereisnothing to

prove, so suppose that L ¢ A. The reflexivity of upper similarity implies fys()gusA For the

other direction, consider C € Tys(A), so there exists B € A such that B §USC and we are done.

Therefore A~ Tus(A). 0

Lower similarity and upper similarity are partial orders on the images of the |, s(-) and Tus(-)

functions, and they agree with the inclusion partial order and its dual respectively. These partial
orders are order-isomorphic to the partial orders induced by the preorders lower similarity and
upper similarity (respectively) on . (P, (0)). To prove this it suffices to show that states of
computation type are related by lower similarity or upper similarity if their images under | s(-)

or Tus(-) arerelated by the inclusion order or its dual respectively.

Lemma4.4.3 For al Ay,A; € .7 (P (0)):

1. AlNLSAZ if and onIy if lLS(Al) - lLS(AZ)-

2. AL SUgPe if and only if Tus(Ar) 2 Tus(Ag).

Pr oof

1. Suppose A1NL3A2 and C; € | s(A1). If Cy = L, we are done because every lower set
is non empty and contains L. Otherwise G # L and there exists Bl € A such that
C NLSB]-’ s0 By 75 1.By A1< A2, there exists B, € A, such that B]-NLSBZ and B, 75 1.

Hence, ClNLSBz, which implies that C; € | s(A2). For the other direction, suppose
lLs(A1) C [1Ls(A2) and By € Ag such that By # L. By reflexivity of lower similarity,
B1 € [Ls(A1) C |Ls(A2), so there exists B, € A such that BlNLS B, and B, # L. There-

8%
fore Ay 5| A2

2. Suppose A1NUSA2 and C; € Tus(Az), S0 there exists B, € A, such that By <

1 eA, then C; € Tus(Ar1), because J-Sus

By A1< A2, we have | ¢ Ay. Consequently, there exists B, € A such that 51NU5|32

~us If
C,, and we are done. Otherwise, L g A

and B; # 1, so BlNUSCZ. Therefore C; € Tus(A1). For the other direction, suppose
TUS(Al) D) Tus(Az) and L ¢ A By TUS(Al) D) Tus(Az), we have L € A,. Now consider
By € Ar such that Bp # 1,s0B, € Tus(Az) C Tus(A1). Hence, there exists By € A such
that BlNUS B, and B; #~ L. Therefore AlNUSAZ' O

44. THETTS.Y AND SIMILARITY 107

Results on the existence of meets and joins at computation types with respect to lower similarity
and upper similarity are obtained viathe inclusion partial order and its dual on the images of the
lis(+) and Tys(+) functions.

Proposition 4.4.4 For al types o:

1. The partial order induced by the preorder (. (P, (0)), Sfé) isacomplete lattice.

2. The partia order induced by the preorder (. (P, (o)),NUS> has meets of al non-empty
subsets and joins of al subsets with an upper bound.

Proof We show that the partial orders:

{ls(A) A€ Z(PL(0))},€) and ({Tus(A)[Ae€ #(PL(0))},2)

satisfy the same properties.

1. The meet of the empty set is.” (P, (o)) and the join of the empty set is {_L}, both of
which map to themselves by | s(-) and so arein the image of that function. Now consider
X Cpe (P (0)). We claim that the meet and join of {| . s(A) | Ae X} ae N{lLs(A) |
A e X} and U{|Ls(A) | A € X} respectively. Both sets are members of . (P, (o)), and
in the image of | s(-).They are the meet and join because intersection and union are the
meet and join operations respectively on the complete lattice (P (. (o),), C).

2. Themeet of theempty set need not exist in general. Thejoin of theempty setis.” (P (o)),
which is equal to Tus({L}). Now consider X Cpe . (P, (0)). Using the fact that union
and intersection are the meet and join operations respectively on the complete lattice
(P(&ﬂ(o)),2), we need only show that [J{Tus(A) | A € X} is dways a member of
{Tus(A) | A€ #(PL(0))}, and that N{Tus(A) | A € X} is amember of {Tus(A) A€
< (P.(0))} whenever X is bounded above. The first case is straightforward. For the sec-
ond case, suppose that X isbounded above, so thereexists B € .7 (P (0)) such that, for all
Ae X, Tus(A) 2 Tus(B). Inthiscase, N{Tus(A)]Ae X} 2 Tus(B), so the candidate for
the join isanon-empty set, and we haveN{Tus(A) | A€ X} € {Tus(A) | A€ # (P (0))}.

O

Example[4.4.5 shows that the intersection of the lower and upper variants of similarity, mutual
similarity, and bisimilarity are strictly coarser than their convex variants. This completes the
series of examples that demonstrate that the inclusions in figurd4.2)are strict in ..

Example4.4.5 For A € .7 (0), consider the sets { L, {A}} and {L,{L,A}} that are states of
type P, (P, (0)) in .. They arerelated by each of:

7 5 op 7
(~g m—UB) C (= LSm_US) < (<L mSUS) and (5Ls) NSus
but not by any of:
7 % 7 7
~eg & —cs s S Scs O ~RrsE Sks

108 CHAPTER4. TYPED TRANSITION SYSTEMS

We conclude with examples to show that there are no other general inclusions that could be
added to figure[d.2,

Example 4.4.6 In figure[4.8 each row contains examples that demonstrate that two relations
are incomparable. For example, the first row shows that mutual convex similarity and lower
bisimilarity are incomparable. The states related by mutual convex similarity in the first column
are not related by lower bisimilarity, and the states related by lower bisimilarity in the second
column are not related by mutual convex similarity.

(L {ff 1)) g {1, (LB 1 {fF 1)) (e p {1+

{ A G L B (0 {Loh =g {1}

{1}<&t {s=s{ L0

{L}<&st+ {Lor}=Js{L}

{x} g {Lox} {L s} {1}

{r} sl Lox} {Lor}=Js{L}

Ny {L+} ST {1}

{{ff 1)} s {{FF 10}, {fF }} (e p {1+

{{ff 1t} } e {{1F 1t} {ff }} {1+~ {1}
{LAL s (g L A L)) L) e { L {0)
(LAL A O Sps{ AL il [{L Sl (L

Figure 4.8: Incomparable relations

45 A Categoryof TTSs

We investigate the relationship between TTSs and their associated cornvex bisimilarity relations
via a category PR of maps between TTSs. Maps are functions between the sets of states that
preserve and reflect the structure of TTSs, including the type of a state, labelled transitions, and
may divergence. The existence of amap @€ PR(.7, %) between TTSs.7 and % meansthat the
relation induced on states of .7 by pulling convex bisimilarity in % back along @ is finer than
convex bisimilarity in .7. In particular, there is a map from a TTS to its extensional collapse
whenever convex bisimilarity is applicatively compatible with respect to the TTS. A map can
also arisewhen % contains “more” statesthan 7. Thisleadsto alarge family of inclusion maps
derived by (carefully) removing states from TTSs. The TTSs determined by fragments of the
programming language . in chapter[5] have inclusion maps from smaller fragments to larger
fragments.

4.5. A CATEGORY OF TTSS 109

We also show that thereis at least one map to the TTS . from a TTS where convex bisimilarity
is applicatively compatible and an additional constraint is satisfied. The constraint is satisfied by
every TTS abtained from afragment of .Z.

The conditions upon functions that form the PR-maps are similar to, but more restrictive than,
those imposed on logical relations. They must be functions instead of relations, and the relation-
ship between states of, for example, natural number type are restricted because it is a coproduct
type not a base type. To illustrate this, suppose ¢: .7 — % and there are states s € .7 (nat),

t € 7 (unit), anatura number m € w, and alabelled transition s™ 7 t. Then it must be the case
that @(s) € % (nat), @(t) € % (unit), and there is alabelled transition (p(s)ﬂ% Qt).

Definition 4.5.1 Let .7 and % be TTSswith labelled transition relations —~ and —” respec-
tively, and @: .7 — % afunction from the states of .7 to the states of %. Define amap ¢ from
the labels of .7 to those of % by:

o(n) “n (new)
o@)Leet) (teT)
o(l) Ly

The function @ preserves and reflects labelled transitions and may divergence if it satisfies al
of the following conditions:

1. Thetypeof astateis preserved by ¢, i.e, if s€ .7 (0), then ¢(s) € Z (0).

2. Forall statess.t € 7 and labels a, if 527 t, then o(s) %27 git).

3. Foral statesse .7, ue %, and labels q, if cp(s)ﬂ% u, then there exists astatet € .7
such that s27 t and g(t) = u.

4. May divergence is preserved and reflected by @, i.e, for all statess € .7 of computation
type, s if and only if @(s) M.

It is straightforward to show that functions that preserve and reflect labelled transitions and may
divergence form a category. However, it is worth noting that composition is not well-defined if
definition4.5.1(3) is weakened to require only that @(t) and u are related by convex bisimilarity.

Definition 4.5.2 The objects of the category PR are TTSs. For TTSs .7 and %, the members
of the homset PR(.7, %) are functions from the states of .7 to the states of % that preserve and
reflect labelled transitions and may divergence.

Maps ¢ € PR(.7,%) have the following important property. If the images under ¢ of states of
7 arerelated by convex bisimilarity in %, then the states of .77 must also be related by convex
bisimilarity in .7. Intuitively, this holds because the existence of amap ¢ € PR(.7,%) forces
% 1o have at least as many states as .7, and so % has at least as much discriminative power for

110 CHAPTER4. TYPED TRANSITION SYSTEMS

states of function type as .7 does. In fact, % may have fewer states than .7 in some cases, but
this only arises when states of .7 that are in the same convex bisimilarity equivalence class are
identified in 7 .

Proposition 4.5.3 Consider ¢ € PR(.7,%). For states s,t € .7, if ¢(9) :Z/B @(t), then s:gBt.

Proof By coinduction. DefineR C .7 x 7 by:

RE{(st) €T xT|o(s)~La(t)}
The cases for states of avalue type are straightforward because every state of avalue type has at
most onetransition for each label. For example, if st € .7 (0 —1),uc .7 (0), and ¢(s) ~ B(p(t)
thens &%, 7 s@uandt — Qu gt@u By the labelled transition preservation property of ¢, we have
(0) cp(s@u) and @(t) —— L U @(t@u). However, @(s) and @(t) each have onetransition
labelled with @cp(u) because % is aTTS so @(s@u) = @(s) @@(u) and P(t@u) = P(t) @P(u).
Then @(s@u) >~ cp(t@u) because @(s) >~ (p(t) Therefore (s@u,t@u) € R , which completes

the case for stat% of function type. For computation types, consider states §,t; € .7 (P, (0))
such that O(S1) ~cg cp(tl) Combining the fact that @ preserves and reflects divergence with

cp(sl) ~en (p(tl) givess; M if and only if t; f™¥. Now consider any state , € .7 (o) such that

Sg_—> S, SO <p(sl) v Z/(p(sg) By cp(sl)NCB(p(tl) there exists u € % (o) such that (p(tl)i//u

and ¢(s) CBu By the transition reflecting property of ¢, there exists b € .7 (o) such that

t1—> 7t, and @(t2) = u. Therefore (s,t2) € R, because () >~ (p(tz) The other direction is
similar. O

Thereis a partial converse to proposition[4.5.3 It is partial because 2 may have states of type
o that are not in the image of ¢. Such states have no effect on .7 (o — 1), but can be used to
distinguish their imagesin % (o — 1).

Lemma4.5.4 Consider € PR(.7,%). Let Abethe set of types for which convex bisimilarity
in % pulled back in ¢ coincides with convex bisimilarity in .7:

def
A={o|Vste J(0). s_CBt = @(9) CBcp(t)}
Then:
1. Aisclosed under the formation of coproducts, products, and computation types.

2. FordltypesoandT, if every statein % (o) isintheimageof @, and T € A, theno — T € A.

Pr oof

1. We give the case for computation types. The cases for coproduct and product types are
similar. Consider atype o € A and states s;,t; € .7 (P, (0)) such that sl:'gBtl. We want

4.5. A CATEGORY OF TTSS 111

to show that cp(sl):z/B ¢(t1). Using slngtl and the fact that ¢ preserves and reflects
divergence, we seethat @(sy) t™ if and only if @(t;) 1™®. Now consider u € % (o) such

that @(s) Yy, By the transition reflecting property of @, there exists $ € .7 (o) such
that sli’qsg and () = u. By sl:‘gBtl, there exists t, € .7 (o) such that t; i’qtz and
szngtz. It follows that @(t;) Yz Q(tz), and @(s) :z/B ¢(t2) because o € A. The other
direction is similar. Therefore (s1) ~2 o(t1).

2. Consider st € .7 (0 — 1) such that sngt. We want to show that @(s) :Z/B @(t). It suffices
to show that, for all u e % (o), @(s) @uzogB @(t) @u. By assumption, there exists a state

v e 7 (0) such that u= @(v). Now s2.7 s@v, 0 ®(s) o) @(s@v), but ¢(s) has a
unique transition labelled with @@(v) , so @(s) @@(V) = @(s@v). Similarly, @(t) @@(v) =

@(t@v). In addition, s@v:gBt@v, because s:gBt. With T € A, we get ¢(s) @u =
O(S@V) 2, a(t@V) = ¢(t) @u as required. 0

We now define the extensional collapse of a TTS. The states of the extensional collapse are
equivalence classes of states with respect to convex bisimilarity. Convex bisimilarity must be
applicatively compatible with respect to the TTS so that the application transitions of the exten-
sional collapse are well-defined, for the same reason that it is not aways possible to define the
guotients of agATS or agNATS.

Definition 4.5.5 Let .7 beaTTSsuch that convex bisimilarity is applicatively compatible. The
extensional collapse of .7 isaTTSdenoted Ext(.7). The states of Ext(.7) are defined, for each
type g, by:
def T
Ext(7)(0) = {{t€ 7(0) | s~ggt} | s€ T(0)}
A state A € Ext(7) may diverge if and only if, for al se€ A, s{™¥. To define the labelled
transition relation, consider states A, B € Ext(.7). If A hasacoproduct, product, or computation

type, then ALEU7) B if and only if, for all s€ A, there existst € B such that s%7 t. If Ahasa

function type, then ACC BT Bif and only if, forall se Aandu € C, s@u < B.

Convex bisimilarity is extensional on the extensional collapse of a TTS and there isamap from
the extensional collapsetotheoriginal TTS. In addition, every state of the extensional collapseis
in the image of the map, so, by lemmal4.5.4] the images of states related by convex bisimilarity
in the original TTS are related by convex bisimilarity in the extensiona collapse, i.e., they are
equal.

Proposition 4.5.6 Let 7 be a TTS such that convex bisimilarity is applicatively compatible.
Then Ext(.7) isa TTS upon which convex bisimilarity is extensional. In addition, there is a
map @ € PR(.7,Ext(.7)) such that states of .7 are related by convex bisimilarity in .7 if and
only if their images under @ are related by convex bisimilarity in Ext(.7).

112 CHAPTER4. TYPED TRANSITION SYSTEMS

Proof Itisstraightforward to show that Ext(.7) isaTTS. Applicative compatibility of convex
bisimilarity isnecessary for the existence of transitions from states of Ext(.7") with function type.
For Ac Ext(.7)(0 — 1) and C € Ext(.7)(0), wemust show that there exists B € Ext(.7)(T) such

that A C%.B47) B Now A and C are non-empty, so there are states g € A and u; € C. For al

s € Aand up € C, applicative compatibility implies that 5 @u; :fB S, @uy. Therefore we take
B to be the convex bisimilarity equivalence class of § @u;, and we have that Ext(.7) isaTTS.
Now define the function @: .7 — Ext(.7), for s€ .7 (0), by:

o(s) € {t e 7(0) | s~Zt}

Clearly every state of Ext(.7") isin theimage of ¢. Wefirst show that ¢ € PR(.7,Ext(.7)). The
function @ preserves the type of states, and preserves and reflects may divergence. Preservation
and reflection of labelled transitions by @is straightforward, making use of the applicative com-
patibility of convex bisimilarity on .7 and the fact that every state of Ext(.7) is the image of a
state of .77. Combining the latter fact with proposition[4.5.3 and lemmal4.5.4 implies that, for

al types o and states s,t € .7 (0), s:gBt if and only if ¢(s) :E’g(y) @(t). Moreover, s:gBt is
equivalent to @(s) = @(t), so convex bisimilarity is extensional in Ext(.7). O

In general, there need not be amap from Ext(.7) to .7 because definition4.5.1)(3) requires that
@(t) = u rather than @(t) :Z/B u.

Example 4.5.7 We define a TTS .7 such that convex bisimilarity is applicatively compatible,
but for which there are no maps from Ext(7) to .7. The states of type unit are 5 and .

The unique state of type P, (unit) is s, and there are no other states. The state s has two tran-

sitions, siy*l and siy*g. Convex bisimilarity is trivialy applicatively compatible with

respect to the TTS .7 because there are no states of function type. The extensional collapse
Ext(.7) has one state {x1,x2} of type unit, one state {s} of type P, (unit), and a single transi-

tion {s}iE’“(y) {*1,%2}. For acontradiction, suppose that thereisamap ¢ € PR(Ext(.7),.7)

and, without loss of generality, that @({x1,*2}) = x1. Such amap does not reflect labelled tran-

sitions, because @({s}) = 5&9‘*2 and x ¢ Im(@). Therefore the homset PR(Ext(.7),.7) is

empty.

We now consider arestriction operation upon TTSs. Therestriction operation ismotivated by the
family of TTSs determined by the fragments of the programming language . (see chapterlb),
and the mismatch between applicative similarity for PCF and its directed-complete partial order
model caused by the non-definability of parallel elements (see [Gun92]). A TTSis obtained
fromaTTS .7 by restricting to a set of states X C .7 that is closed under |abelled transitions of
7 , with the exception of function application transitions that are labelled with elementsnot in X.
Convex bisimilarity for 7 isalways finer, sometimes strictly finer, than convex bisimilarity upon
the TTS obtained by restriction, and we formalise this by showing that the inclusion function
from the states of therestricted TTSisamap.

Definition 4.5.8 Let .7 begTTSand X C 7 aset of states such that, for al statessc X,t € .7,
and labels a, such that 33>‘7t, either t € X, or there existsastateu € .7 \ X such that a= @u.

4.5. A CATEGORY OF TTSS 113

The restriction of .7 to X isa TTS denoted .7 | X. The states of .7 | X are defined, for each
type o, by:

The may divergence predicate for .7 | X is the restriction to X of the may divergence predicate
for 7. For states s,t € 7 | X, and alabel a, there is alabelled transition s%7 ¥t if and only if

s 7t and there does not exist u € 7 \ X suchthat a= @u.

Proposition 45.9 Let 7 beaTTSand X C .7 aset of states such that, for al states s € X,
t € 7, and labels a, such that sigt, either t € X, or there exists a state u € .7 \ X such that
a=@u. Then 7 [X isaTTSand theinclusion function @ from the states of .7 | X to the states
of Zisamap e PR(.7 [X,.7).

Proof For 7 [XtobeaTTSit sufficesto show that .7 | X has enough transitions to satisfy
definitiond.1I(5). For astate se .7 | X of coproduct, product, or computation type, the closure
conditions on X ensurethat if thereisastatet € .7 and alabel a such that sigt, thens&7 %1,

If se (7 [X)(0— 1) and u€ (7 [X)(0), then there existst € 7 (1) such that s&57t. The

closure conditions on X imply that t € X and s@—ufyfxt, because u € X. Therefore .7 | X
isaTTS. The inclusion function @ is easily seen to preserve types, preserve and reflect may
divergence, and preserve labelled transitions. The closure conditions on X also imply that la-
belled transitions are reflected by . For example, if se (7 [X)(o0 — 1), u€e (7 [X)(0), and
t € .7 (1) such that s 7t thent € X because u € X, s0 s 247t and @(t) =t. Therefore
@ePR(T [X,7). O

Example shows that convex bisimilarity on the restriction of a TTS can be extensional
when it is not extensional upon the original TTS, because a duplicate state in an equivaence
class can be removed.

Example 4.5.10 Consider the TTS .7 described in exampleld.2.8, and let X C .7 be the set of
states {1, ff, tt, s}. Then convex bisimilarity on .7 | X is extensiona although it isnot on .7.

Conversely, convex bisimilarity may not be extensional on .7 | X even though convex bisim-
ilarity is extensional on .7. This is because a state u € .7 (0) that can distinguish the states
ste(J1X)(o—1) may notbein .7 | X.

Example 4.5.11 WedefineaTTS .7 with an extensional convex bisimilarity. Thereisarestric-
tion of .7 where convex bisimilarity is not extensional. The states of .7 are defined by:

{*} if 0 =unit
7(0) def {ff,tt} if 0 =bool
{s,;t} if 0=bool — bool
0 otherwise

114 CHAPTER4. TYPED TRANSITION SYSTEMS

The transitions are determined by:

£ s@f s g
the t%g 1@y
Then :gB is extensional on .7, but if X C .7 is {x,ff,st}, then :gBrx is not extensiona on

T | X because s:ngxt and s # t. Note that sﬁgBt.

Proposition [4.5.12 shows that the maps of PR are essentially identifications composed with

inclusions. Every map @€ PR(.7, %) factors through therestriction % | Im(¢) and theinclusion
map from % [Im() to % . Moreover, % | Im(¢) has no more discriminative power than .7 .

Proposition 4.5.12 Consider TTSs.7 and %, and amap ¢ € PR(.7,%). Then Im(¢) C % is
aset of states such that, for all states s € Im(¢), t € %, and labels a such that 57t either t €
Im(¢) or thereexistsu € % \ Im(@) such that a= @u. The map ¢ factors through % | Im(¢) as
©= @1; @, Where@ € PR(.7, % [Im(@)), and @, € PR(%Z [Im(@),%) istheinclusion function.
Moreover, for all states st € 7, s~ t if and only if @1(s) ~2'™? @y t).

Proof Without loss of generality, consider s€ .7 (so @(s) € Im(¢)), t € %, and a label a
such that (p(s)iflt. If there exists alabel b from .7 such that a = @(b), then by the labelled

transition reflecting property of ¢, thereexistsv € .7 such that %7 vandt = @(v), sot € Im(q).
Otherwise there must be a state u € % such that a= @u and u ¢ Im(¢), and we are done with
the first part. Now define@ =@, so @ : .7 — % [Im(@), and let @ : % [Im(g) — % be the
inclusion map. We have @ = @; ¢. The function ¢, preserves and reflects labelled transitions
and may divergence because @ does, so @ € PR(.7,% | Im(@)). By definition, every state of

% 11m(@) isin theimage of @, so by lenmal4.5.4, for al states s;t € .7, s:gBt if and only if
u
o)™ ;u(t). 0

We now consider the specia role of the TTS . (see sectionsi4.3 and [4.4) in the category PR.
Thereisafamily of TTSseach of which has an applicatively compatible convex bisimilarity and
amap to .. Thisreinforces the idea that . contains as many states as possible with different
behaviours whilst retaining an extensional convex bisimilarity. However, exampld4.5.13 shows
that thereisa TTSwith no mapsto . where convex bisimilarity is applicatively compatible.

Example 4.5.13 We define a TTS .7 with extensional convex bisimilarity and a single state
s€ 7 (unit — sum()). Note that no TTS can have a state of sum (), so s€ .7 (unit — sum())
impliesthat there are no states of type unit in .. Now . (unit) = {*}, and s0.% (unit — sum))
is empty. Therefore there are no mapsin PR(.7,.%), because s cannot be mapped to any state
of ..

The problem demonstrated in example[4.5.13 is that a TTS with an applicatively compatible
convex bisimilarity may have states of function type even though . has no states of the same
type. Theorem[4.5.15 shows that for every TTS (with an applicatively compatible convex bisim-
ilarity) that has no states of a given type whenever . has no states of that type, there is a map

4.5. A CATEGORY OF TTSS 115

to .. Before proving this, we define a partial function & that picks out one state of .~ for each
type whenever there is a state of that type.

Lemma 4.5.14 Define a partia function & that maps each type o to a state of .%(o) by induc-
tion:

undefined if Yn < K.&(0op) is undefined

def
E(sum(on [N <K)) = {(m,E(om)> if m< K isthe least natural number
such that &(om) is defined

undefined if Im< K.&(omy) isundefined
(prod (on | n < k)) & “K.E(om)
(&(on) | n<K) otherwise

undefined if §(0) isdefined and
fo—1)% £(1) is undefined
{{AJ¢(1)) |Ac F(0)} otherwise
&(P.(0) € {1}

Then, whenever &(0) isdefined, (o) € .#(0), and whenever (o) isundefined, .7 (o) isempty.

Proof Theresult must be proved by induction on types with the definition to show that the case
for function types is well-defined. Consider sum (o, | n < K). If &(sum (0 | N < K)) is defined
and isequa to (m,&(om)), then &(om) is defined, and so by the induction hypothesis, §(om) €
. (0m). Therefore (M &(om)) € L (sum(0n | N < K)). If §(sum (0, | N < K)) is undefined,
then suppose (M, A) € .#(sum (0, | N < K)), wherem < K. Inthiscase, A€ . (o) and §(0n) is
undefined, which contradicts the induction hypothesis. Therefore.” (sum (@, | n < K)) isempty.
The case for product types is similar, and the case for computation types is trivia. Finally,
consider the function type 0 — T. If §(0 — 1) is defined, then either &(1) is defined or &(0)
is undefined. In the former case, by the induction hypothesis, §(1) € .#(1), and (0 — 1) isa
constant function from .#’(o) to .~ (1). In the latter case, .”(0) isempty, and so f is the unique
function from .7 (o) to .(1). In either case, {(0 — 1) € .¥(0 — 1). If {(0 — 1) is undefined,
suppose for a contradiction that f € /(0 — 1). By the induction hypothesis, (o) € . (0),
s0 f(§(0)) € .(1), which contradicts the induction hypothesis at t. Therefore .” (o — 1) is
empty. O

Now we can show that maps to .7 exist. For amap fromaTTS .7 to .7, astate of .7 with a
function type 0 — T is mapped to afunction f : (o) — . (1). The function f maps a state of
Z(0) to §(o) if itis not the image of astate from .77 (o). This causes the restriction of .7 to the
image of the map from .7 to . to have an extensional convex bisimilarity.

Theorem 4.5.15 Consider aTTS .7 with an applicatively compatible convex bisimilarity and
such that, for al types o and 1, if (0 — 1) isundefined (equivalently . (0 — 1) isempty) then
7 (0 — 1) isempty. Then there existsamap ¢ € PR(.7,.) such that, for all states s,t € .7,
s~ tif and only if @(s) ~Z; @(t). In addition, convex bisimilarity is extensional in.” | Im(g).

Proof Thefunction @is defined by induction on the type of states. Simultaneously, we argue
that @ preserves and reflects labelled transitions and may divergence, and, for all statess;t € .7,

116 CHAPTER4. TYPED TRANSITION SYSTEMS

s:gBt if and only if @(s) zé; @(t). At states of coproduct, product, or computation type, @ is
defined by:

e If s€ 7 (sum(0n | N < K)) and there exists m < k and t € .7 (Gyy,) such that s = t, then
def
®s) = (M @(t)).

o If s€ 7 (prod (0n | n < K)), then g(s) & (

@(s@n) | n < K).
e If se 7 (P (0)), then @(s) o {L|st™}u{a@t)|s A t}.

It is straightforward to show that for all states of coproduct, product, or function type, @ pre-
serves and reflects labelled transitions and may divergence. Moreover, the arguments of propo-
sitionZ5.3 and lemmalZ5.4(1) show that s~ t if and only if g(s) ~Z, @(t) for states st € 7
of those types. For function types, consider 0 — 1. If §(0) is defined and (1) is undefined,
then (o — 1) is undefined, and, by hypothesis, .7 (o — 1) is empty, so we are done. Other-
wise, we must define ¢(s) for every state s€ .7 (0 — 1). If §(0) is undefined, then . (0) is
empty by lemmal4.5.14], and so ¢(s) can be defined as the unique function from the empty set to
(7). The remaining case is that both §(o) and &(1) are defined, so .¥’(0 — 1) is non-empty.
We have to define ¢(s) : .(0) — .7 (1), so consider A € . (0). If A& Im(g) (the action of
@ is aready defined upon .7 (0) and @ preserves types), then define @(s)(A) = §(1) € .7(1).
Otherwise, there existst € .7 (o) such that @(t) = A, and we define ¢(s)(A) = @(s@t) € .77 (1).
For this to be well-defined, we must show that @(t) = @(u) implies ¢(s@t) = @(s@u), for all
t,ue . (o). Suppose @(t) = @(u), so <p(t):’é; ¢(u), and, by the induction hypothesis at o,
t:'gB u. By applicative compatibility of convex bisimilarity with respect to .7, s@t :gB s@u.
Applying the induction hypothesis at T gives @(s@t) % @(s@u). However, . has an exten-
sional convex bisimilarity, so @(s@t) = @(s@u) as required. Therefore ¢ is well-defined at
states of function type. By construction, ¢ preserves and reflects labelled transitions. We also
need to show that, for all states s;t € .7 (0 — 1), SﬁgBt if and only if ¢(s) zgg @(t). For the
forward direction, consider s,;t € .7 (0 — 1) such that s:‘gBt, so0 &(0) is undefined or &(1) is
defined. We want to show that ¢(s) :’Cy;g @(t). If §(o) is undefined, then .7 (o) is empty, and
S0 @(s) = @(t) is the unique function from .#(0) to .7 (1). Otherwise, both (o) and &(1) are
defined. Consider A € .#’(0). We have to show that @(s)(A) :’CS; Qt)(A). If AZIm(g), then
@(s)(A) = &(1) = @(t)(A). Otherwise, there exists astate u € .7 (o) such that @(u) = A, and so
®(S)(A) = @(s@u) and (t)(A) = (t@u). Using s~ t, we have s@u=~Z;t@u. Then, by the
induction hypothesis at T, @(s@u) :g; @t@u). Therefore s:'gBt implies @(s) :é; @(t). The
reverse direction follows by the same argument used for proposition4.5.3

Finally we claim that convex bisimilarity on .~ | Im(¢@) isextensional. It sufficesto prove by in-
duction on atype o that, for al s;t € .7 (o), @(s) :gg'm(q’) @(t) implies @(s) = @(t). We consider
the case for function types, the other cases are straightforward. Suppose that s;t € .7 (0 — 1)
and g(s) ~Z,"™? @(t). To prove ¢(s) = ¢(t), we need to show that, for all A€ .7(a), @(s)(A) =
@(t)(A). Consider Ac .7(0). If AZIm(@), then @(s)(A) =& (1) = @(t)(A). Otherwise A€ Im(@),

4.5. A CATEGORY OF TTSS 117

and the definition of bisimilarity for .# | Im() implies that ¢(s)(A) =2, ™® g(t)(A). Applying
the induction hypothesis at T gives ¢(s)(A) = @(t)(A). Therefore @(s) = ¢(t), and convex bism-
ilarity on . [Im(¢) is extensional. O

The TTS . isaweakly terminal object but not aterminal object in the full subcategory of PR
with TTSs satisfying the hypotheses of theoreml4.5.15. Thisis because there may be states other
than the ones picked out by & that can be used as the image of non-definable elements.

Example4.5.16 We define a TTS .7 with extensional convex bisimilarity that has more than
one map to ..

{x} ifo=unit
y(o)dzerf {ff } ?fozbool
{s} if 0=bool — bool
0 otherwise
The transitions are determined ff % x and s &' ff. Then » and ff have fixed interpretations

in .7, but s can be mapped to either one of the functions f : .7 (bool) — . (bool) such that
f(ff) =ff.

In chapter [5|we show that many TTSs determined by fragments of . satisfy the hypotheses of
theorem proving that they are closely related to restrictions of ..

118 CHAPTER4. TYPED TRANSITION SYSTEMS

Chapter 5

Programming Language TTSs

In this chapter we define afamily of TTSs based upon the family of fragments of the program-
ming language .. The TTS structure provides definitions of the variants of similarity, mutual
similarity, and bisimilarity upon the programs of each fragment, and they coincide with the usual
definitions for non-deterministic A-calculi. The majority of results from chapteridl apply to TTSs
derived from .. Here we show that the lower, upper, and convex variants of similarity are com-
patible and satisfy the Scott induction principle for all fragments, and that the other relations are
compatible on arestricted, but useful, collection of fragments. We investigate relative definabil-
ity of different forms of erratic non-determinism with respect to convex bisimilarity, and show
that the relative definability equivalence classes induce different convex bisimilarity relations,
i.e., extending a fragment with a new form of erratic non-determinism can allow more terms
from the original fragment to be distinguished.

Section[5.1] defines the family of TTSs based upon the programming language. Sectionb.2stud-

iesthe similarity and bisimilarity operations on the family of TTSs and discusses how examples
for the TTS . in sectionsi.3 and[4.4 can be reconstructed in the programming language and
its fragments. Section considers operations upon relations on open terms that are used in
section to establish the compatibility results. The proofs are based upon Howe and Ong’s
techniques, and use Lassen’s relational presentation to prove results that apply to collections of
fragments. SectionE.5identifies a sequence of relative definability equivalence classes of pro-
grams of type P, (nat) and establishes a relationship with Turing degrees. Sectionl5.6|describes
elementary properties of the variants of similarity, mutual similarity, and bisimilarity, and then
shows that each member of the sequence of relative definability equivalence classes has a more
discriminating convex bisimilarity than that of the preceding member. Section5.7] proves the
Scott induction principle for the variants of similarity.

51 Yand %(E)

The programming language . determines a TTS with programs as states (using the same type
assignment system). We define the TTS based on . and consider restrictions to fragments of

119

120 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

the programming language. Throughout this chapter, E ranges over sets of well-typed terms of
the programming language .% .

The labelled transitions between programs capture aspects of the may convergence relation and
decompositions of the canonical programs resulting from evaluation. They are based upon Gor-
don’s [[Gor94, [Gor95g, [Gor95h] labelled transition relations for functional languages, which in
turn draw upon Abramsky’s [Abro0] AT Sfor thelazy A-calculus (see the discussion on page87).
Thelabelled transitions for programs of computation type correspond to Gordon’s definitions for
programs of active type. The distinction between active and passive types is not important for
TTSs at value types because programs of value types always terminate. Note that the labelled
transition relation for .4 does not incorporate silent T-transitions for individual reduction steps,
unlike the LTSs proposed for concurrent higher-order languages (see [FHJ95, Jef95]).

Definition 5.1.1 The states of the TTS % are the programs of the programming language .¥
with the same type assignment system, i.e., M € %(0o) if and only if - M : 0. The may
divergence predicate for the TTS .% is the may divergence predicate defined in section3.5 for
the programming language. The labelled transitions of the TTS .4 are defined by:

1. Me Z(sum(0n | Nn<K)) =
VM<K.YNE %M 5 N<= M |™ injmof N

2. M € L(prod (On | N<K)) =
V(Np € % |n< k). (VM<K.M 5 Np) <= M ™ tuple (N, | n < K)

3 Me H(0—1) =
YN € .Z. (YL € Z(0).M &5 N[L/X) <= M ™ \x.N

4. M e %P .(0) =
YN € Zo.M 5 N = M ™ [N]

For each set of termsE C .2, the TTS % (E) is defined to be the restriction % | . (E) of the
TTS. % totheprograms of thefragment .2 (E). Wewrite 4(My,...,My) for £({M1,...,Mn}).

A summary of the notation may be useful at this point:

1. (8) Zistheset of all well-typed terms.

(b) . is aso used to refer to the programming language defined in chapter[3, which
includes the set of well-typed terms and the operational semantics.

2. () % isthesubset of . consisting of al well-typed programs.

(b) % isthe largest TTS defined in definition 511l The states of % are well-typed
programs, and as with other TTSs, % is used for the set of all states of that TTS.
This usage coincides with 2(a).

51. % AND %(E) 121

3. (8 “(E) isthe set of programs in the smallest fragment .#(E) containing the set of
well-typed terms E .

(b) 4(E)isaTTSdefined by restriction in definition5. 1.1l States are programs from
the fragment . (E).

4. %(0) and £(E) (o) are the sets of states of type o from the TTSs % and %(E)
respectively.

Lemmab5.1.2 %isaTTSand, foral E C ¥, A4(E)isaTTS.

Proof Itisstraightforward to provethat 4 isaTTS, because the may convergence relationis
afunction at value types by lemmal3.4.4, lemmal3.5.2, and proposition For 4(E) to be

aTTS, we must establish the conditions of definitiond.5.8,i.e., if M € % (E), N € %, and ais
alabel, such that M 2 N, either N € .%(E) or thereexists L € 4\ %(E) suchthat a= @L .
This holds when M does not have function type because 4(E) is closed under evaluation by
lemmal3.7.2land is closed under taking subterms by definition. When M € -4(E)(o — 1) and
N e %(E)(o), we also make use of the fact that 4(E) isclosed under substitution. Therefore
Z(E)isaTTS. O
Defining the family of TTSs by restriction creates arich collection of relationships between the

TTSs, because every TTS % (E) is arestriction of %. More generaly, if Z(E;) C Z(Ey),
then the TTS %4 (E1) isarestriction of the TTS %4 (Ez):

Zo(E1) = Z0(E2) [Z(E4)

With these relationships, we can deduce inclusions between the variants of convex bisimilarity
for go(El) and fo(Ez).

The generic projection and application operations that are available in al TTSs (see defini-
tion do not coincide with syntactic projection and application because of the may conver-
gence clauses in the definition of the transitions of .45. However, the resulting programs do have
the same may convergence and may divergence behaviour.

Lemmab.1.3

1. For a program M € %(E)(prod (on | N < K)), m< K, and a canonical program K €
Zo(E)(om):

M@m{|™ K <= projmofM ||™ K
M@mN™ <= projmof M /™

122 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

2. For programs M € %(E)(o — 1) and N € 4(E)(0), and a canonical program K €
.iﬂo(T)Z

M@N ™ K <= MN |™ K
M@N ™ < MN M

Proof Follows from the may convergence and may divergence rules for projection and func-
tion application. O

It is useful to know when states are hereditarily deterministic or total because lemmal4.2.5
then gives identifications between variants of similarity, mutual similarity, and bisimilarity.
Lemma[5.1.4] identifies conditions under which all states of a TTS derived from a language
fragment will be hereditarily deterministic.

Lemma5.1.4 If E contains no instances of erratic choice constructors, then every state of the
TTS % (E) ishereditarily deterministic.

Proof Straightforward because the restrictions to #(E) of the reduction relation — and the

deterministic reduction relation et coincide. O

However, a program may be hereditarily deterministic in one TTS but not in a larger TTS be-
cause of the behaviour of functions.

Example 5.1.5 The program F Ax.Xx : P, (bool) — P, (bool) is hereditarily deterministic as a
state of £5(0), but not as a state of 2p(?(false, true)) because:

?(false,true ?false,
)\X.X—>< rue), Zo(*fa se'tme>)’?(false7true>

and ?(false, true) is not hereditarily deterministic.

For any TTS of the form 4(E), every computation type P, (o) has a program Q that is not
hereditarily total. There may be types with P-order greater than one where all states of that type
are hereditarily total, because fragments need not be closed under infinitary product constructors.

5.2 Similarity and Bisimilarity

The TTSs derived from the programming language . and its fragments inherit definitions of
the variants of similarity, mutual similarity, and bisimilarity. In this section we give an elemen-
tary description of the variants of similarity and bisimilarity for language fragments, prove the
existence of maps in the category PR from the TTSsfor certain language fragments to ., and
consider how the examples from sectionsi4.3 and[4.4] can be reconstructed in TTSs derived from
the language fragments. We start by defining the space of relations on programs.

52 SIMILARITY AND BISIMILARITY 123

FMiR Nj:sum(on| n<K) <

dm< K.3IMaz, No.
(Ml umay inj mOsz) VAN (Nl umay injmof Nz) VAN
(F MQR Ny : O'm)

MR N:prod(on | n<K) <

(M7 | n<K),(Ny | n<K).
(M1 ™ tuple (M, | n < K)) A (N ™ tuple (N} | n < K)) A
(Vm< k. F M[,R N/,: om)

FMiRNi:o—1T<
IM,, N
(Ml umay AX. Mz) VAN (Nl Umay AX. Nz) VAN
(VL € A(E)(0). - M2[L/X]R Nz[L/X] : 1)

Figure 5.1: Unfoldings of similarity and bisimilarity for 4(E) at value types

Definition 5.2.1 The set Relo(E) consists of al sets of pairs R € A(E) x 4(E) where
(M,N) € R implies there exists a type o such that M,N € 4(E)(o). The complete lattice
(Relp(E), C) has meets defined as intersection for non-empty sets. The meet of the empty set
IS

{(M,N) | 30.M,N € Z(E)(0)} € Relo(E)

We write Relg(My, ..., M) for Relg({M1,...,Mp}). WhenR € Relg(E), wewrite- MR N: o
or-(M,N)eR :oforM,Ne %4(E)(c)and (M,N) eR.

The variants of similarity and bisimilarity for TTSs derived from . and its fragments can be
characterised directly in terms of the operational semantics. If R € Rep(E) isavariant of sim-
ilarity, mutual similarity, or bisimilarity, then the characterisations in figure5.dl hold at value
types for programs of %4 (E). The characterisations in figurel5.2 hold for the relations at com-
putation types (cf. figured.T).

The TTS .4 derived from the programming language can be related to the TTS . described
in sections[4.3 and [4.4] using theorem[4.5.15. To do this, we need to know that % (0 — 1) is
empty whenever §(o — 1) is undefined (see lemmal4.5.14| for the definition of the function &).
Lemmal5.2.2 establishes a more general result for open terms.

Lemmab5.2.2 Consider an environment I' = %:01,...,%:0n. If §(01),...,&(0n) are defined
and thereexistsaterm I' = M : o, then §(0) is aso defined.

Proof By induction on the derivation of I' = M : g. The cases for terms of a computation type
are trivial because every computation type is in the domain of §. We give three representative
Cases:

124

CHAPTER 5. PROGRAMMING LANGUAGE TTSs

FMLS2EIN PL(0) =

YMa. My ™ [Ma] —> 3N Ny 1™ [N A F Mo S2EIN, 2 o

FMLSLEINL PL(0) =

~US
Ml Umust:>
(N ™ AYNG. Ny ™ [N = M. My ™ M) A - Mo SE2EIN, - o)

F M SEEING Py (0) =
(VM. My ™ [My] = 3N5. Ny 4™ [N] A - Mo SE2E N, 2 0) A
(Mg M —

(N ™ AYNG. Ny ™ [No] —> IMo. My 1™ [Mo] A - Mo SE2EIN, - o))

- M Spe® Ny Py (0) =

(Ml Umua:> Nl Umua) A

E
(VN Np ™ [N = M. My ™ [Mo] A - Mp SEIN, 2 0)

F My~ 2EN Py (0) =
(VM2 My ™ [My] —> 3N, Ny 4™ [No] A - Mp~=2EI N, 2 0) A
(VN Ny 4™ [N —> IM2. My ™ [Mo] A - Mo 2EIN, 2 0)

F M1 2Ny Py (0) =
(My 1™ A Np) v
((Ml Umui /\Nl umust)/\
(YM2. My ™ [My] = INa. Ny 1™ [No] A - M2 E)N, : 0) A
E
(VN2 Ny 1™ [N —> IM2. My ™ [Mo] A - M~ 25N, 2 0))

F My~ 2N Py (0) =

(Ml llmui<:> Nl llmui) /\

(VM2 My ™ [Mp] —> 3N, Ny 4™ [No] A - Ma~ed &N, 6) A
(VN Ny 4™ [N —> IM2. My ™ [Mo] A - M2 EIN, 2 0)

Figure 5.2: Unfoldings of similarity and bisimilarity for 4(E) at P, (o)

5.3. RELATIONS ON OPEN TERMS 125

1. It caseMof (X,.Nn [n<K) : T
By theinduction hypothesisfor I' - M : sum (o, | n < K), we have that &(sum (0, | N < K))
is defined, and so there exists m < Kk such that &(om) is defined. Then the induction
hypothesis for ', Xy : Om = Ny : T implies that &(1) is defined.

2 TEFAXOM:0—T1
If (o) isundefined, then & (o — 1) isdefined, and we are done. Otherwise & (o) isdefined.
Theinduction hypothesisfor I',x: o+ M : Timpliesthat &(1) isalso defined, and therefore
&(o — 1) isdefined.

3 TFMN:1
By the induction hypothesis, both &(o — 1) and §(0) are defined. Therefore &(1) isaso
defined. O

If convex bisimilarity is applicatively compatible on aTTS 4(E), then programs from %(E)
can be related to states of the TTS .#. This (functional) relationship does not constitute a
denotational semantics because its definition is not compositional, i.e., theimage of aterm M is
not defined in terms of the images of the immediate subterms of M.

Corollary 5.2.3 If Z(E) isalanguage fragment such that :‘gS(E)

then thereisamap g€ PR(%(E),.7).

is applicatively compatible,

Proof The hypotheses of theoremi4.5.15 hold by assumption and lemmab.2.2 O

Convex bisimilarity is shown to be applicatively compatible for certain language fragments in
section5.4.

The majority of examplesfor the TTS.& from sectionsi4d.3 and[4.4lhave anal ogues in sufficiently
expressive language fragments. For types with no function type constructors, it isonly necessary
to show that states of . used in examples are in the image of ¢ € PR(%4(E),.¥). For exam-

ple, figure[5.3 compares convex similarity upon programs with type P (P, (unit)) with convex

similarity upon the states of . with type P (P, (unit)). A minor benefit of using Moggi’s com-

putational A-calculus isthat the example programs are simple because the unit term constructor
can be used instead of A-abstraction.

5.3 Relationson Open Terms

The definitions and results in this section concern relations on open terms, and are used in
the proofs of compatibility (section[5.4) and fixed-point properties (section5.7). Following

Lassen [Las98b], afew key operators on relations (closed restriction, open extension, relational

substitution, and compatible refinement) provide alayer of abstraction from terms, which makes
it easier to construct proofs that apply to different programming languages obtained as fragments
of Z.

The non-standard notation introduced below has been chosen to emphasise the parameter E , be-
cause it plays an important role in the definition of the open extension and compatibl e refinement

126 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

{{+H

{{L#} {+}}

/N

{1} {3} {{L*}}

A

{1 {x}) {5 AL +})

NN

{L AL *}} {13}

N/

{L AL}

{1}

@ 7 (PL(PL(unit)))

Figure 5.3: Equivalence classesin . and % at P, (P, (unit))

/\
/\/
\/\

QUQ U

Ve

Q

(b) Zo(P. (P (unit)))

wrt. S&and S28

ch-tts.5
ch-tts.17

5.3. RELATIONS ON OPEN TERMS 127

operators by restricting universal quantificationsto .#(E). Most of the proofsin this section are
brief or omitted altogether because they are straightforward or appear in the literature. However,

care is required because some usual properties fail for certain choices of E (see exampleb.3.7).

To accommodate the definition of open extension in the presence of the empty type sum (),
the space of relations on open terms must include information about the environments in which
terms are related and must not enforce strengthening (see exercise 3.6.5 of [Cro93]). In addition,

definition[5.3.1] forces relations on open terms to be closed under weakening and renaming of
variables in the environment.

Definition 5.3.1 The set Rel(E) consists of all sets of triples:
R C{r|T anenvironment} x Z(E) x Z(E)
such that:

1. (I',M,N) € R implies there exists a (necessarily unique) type o such that ' - M : o and
N=-N:o.

2. (MM,N) eR andl C Aimplies (A\M,N) eR .

3. ((Mx:0),M,N) eR andy ¢ Dom(T") implies ((T",y: 0),M[y/X|,N[y/X]) €R .

The complete lattice (Rel (E), C) has meets defined asintersection for non-empty sets. The meet
of the empty set is:

{(r'M,N) |Jo.TFMe Z([E):cATHFNe ZX[E): 0} cRe(E)

We write Rel(My, ..., My) for Rel({M4,...,Mu}). WhenR € Rel(E), wewriter' F MR N: o
olfr-(M,N)eR :oforF-M:0,TFN:o,and (I, M,N) eR.

Thedual R ¢ Rel(E) of arelation R € Rel(E) isdefined by:
(FM,N) eR®«— (',N,M) eR

This induces a monotone function with respect to inclusion on Rel(E).

Relations on open terms R .S € Rel(E) can be composed as follows. For terms L, N and an
environment I

(T,LN) eR ;S < 3IM.(I',L,M) e R A(T,M,N) €S
The identity relation 1d(.#(E)) € Rel(E) isan identity for composition.

1d(ZE)E (T, M,M) |To.T M e .Z(E): o}

128 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

In addition, composition is associative, and monotone with respect to (point wise) inclusion.

The properties of reflexivity, symmetry, and transitivity are defined upon elements of Rel(E) in
the usual way in terms of inclusion, the identity, and the dual and composition operators.

The closed restriction and open extension operators are functions between the relations on closed
terms Relg(E) and the relations on open terms Rel(E). Relational substitution is useful for
describing properties of Howe's congruence candidate (see section’.4).

Definition 5.3.2

1. ForR € Rel(E), the closed restriction of R , CIs(R) € Relp(E), is defined by:

Cls(R) E {(M,N) | (0,M,N) €R }

2. For R € Relg(E), the open extension of R with respect to E, Opn(E,R) € Rel(E), is
defined, for terms M, N and an environment I' = % : O1,...,Xy : On, by:
r-(M,N)cOpnE,R): 0=
r-MeZE):on
r’-Ne Z4E):on
VL1 € Z(E)(01),...,Ln € Z(E)(on). - (M[L/S],N[L/X]) €R : 0

wherel =Lq,...,Lp.

3. For R,S € Rel(E), the relational substitution of S into R, written R [S] € Rel(E), is
defined, for terms Ly, L, and an environment I, by:

Me{L1,L2) eR[S]: T«
M, N, M, N.
Ly =M[M/X] ALz = N[N/X] A
rAF(M,N)eR 1A
vi<i<nrlFk <Mi,Ni>€S 1 Gj

where A =Xq :01,....X1: On, M =Mx,...,Mp, and N = Ny, ..., Np.

It can be verified that the open extension and relational substitution are aways elements of
Rel(E). In addition, all three operators are monotone with respect to inclusion.

Lemma5.3.3
1. IfR,SeRe(E)andR C S thenCIs(R) C CIs(S).
2. If R,S eRelp(E)and R C S then Opn(E,R) C Opn(E,S).

3 1fR,,R,S,,S,eRe(E),R, CS;,andR,CS,, thenR,[R,] CS,[S,].
Proof Straightforward. O

5.3. RELATIONS ON OPEN TERMS 129

The operators also satisfy the following basic properties that are anal ogous to resultsin|Laso80].

Lemmab.3.4

[EEY

. If R € Relp(E) and 1d(%(E)) C R, then Id(Z(E)) € Opn(E ,R).
2. 1fR € Relg(E) and Id(%(E)) C R, then Opn(E ,R)[1d(Z(E))] = Opn(E ,R).
3. If R ,S € Relo(E), then Opn(E ,R); Opn(E ,S) € Opn(E ,R ;S).

4. 1fR ;R ,,$,,S, € Rel(E), then (R ;R ,)[S;S,] C R[S, iR ,IS,)-

5 IfR eRel(E)andS € Relp(E), thenR C Opn(E,S) if and only if
CIs(R [Id(Z(E)))) C S.

Proof Straightforward. (2) makes use of lemma3.3.4 O

Howe [How89] introduces a now standard compatible refinement operator on relations between
termsin order to prove compatibility of applicative similarity (see sectiors.4). Termsarerelated
by the compatible refinement of R € Rel(E) if they have the same outermost constructor and

the immediate subterms are pointwise related by R .

Definition 5.3.5 The compatible refinement Cmp(E,R) € Rel(E) of arelation R € Rel(E)
with respect to E isthe least set closed under the rules of figureb.4.

Note that the notation used here for the compatible refinement Cmp(E ,R) differs from the
standard notation R .

Lemma5.3.6 ForR ,S € Rel(E):

1. IfR C'S,then Cmp(E,R) C Cmp(E,S).
2. If1d(Z(E)) C R, then 1d(.Z(E)) € Cmp(E ,R).
3. 1fR C1d(Z(E)), then Cmp(E R) C Id(Z(E)).
4. Cmp(E R);Cmp(E ,S) € Cmp(E ,R ;S)

5. Cmp(E,R)[S] € S UCMP(E R [S))

6. Cp(E ,R) = (Cp(E ,R))®

130

CHAPTER 5. PROGRAMMING LANGUAGE TTSs

= xx)eCmp(E,R):0 (I'(x)=0)
r-(M,N)eR :ony

I (injmof M,injmof N) € Cmp(E ,R) : sum (o | n < k)
I (L1,L2) € R :sum (o, | n<K)
{T X :0nt (Mp,Np) €R :T|n<K}

I (caseLjof (X,.Mp | n < K),caseLzof (X7.N; | n<K)) € Cmp(E,R) : 1T
{r'+(Mn,Np) €R :0n|n<k}

I (tuple (Mp | n < K),tuple(Ny | n < K)) € Cmp(E,R) : prod (0, | N < K)
M= {(M,N)eR :prod(on|n<K)

I+ (projmof M, projmof N) € Cmp(E ,R) : o
rx:oF(M,N)eR :1
M= (Axo.M,Axo.NyeCmp(E,R):0—T1
Nr=(My,N;)eR :0—1 r=(Mz,N2)eR :o
M= (M1M2,N1Nz) e Cmp(E,R) : T
r-M,N)eR :o
I+ (M],[N]) € Cmp(E,R) : P (0)

M= (M1,N;) €R : P (0) Mx:oF (M2,N2) € R 1P (1)
It (letx:o <= M1inMg,letx:0 <= N;inNz) € Cmp(E,R) : P, (1)
rx:P (o) (M,N)eR : P (0)

I {fixx:P.(0).M, fixx:P. (0).N) € Cmp(E,R) : P, (0)
{T't+(Mn,Np) eR :0|n<k}

M= (2Mn | n<k),Ny | n<k)) € Cmp(E,R): P (0)

In addition, each rule schema has implicit side conditions' - M € Z(E) : 0 and
=N e Z(E): owhenever the conclusionisl - (M,N) € Cmp(E,R) : 0.

Figure 5.4: Compatible refinement

5.3. RELATIONS ON OPEN TERMS 131

Proof (1)-(3) are straightforward case analyses. For (4), the conclusions of the compatible
refinement schema do not overlap, so if (L,M) € Cmp(E,R) and (M,N) € Cmp(E ,R) then
both are instances of just one rule schema, and L, M, N have the same outermost constructor. (5)
isacase analysisonterms M, N related by Cmp(E ,R). If M and N are the same variable, then

the results of substituting S -related terms into M and N are related by S. Otherwise the results
arerelated by Cmp(E ,R [S]). (6) follows easily from the definition of compatible refinement. O

Example 5.3.7 Theinclusion that is the opposite of lemmaB.3.6(4):
Cmp(E,R;S) C Cmp(E,R);Cmp(E,S)

does not hold for arbitrary fragments, including some of the fragments that we are most in-
terested in. For example, consider E = {?(0,1)} and R = Opn(E, {(0,2),(1,3)}) € Rel(E).

Then, because R ;R ® = Opn(E, {(0,0), (1,1)}), we have:
- (%0,1),%0,1)) € Cmp(E ,R ;R ™) : Py (nat)
However, because ?(2,3) ¢ £ (E):
(%(0.1),%(0.1)) ¢ Cmp(E R); Cmp(E R *)

Theinclusion is desirable because it greatly simplifies the proof of compatibility for variants of
bisimilarity. An aternative is proposed in section.4l

Analogous inclusions do hold in other settings when there are no inconsistencies concerning
term formation as there are in proper fragments of .’ such as #(?(0,1)). One way to resolve
this problem isto impose stronger closure conditions upon fragments. For example, the smallest
fragment £ (?(0, 1)) containing ?(0, 1) can berequired to contain every term of the form ?(M, N)
when M e Z(E):natand ' = N € Z(E) : nat. However, it is difficult to extend this
approach in away that permits fragments containing 2w but not ?A, where A Gye w is a non-
recursively enumerable set.

Alternatively, the term ?(0,1) can be treated as a distinct term constructor of arity 0, and com-
patible refinement can be extended with a new rule schema (with no premises):

M+ (%0,1),%0,1)) € Cmp(E ,R) : P (nat)

Unfortunately, this approach becomes complex when a fragment does contain every term of the
form ?2(M,N), wherel' - M € Z(E) :natand ' - N € Z(E) : nat, because then the origina
rule schema for compatible refinement should be used.

Howe's compatibility proof relies on arelation, the congruence candidate, that isthe least fixed-
point of a function defined in terms of the compatible refinement operator. The form of the
function ensures that the least fixed-point is the unique fixed-point, and hence it is aso the
greatest fixed-point. Thisfact is recorded in the following lemma, along with an easy corollary
stating that the identity relation isthe unique fixed-point of compatible refinement. In sectiorfs.4l
it is used to rephrase Howe's argument as a proof by coinduction that avoids explicit mention of
terms.

132

CHAPTER 5. PROGRAMMING LANGUAGE TTSs

Lemmab.3.8

1. ForarelaionR € Rel(E):

uS.Cmp(E,S);R =vS.Cmp(E,S);R

2. Theidentity relation on the fragment generated by E is both aleast and a greatest fixed-

Pr oof

point, i.e..

1d(Z(E)) =pS.Cmp(E,S)=vS.Cmp(E,S)

1. Define a monotone function F : Rel(E) — Rel(E) by F(S) ot Cmp(E,S);R. Using

lemmalZ311] it suffices to exhibit a well-founded relation < C (VSF(S)) x (VSF(S))
such that, for al (I',M1,N;) € VSF(S), thereexists T C VSF(S) such that (I',Mg,N;) €
F(T) adT < <r,M1,N1>, i.e., for al <A,M2,N2> eT, <A,M2,N2> < <|_,M1,N1>. Define
the well-founded relation for all triples by (A, Mp,N2) < (I';M1,Nz) if and only if Mz isa
proper subterm of M;. For (I',M1,N;) € VSF(S), set:

T {(8,M2,N2) | (B, M2, Ng) < (I, M2, N} }
We want to show (I',M1,N1) € F(T). We have that:

(' ,M1,N;) € VSF(S) = F(VSF(S)) = Cmp(E ,vSF(S));R

Thus there exists Ly such that (I',M1,L1) € Cmp(E,vSF(S)) and (I',L1,N;) € R . How-

ever, (I,M1,L1) € Cmp(E , T), because the termsin the premises of every rule schemafor
compatible refinement are always proper subterms of the termsin the conclusion. There-

fore (I',M1,N;) € F(T). By lemmal[2.3.11], we conclude that the least and greatest fixed
points of F coincide.
By lemmal5.3.6(2,3), Id(.Z(E)) is a fixed-point of Cmp(E ,-). The result follows from

(1) by taking R =1d(Z(E)).
O

Lemmal5.3:9 expresses the behaviour of (R >‘f§’(E) and (R)“%(E) in terms of compatible refine-

us

ment, open extension, and may and must convergence. The compatible refinement of the open
extension of R replaces the type specific definitions found in figureds. 1l and[5.21

Lemma5.3.9 For arelation R € Relp(E) and programs M,N € %4 (E)(0):

1. H(M,N)e(R >“%(E) 10—

LS
VK1 M M Ky = JKo.N L™ K, A - (Kg,Kz) € Cmp(E,Opn(E,R)) : 0

54. COMPATIBILITY 133

E
2.-F(M,N)e (R >ff§() 0=
M Umust _—
(N U'mua/\
VK2 N ™ Ky = IK1. M | Kj A F (K1, K2) € Cmp(E,Opn(E,R)) : 0)

Proof Both (1) and (2) are proven by case analysis of the type 0. The cases for value types
are the samefor (1) and (2) because:

= (M,N) e (R >”5§<E):G<:>I— (M,N) € (R >f§(E) -

The case for computation types is straightforward. We illustrate with the forward direction of
the case for function types. Suppose that - (M,N) € (R)‘fg(E) 10 — T and there isaterm M
such that M ™ Ax.M;. Theterm N has a value type and so always converges to a unique term
Ax.Nj, for some N;. To prove F (Ax.M1,Ax.N;) € Cmp(E,Opn(E,R)) : 0 — 1 it suffices to
show x: o+ (M1,N1) e Opn(E R) :1,i.e, fordl L e 4(E)(0), - (M1[L/X],N1[L/X]) €R :T.
However, M |J™¥ Ax.M7 implies M e, Mi[L/x]. From (M,N) € (R)“ng(E), we have that
N 2 N@L and (M1[L/X],N@L) € R , but N@L = N;[L/x] because N {|\™® Ax.N;. Therefore

F (M1[L/X],N1[L/X]) € R : T, asrequired. O

54 Compatibility

This section establishes compatibility of the open extensions of the variants of similarity, mutual
similarity, and bisimilarity. Lower, upper, and convex similarity are dealt with first. Next, anew
ideais used for lower, upper, and convex similarity bisimilarity. Finally, we introduce a second
novel technique for refinement similarity.

We start by defining what it means for arelation on open terms to be compatible.

Definition 5.4.1 A relation on open terms R € Rel(E) is compatible with respect to E if
Cmp(E,R)CR.

It is easier to prove that terms are related by an equivalence relation (often capturing a notion
of behavioural equality) if equivalent terms can be used interchangeably as subterms of alarger
term. Compatibility ensures that such compositional reasoning is permissible. From a differ-
ent perspective, compatibility can be used to show that term constructors induce well-defined
functions on equivalence classes of terms, which is useful, if not essential, for constructing
denotational models. Applicative compatibility serves a similar role for TTSs (recall that a re-
lation must be applicative compatible for the extensional collapse of definitionl4.5.5 to exist).
Lemmal5.4.2 shows that compatibility implies applicative compatibility.

Lemma5.4.2 Let R € Relp(E) be avariant of similarity, mutual similarity, or bisimilarity. If
Opn(E ,R) is compatible with respect to E, then R is applicatively compatible upon the TTS
2 (E).

134 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

Proof Consider types o, T and programs L € .4 (E)(o — 1) and M,N € %(E)(0) such
that (M,N) € R. We want to show (L@M,L@N) € R. With lenma[.1.3 it can be shown

that L@M :“gS(E) LM and LN :“gS(E) L@N. We have (L,L) € Opn(E,R) : 0 — 1, because

Id(Z(E)) € Opn(E,R), and - (M,N) € Opn(E,R) : . Compatibility of Opn(E ,R) implies

that - (LM,LN) € Opn(E,R) : 0, and so (LM,LN) € R. Convex bisimilarity is the finest
of the variants of similarity, mutual similarity, and bisimilarity, and each one is transitive, so
:CO(E);R ;:“gg(E) CR . Therefore (L@M,L@N) eR . O
It is non-trivial to prove that the open extensions of the variants of similarity, mutual similarity,
and bisimilarity are compatible, because substitution is used in the operational semantics yet
substituting related terms into related terms may produce unrelated terms. In other words, if
R € Relp(E) isthe variant of similarity, mutual similarity, and bisimilarity then we do not know
that:

Opn(E ,R)[Opn(E ,R)] € Opn(E,R)

There are two well known methods for establishing compatibility. Abramsky [Abro0] proves
that applicative similarity (lower similarity in the terminology used here) for the lazy A-calculus
is compatible using domain-theoretic methods, and offers the following challenge:

Our proof will make essential use of domain logic, despite the fact that the statement
of the result does not mention domains at all. The reader who may be sceptical of
our approach isinvited to attempt adirect proof.

Howe [How89] responds with a syntactic proof involving inductions on terms and operational
semantics derivations. The compatibility result applies to lower similarity upon a family of
languages including the lazy A-calculus and non-deterministic A-calculi.

Howe's method makes use of a compatible relation, called the congruence candidate, that does
satisfy the relational substitution closure property above.

Definition 5.4.3 (Howe) The congruence candidate Cand(E,R) € Rel(E) of a relation on
programs R € Relp(E) with respect to E is defined by:

Cand(E,R)% pS.cmp(E,S);0pn(E R)

The congruence candidate contains the open extension of the origina variant of similarity, mu-
tual similarity, or bisimilarity by construction. Coinduction can then be used to show that the
open extension contains the congruence candidate and so the open extension is also compatible.

Ong [Ong92d] extends Howe's method to convex similarity for a non-deterministic A-calculus,
and the same technique would apply to upper similarity. Howe [How96] independently uses
an extension that is similar to Ong’s. In addition, Howe introduces another idea to show that
variants of bisimilarity are compatible, and then proves that lower similarity, lower bisimilarity,

54. COMPATIBILITY 135

and convex bisimilarity are compatible, but the techniques also apply to the lower, upper, and
convex variants of similarity, mutual similarity, and bisimilarity. However, both Ong and Howe's
arguments for upper and convex variants require that the programming language exhibits only
finite non-determinism, because the must convergence rank of aprogram is assumed to be finite.

Lassen and the author [Las97, [Las98b, [L P98] independently observe that Ong and Howe's argu-
ments can be modified for infinite erratic non-determinism by rephrasing the definition of must
convergence and applying well-founded induction.

The techniques discussed above can be applied to the lower, upper, and convex variants of simi-
larity and mutual similarity upon the language fragments, but not to the variants of bisimilarity.
We prove compatibility of the variants of bisimilarity for arestricted collection of language frag-
ments by modifying the standard arguments. In addition, a new technique isintroduced to prove
the compatibility of refinement similarity and mutual refinement similarity, again for arestricted
collection of language fragments, in response to a question posed by Lassen.

L ower, Upper, and Convex Similarity
We first examine properties of the congruence candidate. By an earlier result, the congruence
candidate isaunique fixed-point because of the placement of the compatibl e refinement operator,
and the fact that termsin the premises of each compatible refinement rule are strictly smaller than
termsin the conclusion. Thismeansthat coinduction can be used to reason about the congruence
candidate, serving the same role as an induction on the left-hand term of a pair of terms related
by the congruence candidate.
Lemma 5.4.4 The congruence candidate is also the greatest fixed-point:

Cand(E,R) =vS.Cmp(E,S);Opn(E,R)
Proof Apply lemmal5.3.8(1). O

Lemmal5.4.5 proves analogues of results in Howe's original paper [How89).

Lemma5.4.5 For apreorder R € Relo(E):

1. 1d(Z(E)) C Cand(E,R)

2. Opn(E,R) C Cand(E,R)

3. Cand(E,R);Opn(E,R)=Cand(E,R)
4. Cmp(E,Cand(E,R)) C Cand(E,R)

5. Cand(E,R)[Cand(E,R)] C Cand(E,R)

Pr oof

136

N 1N

CHAPTER 5. PROGRAMMING LANGUAGE TTSs

By coinduction it suffices to show 1d(.Z(E)) € Cmp(E,Id(Z(E)));Opn(E,R). This
follows from lemmas5.3.6(2) and[5.3.4((T).

By coinduction it suffices to show Opn(E ,R) € Cmp(E,Opn(E,R)); Opn(E ,R). This
follows from lemmas©.3.6(2),[5.3.4(T), and 5.:3.6(1):

Opn(E ,R)
= 1d(Z(E));0pn(E,R)
= Cmp(E,ld(Z(E)));Opn(E,R)
€ Cmp(E,Opn(E,R));O0pn(E,R)

Use the transitivity of Opn(E ,R) and the fact that Cand(E ,R) is afixed-point:

Cand(E,R);Opn(E,R)
= (Cmp(E,Cand(E,R));Opn(E,R));Opn(E,R)
= Cmp(E,Cand(E,R));Opn(E,R)
= Cand(E.R)

Use the reflexivity of Opn(E ,R) and the fact that Cand(E ,R) is afixed-point:

Cmp(E,Cand(E,R))

Cmp(E ,Cand(E ,R));1d(Z(E))
Cmp(E,Cand(E,R));Opn(E,R)
Cand(E,R)

Nl

. By strong coinduction (see lemmalZ:3.4) it suffices to show:

Cand(E ,R)[Cand(E ,R)]
C Cand(E,R)uCmp(E,Cand(E,R)[Cand(E,R)]);Opn(E,R)

Thisis proven by:

Cand(E,R)[Cand(E,R)]

(Cmp(E,Cand(E,R)); Opn(E,R))[(Cand(E ,R);1d(-Z(E)))]

(Cmp(E , Cand(E ,R))[Cand(E ,R)]); (Opn(E,R)[Id(Z(E))]) G3.4(4)

(Cand(E,R)uCmp(E,Cand(E ,R)[Cand(E,R)]));O0pn(E,R) GE36(5), 534(2))

(Cand(E,R);Opn(E R))uU(Cmp(E,Cand(E,R)[Cand(E,R)]); Opn(E,R))

Cand(E,R)uCmp(E,Cand(E,R)[Cand(E,R)]); Opn(E ,R) (G.4.5(3))
g

54. COMPATIBILITY 137

Proposition is an amalgamation of the results due to Howe and Ong, and the extension
to infinite erratic non-determinism. It allows pre-fixed-point properties of the closed restriction
of the congruence candidate to be inferred from pre-fixed-point properties of the underlying
relation. Fortunately, only two cases are necessary because all of the variants of similarity and

bisimilarity are defined in terms of the simulation functions <-)”|_2§(E) and (-)ffg(E). Note that the

induction in the second part of the proof makes use of the fact that the must convergence rules
for programs of value type are not axioms.

Proposition 5.4.6 For apreorder R € Relp(E):

L IfR C (R) 2™ then Cls(Cand(E ,R)) C (Cls(Cand(E,R))); 2" .
2. 1f R C (R)" then Cls(Cand(E ,R)) C (Cls(Cand(E R)))72®).

Proof

1. AssumeR C (R >“L?§’(E). We show that for al types ¢ and programs M, M € % (E)(0)
such that (M,M’) € CIs(Cand(E ,R)), we have:

(M,M’) € (Cls(Cand(E ,R))@(E)

By lemmalB3(1), (M,M’) € (Cls(Cand(E,R))); 2 if and only if, for all K such that
M ™ K, there exists K’ such that M’ ||™¥ K’ and:

F (K,K') € Cmp(E ,Opn(E ,CIs(Cand(E ,R)))): o
The latter condition can be simplified. By lemmas.3.3(3) and 5.4.5(1,5):
Cand(E,R)[Id(Z(E))] € Cand(E,R)[Cand(E ,R)] C Cand(E,R)

By forming the closed regtrictions of both sides (a monotone operation) and applying
lemmal5.3.4(5):

Cand(E,R) C Opn(E,CIs(Cand(E ,R)))
Therefore, by monotonicity of compatible refinement, it suffices to show:
F(K,K') € Cmp(E,Cand(E,R)): 0

We prove this by induction on the derivation of M ™ K. In each case, (M,M’) €
Cls(Cand(E ,R)), so there exists M" € % (E)(0) such that:

F(M,M") € Cmp(E,Cand(E,R)): 0
and:

F(M" M) eOpn(E,R): 0

138

CHAPTER 5. PROGRAMMING LANGUAGE TTSs

If we can find K” such that M” ||™® K" and:
F(K,K") € Cmp(E,Cand(E,R)): 0
then (M" M) e R C (R >“LZ§(E), and so, by lemma[5.3.9(1), there exists K’ such that
M’ M K’ and:
(K" K"y € Cmp(E,Opn(E,R)): 0
But, by lemmas[5.3.6(4) and[5.4.5(3):
Cmp(E ,Cand(E ,R)); Cmp(E ,Opn(E,R))

C Cmp(E,Cand(E,R);O0pn(E,R))
Cmp(E,Cand(E,R))

so F (K,K’) € Cmp(E ,Cand(E ,R)) : o, as required. We illustrate finding K" with the
cases for sequential composition and fixed-point programs. Suppose L ™ [M] and
N[M/x] ™ K, soletx < LinN ||™¥ K, and that:

F (letx < LinN,letx < L"inN") € Cmp(E ,Cand(E,R)) : P (1)
Hence - (L,L") € Cand(E,R) : P, (o) and x: o (N,N”) € Cand(E ,R) : P_(1). By

applying the induction hypothesis to L ™ [M], we deduce there exists M” such that
L” y™ [M"] and F ([M],[M"]) € Cmp(E ,Cand(E ,R)) : P (0). Thereforet (M,M") €

Cand(E,R) : 0. By lemmal5.4.5(5):
F (N[M/x],N"[M"/x]) € Cand(E,R) : P, (1)

Applying the induction hypothesis to N[M /x| ™ K yields K” such that N"[M” /x] ||™&
K” and - (K,K”) € Cmp(E ,Cand(E ,R)) : P.(1). Therefore letx < L”inN" ||™ K",
and this completes the case for sequential composition. For fixed-point programs, suppose
fixx.M ™ K and:

F (fixx. M, fixx.M") € Cmp(E ,Cand(E ,R)) : P, (0)

Hencex: P, (o) F (M,M") € Cand(E ,R) : P, (0). In addition, the congruence candidate
is compatible by lemmalb.4.5(4), so:

 (fixx. M, fixx.M") € Cand(E ,R) : P, (0)
By lemmalb.4.5(5):
F (M[fixx.M /x],M”[fixx.M" /x]) € Cand(E ,R) : P, (0)

By applying the induction hypothesis to M{[fixx.M/x] ™ K, we obtain K” such that
M [fixx.M” /x| L™ K" and + (K,K") € Cmp(E ,Cand(E ,R)) : P, (). Thusfixx. M” |/
K", and this completes the case for fixed-point programs.

54. COMPATIBILITY 139

2. AssumeR C (R >f§(E). We show that for al types ¢ and programs M, M € % (E)(0)
such that (M,M’) € CIs(Cand(E ,R)), we have:

(M,M') € (Cls(Cand(E,R))) 22

By lemmaB39(2), (M,M) € (Cls(Cand(E ,R)))72®) if and only if M ™ implies
M’ MUt and, for all K’ such that M’ || K/, there exists K such that M |™® K, and:

+ (K,K’) € Cmp(E ,Opn(E,CIs(Cand(E ,R)))): o
By the same argument asin (1), it suffices to show:
F(K,K') € Cmp(E,Cand(E,R)): 0

We prove this by well-founded induction on the derivation of M ™. In each case,
(M,M") € Cls(Cand(E ,R)), so there exists M" € 4,(E)(0) such that:

F(M,M") € Cmp(E,Cand(E,R)): 0
and:
F(M" M) eOpn(E,R): 0

Suppose M MU, |f we can show that M” ||™, then, by lemmal5.3.9(2) and (M”,M’) €
R C (R)ZU®), M y™st and, for all K’ such that M’ |™ K’, there exists K” such that
M” ™ K” and:

(K" K’y € Cmp(E,Opn(E,R)): 0
If we can adso find a program K such that M ™ K and:
F(K,K") € Cmp(E,Cand(E,R)): 0

thenasin (1), - (K,K’) € Cmp(E ,Cand(E ,R)) : 0, asrequired. Again, we give the cases
for sequential composition and fixed-point programs. Suppose letx <= LinN ™ and:

F (letx <= LinN,letx < L”inN") € Cmp(E ,Cand(E ,R)) : P (1)

Hence - (L,L") € Cand(E,R) : P, (0) and x: o (N,N”) € Cand(E ,R) : P_(1). By
applying the induction hypothesis to L {™, we have that L” |\™ and, for all M” such
that L” | [M"], there exists M such that L {™¥ [M] and:

+ ([M],[M"]) € Cmp(E ,Cand(E ,R)) : P (0)

140

CHAPTER 5. PROGRAMMING LANGUAGE TTSs

Consider M” such that L” |™® [M”]. We now want to show that N”[M”/x] ™. By
the induction hypothesis as above, there exists M such that L {™ [M] and - (M,M")

Cand(E,R) : 0. By lemmab.45(5):
F (N[M/x],N"[M"/x]) € Cand(E,R) : P, (1)

By applying the induction hypothesis to N[M /x] {™! we have that N”[M” /x] | ™ and,
for al K” such that N”[M”/x] |™¥ K", there exists K such that N[M/x] ™ K and I
(K,K") € Cmp(E ,Cand(E ,R)) : P, (). In conjunction with the first use of the induction
hypothesis, we deduce that, for all K” such that letx < L”inN” |™¥ K”, there exists K
suchthat letx < LinN ™ K and - (K,K”) € Cmp(E ,Cand(E ,R)) : P (1), asrequired.
This completes the case for sequential composition. For fixed-point programs, suppose
fixx. M Mt and:

F (fixx. M, fixx.M") € Cmp(E ,Cand(E ,R)) : P, (0)
Then asin (1):
F (M[fixx.M /x],M"[fixx.M" /x]) € Cand(E ,R) : P, (0)

Applying theinduction hypothesis to M [fixx. M /x] ™t wefind that M” [fixx. M” /x] {}must
and, for al K” such that M"[fixx.M” /x| ||™ K", there exists a program K such that

M[fixx.M/x] |™¥ K and - (K,K"”) € Cmp(E,Cand(E,R)) : P, (0). Therefore, for al
K” such that fixx. M” ™ K”, there exists K such that fixx.M ™ K and - (K,K") €
Cmp(E,Cand(E,R)) : P (o). This completes the case for fixed-point programs. O

The following lemma is used in the three compatibility theorems to deduce that the open ex-
tension R of a variant of similarity or bisimilarity coincides with a relation S that is either

the congruence candidate or its transitive closure. It follows that the open extension of R is
compatible because the congruence candidate is.

Lemma 5.4.7 Consider relationsR € Relp(E) and S € Rel(E) such that:

1. Opn(E,R)CS

2. CIs(S)CR

3. S[Id(Z(E))]CS

ThenOpn(E,R)=S

Proof

By (1), it suffices to show SC Opn(E,R). By monotonicity of closed restriction and

(2), (3) wehave Cls(S[Id(-Z(E))]) C CIs(S) € R Then SC Opn(E ,R) by lemma5.3.4(5). O

54. COMPATIBILITY 141

With the results thus far we can prove compatibility of the open extensions of the lower, upper,
and convex variants of similarity.

Theorem 5.4.8

1. The open extensions Opn(E,gfg()), Opn(E,gfg()), Opn(E,gfs"()) of the lower,

upper, and convex variants of similarity are compatible.

2. The open extensions Opn(_LS()s Opn(E,:fg)), Opn(E,:ifg()) of the lower,

upper, and convex variants of mutual similarity are compatible.

Proof

1. If the hypotheses of lemmal5.4.7] can be shown to hold when R is one of the vari-
o S(E) _L(E) _%(E

ants of similarity §L§(), gug(), §C§<) and S= Cand(E,R), then Opn(E,R) =

Cand(E,R). Consequently, Opn(E,R) is compatible by lemmab.45(4). We estab-

lish the hypotheses of lemmal5.4.7] for convex similarity, i.e, R = <%(E), Hypothesis

~CS
2, Opn(E,gfsc’()) - Cand(E,gfs"(E)), is an instance of lemmalb.4.5(2). Hypothe-
sis (3), Cand(E, S22 1d(£(E))) < cand(E, SQ®)), follows from lemmasB33(3)
and545(1,5). For hypothesis (2), Cls(Cand(E , S22)) € 22", recall that:
Z(E) def Z(E L (E
Sed EVT (M) T)i
By coinduction, hypothesis (2) holds if:
2
Cls(Cand(E, <Z2®)))
Zo(£ 2(E “(E
c (as(Cand(E, &™) 8™ n(ais(cand(E, <)) 52"

But this follows from proposition[5.4.6 because:
Z(E Zo(E)\ Z(E Zo(E)\ Zo(E
< g() _ <§C§()>Lso()m<§C§()>U§()
Therefore, lemma(5.4.7 applies and Opn(E ,gfg(E)) = Cand(E,gfsc’(E)), so the open
extension of convex similarity is compatible. The arguments for the lower and upper
variants of similarity are similar.

2. We prove compatibility of mutua convex similarity. The other cases are smilar. First
note that, for all RS Relp(E), Opn(E,R NS) =0Opn(E,R)NnOpn(E,S). Using (1)
and the monotonicity of open extension and compatible refinement, we deduce:

Cmp(E , Opn(E , ~2®)y)

»—CS
c cmp(E,0pn(E, &™) ncmp(E ,0pn(E., (SZ2™)™))
— Ccmp(E, Opn<E,sz§’2)) N (Cmp(E, Opn(E , S225)))™
c opn(E,s&™)n(opn(E, <))
— opn(E, <")mOpn(E,<s§2 %)
= Opn(E,:”gg)

142 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

Therefore the open extension Opn(E , :"(?SO(E)) of convex similarity is compatible.

L ower, Upper, and Convex Bisimilarity

The congruence candidate cannot be used directly to establish that refinement similarity and
the variants of bisimilarity are compatible. The problem lies in the (essential) asymmetry of
the definition of the congruence candidate. The placement of compatible refinement on the
LHS of the sequential composition permits arguments by induction on the size of the left-hand
term (rephrased here as a coinduction). However, for refinement similarity and the variants of
bismilarity, the argument has to proceed from LHS to RHS and vice-versa. The latter requires
crossing the open extension of the refinement similarity or variant of bisimilarity. There is no
guarantee that this produces a strictly smaller term, so an inductive argument fails.

Howe [[How96] resolved this problem for bisimilarity by using the transitive closure of the con-
gruence candidate instead of the congruence candidate itself. Pre-fixed-point properties of the
congruence candidate can be lifted to the transitive closure with lemmds.4.9.

Lemma5.4.9 Consider aTTS .7 and ardlationR € .7 x 7

LIfR C R)GthenR" C RN
2. 1fR C(R)JsthenR ™ C (RM)

us:

Proof We prove (2), the argument for (1) is similar. First note that the relation <R+>U‘75 is

transitive because, by lemmal4.2.2 and the monotonicity of <'>5s:

R s RGeS RTR MG € R)s

us’
HenceR * C (R +>‘55 holdsif R C (R +>gs- Thelatter follows from the hypothesisR C (R >’U2
and the monotonicity of <->gs, becauseR C (R >gs C(R +>5s- O

The transitive closure of the congruence candidate is compatible when term constructors are
finitary (but see the discussion below). With compatibility, the transitive closure of the congru-
ence candidate of avariant of bisimilarity is symmetric, and so we can deduce the RHSto LHS
property from the LHS to RHS property, which isin turn established by an inductive argument
similar to that used for the variants of similarity.

Lemma5.4.10 Consider an equivalence relation R e Rely(E). If Cand(E ,R)" iscompatible,
then it is symmetric and hence an equivalence relation.

54. COMPATIBILITY 143

Proof We want to show Cand(E R)" C (Cand(E,R)")*®. The relation on the right-hand
-

side is transitive, so it suffices to show that Cand(E ,R) C (Cand(E,R)")*®. This follows by

induction from:

Cmp(E , (Cand(E.R)*)™); Opn(E R) C (Cand(E R)
By assumption, Cand(E ,R)" is compatible, so:

Cmp(E, (Cand(E ,R)"))
— Cmp(E,Cand(E,R)")®
C (Cand(E,R)"H*®

In addition, because R is an equivalence relation:

Opn(E,R) = Opn(E ,R)* C Cand(E ,R)*
Hence:
Cmp(E , (Cand(E,R)")®); Opn(E ,R)
C (Cand(E,R)")®;Cand(E,R)®
(Cand(E,R);Cand(E ,R)"
C (Cand(E,R)"H*®

Therefore Cand(E ,R)™ is symmetric. O

Unfortunately, it is non-trivial to show that the transitive closures of the congruence candidates
of variants of bismilarity are compatible in fragments of .# for two reasons. The first is a
consequence of exampleb.3.71 For example, although terms may be related by:

Cmp(E,Cand(E ,R);Cand(E ,R))
it does not follow that they are related by:
Cmp(E,Cand(E ,R)); Cmp(E ,Cand(E ,R))

This is because the intermediate term in the latter relation may not be in the language fragment
Z(E). Of course, the programming language - does not suffer from this problem because it
is closed under every term constructor.

The second reason is that the usua proof of compatibility relies upon the following property
of the compatible refinement of a reflexive relation Se Rel(E) (note that the left-hand term is

equal to Cmp(E ,S™)):

Cmp(E, | J{S™|m>1}) = J{Cmp(E,S™) | m> 1}

144 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

The equality holds when all terms have afinite collection of immediate subterms, but may fail
for term constructors with infinitely many immediate subterms. For example, defineS € Rel(E)

by (although S is not reflexive, it does illustrate the problem):

S ={(I',n,n+1) | I anenvironment An € w}

Then, for al n€ w, y, : unit- (O,n+1) € S™: nat. Hence:

X: nat b (casexof (yn.0 | n < K),casexof (yo.n+1| n<k)) € Cmp(E,S™) : nat
But there is no natural number m € w such that:

X: nat - (casexof (yn.0 | n < K),casexof (yo.n+1|n<k)) € Cmp(E,S™) : nat

Therefore the terms are not related by J{Cmp(E ,S™) | m> 1}. The programming language .
and all of the fragments suffer from this problem.

The partial solution proposed here is to use the existing compatibility results for variants of
mutual similarity to force through the cases for problematic term constructors (erratic choice
and infinitary coproducts and products). If the types of the immediate subterms of problematic
term constructors have P-orders less than or equal to 1, then they are related by a variant of
bisimilarity if and only if they are related by the corresponding variant of mutual similarity, and
so the existing compatibility result can be applied. Thus the argument places restrictions upon
the types of immediate subterms of problematic term constructors in alanguage fragment.

Definition 5.4.11 A fragment .#(E) is said to be bounded by an ordinal A if thefollowing hold:

1L Ifr'injmofM € Z(E) : sum (0, | n < w), then POrd(op,) < A.

2. If Tk caseMof (gp.Np [n<w) € Z(E):tandTFM € Z(E) : sum (0 | n < w), then
POrd(sum (on | n < w)) < Aand POrd(t) < A.

3. If T tuple(Mp | n< w) € Z(E) : prod (0, | n < w), then, for dl n € w, POrd(o,) <A

4. If T projmofM € Z(E):omand =M € Z(E) : prod (0, | n < w), then
POrd(prod (on | n < w)) <A

5. 1f I =2(My | n<K) € Z(E) : P.(0), then POrd(c) < A.

Under these conditions and with A =1, it can be shown that the transitive closures of the
congruence candidates of the variants of bisimilarity are compatible, and hence symmetric by
lemmab.4.10.

Proposition 5.4.12 Let R € Relp(E) be one of the variants of bisimilarity :ﬁ(E), :fg(E),

:"gg(E). If the language fragment .#(E) is bounded by 1, then Cand(E ,R)" is compatible.

54. COMPATIBILITY 145

Proof By case analysis of the compatible refinement rule schema. We start with the rule
schema for finite term constructors, with the exception of erratic choice. These cases do not
depend upon the bound for the language fragment, because they have afinite collection of terms
in the premises and every fragment is closed under these term constructors. We illustrate with
the case for the sequential composition constructor. Suppose:

[(letx < MyinMa,letx < NyinNy) € Cmp(E ,Cand(E ,R)™) : P, (1)

Sol + (Mg,Ng) € Cand(E,R)" : P, (o) and ,x: 0+ (M2,Np) € Cand(E ,R)" : P, (). There
must exist natural numbers i, j > 1 as well as terms M2, M, ... ,M} and M9,M3, ..., M} such
that My = M$, M} = Ny, Mp = M9, M} = N, and:

1. Foral 0<k<i,T-Mke Z(E):P (0).

2. Foral0<k<j,IMx:oFMsec Z(E):P.(1).

3. Fordl 0<k<i, I+ (MKME) € Cand(E,R) : P, (0).

4. Foral 0<k< j,I,x:oF (M5ME) € Cand(E R) : P (1).

The closure conditions upon fragments ensure that, for al k,k, such that 0 < k; <iand 0 <
ko < j,wehaverl I letx < M'l‘lin M'Z‘2 € Z(E):P.(1). Now consider thelist of terms:

letx < M%in M%
letX <= MZin M3

letx <= M} inM3
letX <= M} inM3

letx <= M} inMJ

Each consecutive pair of termsisrelated by Cmp(E ,Cand(E ,R)) C Cand(E ,R) because one
pair of immediate subterms are related by Cand(E,R) and the other pair by Id(Z(E)) C
Cand(E,R). Therefore:

[F (letx < MfinM3,letx < MiinMJ) € Cand(E ,R)" : P, (1)

This completes the case for sequential composition.

We now consider the remaining coproduct and product cases (when K = w) and the erratic
choice case. Let S € Relp(E) be the variant of mutual similarity corresponding to the vari-

ant of bismilarity R , eg., if R = ~20®) then S = ~22®). By theorem E48(2), the open
extension Opn(E,S) of S is compatible. Using the compatibility and transitivity of Opn(E,S),

146 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

it can be shown by induction that Cand(E ,S) = Opn(E,S) and so Cand(E ,S)" = Opn(E,S).
In addition, a simple induction shows that Cand(E ,R) C Cand(E,S) because Cand(E,S) is
compatible and Opn(E ,R) C Opn(E,S). Now consider atype o such that POrd(o) < 1, and
programs M, Nsuchtha T'FM e Z(E):cand T+ N € Z(E) : 0. Using lemmal4.2.5(1,2)

it can be shown that ' = (M,N) € Opn(E,S) : o if and only if ' - (M,N) € Opn(E,R) : o.
Therefore:

- (M,N)eCand(E,R)":0
M+ (M,N)eCand(E,S)" :0
r-(M,N)yeOpn(E,S):o
r-(M,N)eopn(E,R): o
r-(M,N)yeCand(E,R): o

)

1Tty

)

Now when terms are related by Cmp(E ,Cand(E ,R)), their immediate subterms are related
by Cand(E,R)*. If the types of the immediate subterms have P-orders less than or equal to 1,

then the argument above holds, and so the immediate subterms arerelated by Cand(E ,R). This
implies that the original terms are related by:

Cmp(E ,Cand(E ,R)) C Cand(E,R) C Cand(E,R)"

By assumption, the language fragment . (E) is bounded by 1, and this ensures that the imme-
diate subterms of the remaining cases always have types with P-order less than or equal to 1.
For example, consider:

M (2(Mn | n<K),2(Ny | n < k)) € Cmp(E ,Cand(E,R)") : P (0)

We know that POrd(c) < 1 and, for all n < k, I - (M, N,) € Cand(E ,R)" : 0. Thisimplies
that, for all n <k, I -+ (Mp,N,) € Cand(E,R) : 0. Hence:

M= (Mn | n<k),?N, | n<k)) € Cmp(E,Cand(E R)): P, (o)
Finally we deduce:
M (2(Mn | n<K),?2(Ny | n < K)) € Cand(E,R)" : P, (0)
The arguments for coproduct and product cases when K = w are similar. O

It can be verified that .Z(0) is bounded by O, because there are no erratic choice terms and
the arithmetic operators (and their subterms) decompose and produce terms of type nat only.
Similarly, language fragments such as £ (?(false, true)) and ¥ (?w) are also bounded by 0.
In addition, the language fragment £ (?(Q, [false], [true])) is bounded by 1 (this fragment is
used in section[5.6). More generally, we can define a substantial language fragment .# that is
bounded by 1, includes the most common forms of erratic non-determinism, includes anal ogues
of the examples given in sectionsi4.3]and 4.4, and suffices for the results in sectionsb.5and B.6.

However, there are no ordinals strictly less than wy that bound the programming language .Z .

54. COMPATIBILITY 147

Definition 5.4.13 Define the language fragment ./ to be the smallest language fragment that is
closed under the following rule schema when the premises have types with P-orders less than or
equal to 1.

rEMe A :om
[injmofM € .# : sum (0n | N < W)

FEMe A :sum(op | N < w) {F X :onFNheZ 1| n<w}
I caseMof (xp.Np | n< W) € .4 : 1

{TEMye A :0on|n<w}
[tuple(Mp | n< w) € 4 : prod (On | N < W)
FrEMe . :prod(0n | N< w)
I+ projmofM € .# : o

{T-Mhe#:0|n<k}
ME?2AMn | n< k) € 4 : P (0)

The set of programsin . is denoted ..

Now that compatibility and symmetry of the transitive closure of the congruence candidate have
been established for some language fragments, we are in a position to use Howe's technique to
prove compatibility of the variants of bisimilarity.

Note that if we know that the transitive closure of the congruence candidate is compatible, then
we have that it is symmetric by lemmal.4.10. We use the weaker condition in the statement of
the result.

Theorem 5.4.14 LetR € Relg(E) be the lower :ﬁf(E), upper zﬁﬂg(E), or convex :f;g(E) vari-

ant of bisimilarity. If Cand(E ,R)" is symmetric, then Opn(E ,R) is compatible.

~2EN is symmet-
ric. As with theorem5.4.8, we want to apply lemmalb.4.7, but in thiscase R = :ﬁ(E) and
S = Cand(E ,~2®))". Hypothesis (1) is Opn(E ,~2®)) C Cand(E ,~2))" which fol-
lows from lemma[B.4.5(2). Hypothesis (2) is CIs(Cand(E,:ﬁ(E)ﬁ) - :“L({:‘,”(E). Note that

Cls(Cand(E ,:ﬁ,”(E))*) = Cls(Cand(E ,:“L(f_:‘,j(E)))+ and both are symmetric. By coinduction, it

suffices to show that:

Proof We prove the case for lower bisimilarity. Assume that Cand(E

>~ LB LB

((Cls(Cand(E,~2®)))")P) 2")y

Cls(Cand(E ,~2%)))* C (CIs(Cand(E ,~2F))) "))
E

Consider thefirst part of the inclusion:

Cls(Cand(E,~;2®)))" C (Cls(Cand(E ,~2)))")2®)

148 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

By lemmals.4.9(1), this holds if:

A (E Z(E £ (E
Cls(Cand(E,~2®))) c (Cls(Cand (E ,~2F)))) ")

And, returning to proposition5.4.6(1), this holds if:

S (E LB A (E
ﬁug()g <2LI§()>L§()

This follows immediately from the definition of lower bisimilarity. For the second part of the
inclusion, we want to show that:

Cls(Cand(E, ~5)) " < ((CIs(Cand(E .~ ") *) g "))
Or equivalently:
(Cls(Cand(E ,~2E))) ") c ((Cls(Cand(E ,~2®))) ")) %(E)

But CIs(Cand(E,:“L?I;C”('E)))+ is symmetric, so this is the same as the first inclusion. Hence,

hypothesis (2) of lemmal5.4. 7 holds. Hypothesis (3) is:
Cand(E,~ 2 [1d(Z(E))] € Cand(E ,~ 2"
Without loss of generality, consider environments I',A =% : 01,..., %, : O, Such that:
Z(E
[AF (M,N) € Cand(E,~ 2" 11
and, foral isuchthat 1 <i <n;:
Nr-LeZE):q
So,withL =Lg,...,Ln:
[(M[L/%),N[L/X)) € Cand(E ,~2E) " 1d(Z(E)] : 1
There exists k > 1 such that:
Z(E)\k
Ak (M,N) e Cand(E,~ 2 1
and, forall i suchthat 1 <i <n;:
ME (L, L) € 1d(Z(E))*: o
By induction and lemmal5.3.4(4) we have:
Z(E)\k k Z(E k
Cand(E ,~ 2 [1d(Z(E)] (Cand(E ,~2®)1d(Z(E))])
Another induction and lemmas)5.3.3(3) and[5.4.5(1,5) shows that:
(Cand(E ,~2®))1d(£(E))))* C Cand(E ,~2))* c cand(E,~2®))*
Therefore:
[(M[L/%),N[L/x)) € Cand(E ,~ 2" 1
and hypothesis (3) of lemmalb.4.71holds.

By applying lemmal5.Z.7Iwe find that Opn(E ,~ (%)) = Cand(E ,~;%2%))". But then:

E %(E E E
Opn(E,:ﬁg’())gCand(E,:ﬁ_‘,”())gCand(E,:ﬁg’())+:Opn(E,:ﬁ§())

Therefore Opn(E , :"fﬂé’(E)) = Cand(E 7:”5;)('5)), and so Opn(E ,:ﬁ(E)) is compatible. O

54. COMPATIBILITY 149

Refinement Similarity

Refinement similarity requires a different technique because the argument cannot be completed
by symmetry as it was for the variants of bisimilarity (refinement similarity is not symmetric).
Again, we seek arelation S € Rel(E) for which we can prove CIs(S) C §£(E) by coinduction:

CIs(S) C ((CIs(S)P)2EN P (cis(s)y A®)

Thefirst part of theinclusion is problematic when CIs(S) isnot symmetric. The solution used in

theorem istoset S to bethe transitive closure of the congruence candidate of refinement
similarity and then move the dual operation inside the congruence candidate, which allows the
argument to proceed as for bisimilarity. However, attempting this move reverses the positions of
the open extension and compatible refinement operators inside the least fixed-point as shown in
lemmab.4.15

Lemma5.4.15 If R € Relg(E) then:
Cand(E,R) = (uT .Opn(E ,R);Cmp(E, T))*
Proof By definition:
Cand(E ,R%) = uT .Cmp(E,T);0pn(E,R%®)
Taking the dual commutes with open extension and compatible refinement, so by lemmd2.3.7

uT .Cmp(E,T);Opn(E,R%®)
— WT .(Cmp(E,T)*®)®;0pn(E R)
= T .(Opn(E,R);Cmp(E, T ®P)*®
= (uT .Opn(E,R);Cmp(E,T))®

O

The transitive closure of the reversed least fixed-point can be related to the transitive closure of
the congruence candidate, but only when both are known to be compatible.

Lemma5.4.16 Let R € Relp(E) be a preorder such that both of the following relations are
compatible;

S: ¥ Ccand(E,R)" = (uT .Cmp(E, T);Opn(E,R))" € Rel(E)
S, © (uT .opn(E,R);Cmp(E, T))" e Rel(E)

Then:

1. 55=%

150 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

2. Cand(E,R®)" = (Cand(E,R)")®

Pr oof

1. We show that S; C S,. The other direction is similar. By transitivity of S, it suffices to
show Cand(E ,R) C S,. Thisfollows by induction from:

Cmp(E ,S);0pn(E,R) € S
But S, iscompatible, Opn(E,R) C S;, and S; istransitive, so:
Cmp(E,S2);0pn(E,R) € $:5, € S,

Therefore S; C S,.
2. By lemmal5.4.15and (1):

Cand(E,R®)"

= ((WT .Opn(E,R);Cmp(E,T))®)"
S,®

= ;%

= (Cand(E,R)")*

Therefore Cand(E ,R®)™ = (Cand(E ,R)")*.
O

To establish the compatibility hypothesis of lemmal5.4.16 when R is refinement similarity we
face the same problem as for the variants of bisimilarity. In addition, there are no compatible re-
lations that coincide with refinement similarity when states have atype with P-order 1, although
any of the other variants of similarity will suffice when the P-order is 0. Therefore the suffi-
cient condition for compatibility that we prove in lemmab.4.17lis that the language fragment is
bounded by 0.

Proposition 5.4.17 If the language fragment .#(E) is bounded by 0, then the hypothesis of

lenma5.4.16 is satisfied when R is refinement similarity <22,

Proof The argument in proposition[5.4.12] can be modified to show that both of the relations

Cand(E,<225)) " and Cand(E, (SZ2))®)* are compatible. The only change is to use the

coincidence (see lemmal4.2.5(1)) between, for example, lower similarity and refinement simi-
larity for termswith atype of P-order of 0. If § and S are defined asin lemmalb.4.16 then this

54. COMPATIBILITY 151

showsthat S is compatible. Using lemmak.4. 15 we can deduce that $ is compatible:

Cmp(E,S,)
= Cmp(E,(Cand(E (S%(E))Op)opﬁ)
— Cmp(E,Cand(E, (<)) +yop

C (Cand(E,(S20E)H®)H®

= (T .Opn<E,5;§’§<));Cmp(E,[T))®)")*®
— (T .0pn(E,<28®);cmp(E, T)"

S

Therefore S; and S, are compatible. O

Finally, we prove compatibility of the open extensions of refinement similarity and mutua re-
finement similarity for a collection of language fragments, including those bounded by O.

Theorem 5.4.18 If the hypothesis of lemma5. 418 is satisfied withR = §”§§(E), then the open

extensions Opn(E, gfg()) and Opn(E , :“Ffs"()) of refinement similarity and mutual refinement

similarity are compatible.

Proof We consider refinement similarity first. Again, we want to apply lemmak.4.7] with

R = <22 and S = cand(E, 522®)". Hypothesis (1) is

opn(E, <2d™) ¢ cand(E, 522 ®))
and follows by lemmalb.4.5(2). Hypothesis (3) is:
Cand(E, 52" 1d(Z(E))] € Cand(E, 5205y *

and can be proven with the argument used in theorem[5.4.14l Hypothesis (2) is:

Z(E 2(E
CIs(Cand(E,gRg(el)

Note that Cls(Cand(E , <528®))") = cIs(Cand(E, 522®)))". By coinduction, it suffices to
show that:

Cls(Cand(E, <)) ¢ (((Cls(Cand(E <f°<E>))+)°p>f°<E>)°pm

(CIs(Cand(E,§R§)))+>u§()

Both inclusions use an argument similar to that for bismilarity. In addition, the first inclusion
uses lemmal5.4.16(2) to shuffle the dual operation into the congruence candidate. For the first
part of the inclusion, we want to show that:

CIs(Cand(E,gﬁ(E))) (((Cls(Cand(E,gé’)))+)0p>iign(E))op

152 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

Or equivalently:

(Cls(Cand(E , 5pd™)")® ¢ ((CIs(Cand(E, 5pd ™)))Py 2

And, by lemmals.4.16(2), thisis equivalent to:

Cls(Cand(E, (<pt™)®)) " C (Cls(Cand(E , (Spe ™) P H) 2 ®

Asbefore, lemmalb.4.9(1) can be used to remove thetransitive closure operation, so theinclusion
above holds if:

Cls(Cand(E , (25 %)) ¢ (CIs(Cand(E , (<)) %Py))4E)

By proposition[5.4.6(1), this holds if:

Z(E A(E A(E
(SRS())Opg <(§R§())0P>LSO()

This follows from the definition of refinement similarity. For the second inclusion, we want to
show:

%(E A(E %(E
Cls(Cand(E , <22™))" € (Cls(Cand(E, 5od®)))) 2®)

By lemmab.4.9(2), this holds if:

H(E H(E (E
Cls(Cand(E , <22))) (CIs(Cand(E , <Z8)))) 22 ®)

And, by proposition5.4.6(2), this holds if:

H(E) ¢ (< Z(E)y %(E)
Srs S (Sks us

Which follows immediately from the definition of refinement similarity. Thus hypothesis (2) of
lemmalk.4.7holds.

By applying lemmal5.4.7we find that Opn(E <”%(E)):Cand(E <$°(E))+.Thelatteriscom-

' ~RS ' ~RS
patible by assumption, and therefore Opn(E, §§§(E)) is compatible. Compatibility of mutual
refinement similarity can be deduced from the compatibility of refinement similarity by the ar-
gument used in theorem[5.4.8 O

To summarise, we have shown that the open extensions of the lower, upper, and convex variants
of similarity and mutual similarity are compatible. If a language fragment is bounded by 1,
the open extensions of the lower, upper, and convex variants of bisimilarity are compatible. If
a language fragment is bounded by 0, the open extensions of refinement similarity and mutual
similarity are compatible.

5.5 Relative Definability

By definition, the language fragments consist of overlapping but different sets of terms. It is
useful to know when a term, or one with equivalent behaviour, is a member of a particular

55. RELATIVE DEFINABILITY 153

fragment, because it may affect the variants of similarity, mutual similarity, and bisimilarity for
that fragment. For example, in section[5.6lit is shown that adding countable non-determinism
to afinite non-deterministic fragment allows more terms to be discriminated by the upper and
convex variants of similarity, mutual similarity, and bisimilarity. In this section, we examine the
more general notion of relative definability between terms with respect to convex bisimilarity.

Definition 5.5.1 Consider types o and T, and programs M € .#(1) and N € .#,(0). The pro-
gram M isrelatively definablein terms of N with respect to convex bisimilarity on ., denoted

M S‘C//éo N, if there exists a program L € %4 (0)(c — 1) such that M :gg’LN. The notation

M=¢g N means M < g'N and N < ZM.

Only deterministic, recursive programs can be used to define one program in terms of another
because L ranges over %p(0). This definition of relative definability can be generalised by re-
placing the TTS ., (see definition 5.4.13) with others such as %, and replacing %4 (0) with a
distinguished set of states of function type from the new TTS. In addition, other equivalence rela
tions could be used instead of convex bisimilarity. However, the extra generality (and notational
complexity) is not required here, because the TTS .# contains all of the non-deterministic and
non-recursive elements that we wish to compare, yet convex bisimilarity is still compatible on
Mo by theorem[5.4.14]

Note that the program N is passed by name and so may be evaluated more than once. Thisis
important when N is non-deterministic.

As with other forms of relative definability (see [Rog67]), the relation g‘gg’ is a preorder and

the corresponding partial order forms an upper semilattice. In addition, g‘gg’ contains convex
bisimilarity, and programs from .%5(0) are minimal elements.

Lemmab.5.2

1. Therelative definability relation g‘gg’ isapreorder on ..

2. For dl M,N € .#, the program tuple (M,N) isajoin of M and N with respect to the pre-

order <22, i.e, M<Ztuple (M,N), N<2 tuple (M,N), and, for all L € .4, M <L

and N <Z°L implies tuple (M,N) <Z°L.
3. Forall M,N € ./, M=~/2 N impliesM </2N.
4. Foral M € % (0) and N € ., MS‘CBC’N.

Proof

1. If M € (o), then Ax.x € £(0)(0 — 0) and M :‘Zg’ (AX.X)M. Therefore M g‘gg’M
and g‘gg’ is reflexive. Now suppose My € .#,(01), My € .#5(02), and M3 € .#,(03)

satisfy My <Z°Mj and My <Z°Ms. Then there exist Ly € .%(0)(02 — 01) and L €

154 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

20(0)(03 — 02) such that Mz :‘gg’ L1 M, and M, :‘C//éo L, M3. By compatibility of convex
b|5|m|Iar|ty, L1 M> ﬁéfg Ll(Lz Mg) , SO:

M1 2% (Ax. L1 (LX)) Mg
We have Ax.L; (L2X) € % (0)(03 — 01). Therefore My g'gg’ M3, and g'gg’ istransitive.

2. Consider M € .#(01) and N € .#p(02). Then we have Mg‘gg’tuplew,m, because

AX. proj 0of X € Zp(0) (01 x 02) and M=% (Ax. proj 0of X) (tuple (M, N)) . Similarly, we

haveN g‘gg’ tuple (M, N). Now supposethat L € .#(1) issuch that M g‘gg’ LandN g‘gg’ L.

There must exist L; € %(0)(t — 01) and L, € % (0) (1 — 02) such that M ~L, L and

—CB
W4 M
N~ ~g tuple(LiL,LoL),

and so:

LoL. By compatibility of convex bisimilarity, tuple (M, N)

tuple (M, N) =2 (Ax. tuple (L1 X, Lo X)) L
We have Ax. tuple (L1 X, Lo X) € Z(0)(T — 01 x 02). Therefore tuple (M, N) </ L.
3. Consider M,N € .#,(0) such that M:’C//éo N. Then M g'gg’ N, because of the identity
function Ax.x € %4 (0)(0 — o) and M :‘C%éo (AX.X)N.

4. Consider M € % (0)(0) andN € .#,(1). ThenM g‘gg’ N, because of the constant function

MM € Z(0)(1 — 0) and M= (Ax.M)N.

g

We examine relative definability upon the programs of . with type P, (nat). The convex
bisimilarity equivalence classes of such programs arein bijection with the non-empty subsets of
w, . With the previous lemma, every program of type P (nat) isin the same relative definability
equivalence class as a program of a certain form.

Lemma5.5.3 If M € .#,(P, (nat)), then there exists Kk > 0 and a strictly increasing sequence
of natural numbers (&, | n < K) such that M :‘(/fg) QuU(ay [n<K) or M :‘C//éo 2@y | N <K).

Proof By lemmaBXh5.2(3), it suffices to prove the statement for convex bisimilarity in place

of :‘C//éo. However, we first have to exclude the case when M has no convergent behaviour, i.e.,

M :‘gé’ Q. In this case, we can use Q:‘CBO ?(0), which follows from lemmab.5.2(4). Now
suppose that M has at least one convergent behaviour. For all canonical programs K such that

M ™ K, it can be shown that there exists m € w such that K:‘gg’ [m]. Let 2(a, | n < K) bethe
strictly increasing sequence of all such natural numbers. It followsthat M z‘gg’ QuU?(an | N <K),

when M t™¥ | and otherwise M :gg’ an | N <K). O

55. RELATIVE DEFINABILITY 155

There are identifications between the programs in lemmab.5.3 Lemmalb.5.4 shows that there
are only four equivalence classes when K isfinite.

Lemma5.5.4 For m,n > 2, consider strictly increasing sequences of natural numbersa, ..., am
and by, ..., b,. Then we have the following equivalences:

1. 2(as) =5 2(by)
WA
2. QU) =g QU?(by)
3. QUay, ..., 8m =R QUby, .., bn)

4. 2aq,...,8m =c02Aby,...,by)

And the following strict inequivalences:
WA
5. 2(an) <8 QUby)
6. QU?(a1) <R QU?(by, ..., bn)

7. QUag,...,8m) <R 2Aby,...,by)
Proof
. 5 N) ~o
1. Uselemmab.5.2(3,4) and (&) ~(g [a1] =¢g [b1] ~cg 2(by1).
2. Theinequivalence QU?(ay) gé/é’ Qu?(by) follows from:
QuU(ay) =20 (Ax. lety <= xin [a1]) (QU?(by))

The other direction is similar.

3. We show QU?(ay,...,am) :‘C/g’ QuU?(0,1), and the result follows by transitivity. For the
inequivalence QU?(0,1) g‘gg’ Qu?(ay,...,am), use the function:

AX.lety <= Xinletz < Xinif It (Y, z) then [Q] else [1]
For QU?(ay, ..., am) <22 QU?(0, 1), use:
AX.lety; < Xin ...letYm_1 < Xin

ifeq (y1,0) then[ay|else
ifeq (y2,0) then @] else

if eq (Ym-1,0) then [am_1] else
[m]

156 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

4. Show ?(ay,...,am) = %0 s 2(0,1) using the functions from (3).

5. Uselemma[EEZ(I% 4) and (&) C/é [ai]. Now, if M € Z5(0) (P, (nat) — P, (nat)) then
M (%ay)) :CB M [ay] either diverges or converges, but not both, so:

QU(by) 5 M (a))
Therefore the inequivalence is strict.

6. Use the function from (2) for the inequivalence. To see that the inequivalence is strict,
first note that Q U [0] =¢ o s QU?(a;). Consider the set of programs:

X ¥ IM[QU[0]/X | x: P, (nat) - M € 2(0) : P, (nat)}
We claim that every program in X converges to at most one canonical program. Consider
M[QU[0]/X] € X, where M € .£(0). By lemmas[34.6 and [3:4.10(2), M is canonical,
makes a reduction independently of the substitutions, or is blocked on x. If M is canon-
ical we are done. If M — N, then M —_, N because M € .Z(0). By lemmal34.10(1),

M[QU[0]/X] =44 N[QUIQ]/x]. Otherwise M 4 x, and by lemma3.4.11(2):

MIQUIQ]/X] = M[x—QU[Q][[QUI0] /X
By lemmas[3.4.11(3) and[3.4.10(1), M[x— Q U[0]][Q U [0Q] /x] may reduce in several steps
to either M[x+— Q][Q U [0]/x] or M[x— [0]][Q U [0]/x], and every reduction sequence
passes through one of these terms. The former program M[x+— Q][Q U [0]/X] > ”"Q
aways diverges. For the latter, M[x— [0]][Q U [0]/x] € X because M[x— [Q]] € Z((I)).
Therefore every program in X has at most one convergent reduction sequence, athough it
may have one or more divergent reduction sequences.

7. For theinequivalence, by (4), it suffices to show QU’?@,...,%K‘C@ @ag,...,am) using

the function:
AX.lety <= Xinletz <= Xinif It (Y, z) then Qelse y]

For strictness, use the technique from (6) to show that every term from £ (@) with a
closing substitution of QU?(&,...,am) for a variable x either has exactly one reduction
to another such term, or has at least one reduction to a program that aways diverges.
Therefore ?(ay, . .., am) cannot be defined.

O

Therefore we can choose representatives from each equivalence class to obtain the following
chain:

2(0) <20 QU(0) <2 QU?(0,1) <2 2(0,1)

For the infinite case, it is natural to start with QU?w and ?w. The former program lies in the
same relative definability eguivalence class as QU?(0,1), and so is strictly less expressive than
?(0,1). On the other hand, 7w is strictly more expressive than ?(0, 1), and so extends the above
chain.

55. RELATIVE DEFINABILITY 157

Lemma 5.5.5
1. QU2(0,1) =2 Quaw
2. 20,1) g‘gg’ 2w and this inequivalence is strict.
Proof For QU?(0,1) g'gg’ QuU?wand ?(0,1) g'gg’ 2w use the function:

AX.lety <= Xinletz <= Xinif It (Y, z) then [Q] else [1]

1. For QU?@g‘gg’ QU?(0,1), use the function:

AW fixX. lety <= winif eq (y,0) then [O] elselet Z <= Xin [plus (z, 1)]

2. Strictness follows from lemmal3.4.8(2).
0

Now we can show that QU?w and 2w are the least expressive of the infinitely non-deterministic
terms of type P (nat). In particular, we have that the equivalence class of 7w is the unique
successor of the equivalence class of ?(0,1) with respect to relative definability. The equivalence
classes of QU?w and 2w consist of al recursively enumerable sets of natural numbers with and
without divergence respectively, following theorem 5.3 of [AP86].

Lemma5.5.6 Suppose that A Cre isan infinite set. Then:
1 QU< QuaA
2. W<LE A
In addition, the opposite inequivalences hold if and only if A isrecursively enumerable:
3. QUA<Z QU
4. ML
Proof We use the same function for (1) and (2). First define aterm:
W : P, (nat) - choose € .Z(0) : P, (nat)
by:

choose & ffix f:nat — P, (nat).
AX:nat.
ifeq (x,0) then 0] else
lety <= winletz < winif It (y,z) then f (minus(x,1)) else [X]

158 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

Suppose that M is a non-deterministic program of type P, (nat) that can converge to at least two
programs representing different natural numbers. Then, for any natural humber n, the program
choose[M /w]n converges to canonical programs that, up to convex bisimilarity, are of the form
[m], where 0 < m<n. If M cannot diverge, then choose[M/w|n cannot diverge. Then the
function Aw. let X <= win choose x can be used to define QU7w and 2w in terms of QU7?A and ?A
respectively, because A isinfinite and hence unbounded.

We consider (3) and (4) together. Suppose that A is recursively enumerable. We assume the
existence of a program M € %(0)(nat — P, (nat)) such that, for all me€ w, Mm ||™ and:

A={new|Ime @ IN.Mm ™ [N] AN~ n}

That is, A isthe image of adeterministic and total function M. The function Ax.lety <= XinMy
can be used to define QU?A and ?A in terms of QU?w and 2w respectively. For the other direc-
tion, suppose that QU?Ag‘Zé" QU?w, so there exists aprogram L € 25(0) (P, (nat) — P, (nat))
such that QU?A:Z? L (QU?w) . We can encode terms of .2’ (QU?7w) as natural numbers so that

it is decidable whether an encoded reduction is valid or not. Therefore we can recursively enu-
merate the natural numbers that L (QU?w) produces (converges to the lift of a convex bisimilar

program), and A is recursively enumerable. The same argument applies to ?Agé/é) 2w. O

This leaves the non-recursively enumerable sets which are only known to be strictly more ex-
pressive than QU?w or 2w, depending on whether or not divergence is possible. Note that any
program of the form ?A, where A Cpe w, can be defined in terms of 2w and an infinite case
statement (not necessarily recursive).

It is appealing to relate g'gg’ on programs of type P, (nat) with reducibility concepts found in
the literature (see [Rog67], [Odi89]). For example, for sets A.B C w, A is Turing reducible to
B, written A <7 B, if the characteristic function of A is definable in terms of the characteristic
function of B.

Programs of type P, (nat) can be used as “unhelpful” characteristic functions that may give a
correct positive answer or no information at all. For example, for a non-empty set A Gie W,
define the program M € .#(nat — P, (bool)) by:

M & ax. lety <=?Ain[eq (X,Y)]

When M is applied, it chooses a number from the set A and compares it to its argument. If we
define, for al n € w, aprogram N, by:

def | ?(false) ifng A
" ?(false,true) ifneA

then:

M z”C//éo AX. caseXof (Yn.Nn | N <)

This property isinsufficient to relate g‘gg’ on (P, (nat)) with Turing reducibility becauseitis
not possible to distinguish a negative answer from an answer with no information. However, if

55. RELATIVE DEFINABILITY 159

we consider thejoin of 2A and ?(w\ A), then we may receive positive and negative answers, and
so abtain aarelationship with Turing reducibility. Wefirst show that finitejoins of non-divergent
elements exist in .#(P, (nat)).

Lemma5.5.7 If A;B Cpe w, then there exists C Cpe w such that tuple (?A, 7B) :'gg’ .

Proof Without loss of generality, assume that A and B are infinite. Define C by:
c®2m|meAu{2m+1|meB}

We assume the existence of a program split € %4 (0)(nat — P, (nat + nat)) such that, for al
m € @, split2m =~ [injOof m] and split2m+ 1 ~% [inj1of m|. For 2C <2 tuple (A, 7B), use
the function:
Ap:P. (nat) x Py (nat).
letX <= proj Oof pinlety < projOof pin
if It (X,y) then [mult (2,X)] else let z <= proj 1of pin [plus (mult(2,2),1)]

In the other direction, fix me Aand n € B. Then, for tuple (?A, 7B) g'géo 2C, use the function:

AX:P| (nat).
tuple (lety <= Xin casesplity of (2.[2p],z1.[m]),
lety <= Xincasesplity of (zy.[n],z.[z1]))

Each component of the pair chooses a number from 2C and uses split to find out whether itisin
A or B. If the component requires a member A but received a member of B, or vice-versa, then
it returns the appropriate fixed number. a

Now, if AisTuring reducible to B and B isinfinite, ?A can be defined in terms of 7B and ?(w)\ B).

Proposition 5.5.8 Consider A,B e w such that A <t B and Bisinfinite. If ZCisajoin of ?A
and 2w\ A), and ?D isajoin of 2B and ?(w\ B), then 2C <7 D.

Proof We claim that there exists aterm M such that M[?D /w] tests whether n € A for some
natural number n. There are three possible outcomes, “no”, “yes’, and “maybe’, which we
represent using the type unit + unit + unit. We require:

w: P, (nat) F M € Z(0) : nat — P, (unit + unit+ unit)

Theterm M is obtained by modifying the algorithm that defines the characteristic function of A
in terms of the characteristic function of B. Wherever the characteristic function of B isinvoked
in the original agorithm, we should use 7D to get 2B and ?(w\ B), and then test membership in
those sets as described on page[158. If either test produces a positive result, then the algorithm
can continue, otherwise the algorithm immediately returns “maybe”’. Thus the behaviour of M
is described by, for al n € w:

?2(injOof x,inj2of x) ifngA

MDD/ Wi~ s .
?(injlof x,inj2of %) ifneA

160 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

By fixing m € A, we can now define ?A by choosing a natural number n and using M to test
whether ne€ A. If n€ A, then wereturn n. If n & A, or we receive a “maybe” result, then we
return m. By lemmalb.5.6, we know that 2w can be defined in terms of 7D because B is infinite

and ?Bg‘gg’ 7D, so we may use the following function to show that ?Aggg’ D:

AW. letXx <=2winlety <= M xincasesplity of (zp.[m],z;.[X], z>.[m])
Similarly, by choosing m e w\ A, we can show that ?(w\ A) gfg"?g using:
AW. letX <=?winlety <= M xin casesplity of (.[X],z1.[m], zo.[m])

Therefore C g‘gg’ D. O

5.6 Theory of the Language

There are variants of similarity, mutual similarity, and bisimilarity for each language fragment
and it is useful to understand the inclusions and differences between these relations. For exam-
ple, we might ask whether the restriction of :“Cfg(?@) to .25(0) coincides with the restriction of

fg(?@’@) to % (0), i.e., are there deterministic programs that can be distinguished using count-

ably non-deterministic programs, such as 2w, but not by finitely non-deterministic programs,
such as ?(0,1). In this section, we show that such programs do exist. Conseguently, there can
be no single model that is sound and complete for convex bisimilarity on both .4(?(0,1)) and
Zo(?w)

~

We begin by considering inclusions between the relations. Lemma4.2.4ldescribes the inclusions
between the variants of similarity, mutual similarity, and bisimilarity on a fixed language frag-
ment, and these inclusions trivially extend to the open extensions for that fragment. Lemmdb.6.1]
shows that the smaller of two comparable fragments has coarser variants of the open extensions
of similarity, mutual similarity, and bisimilarity than the larger fragment. The case for convex
bisimilarity could also be inferred from propositionsi4.5.3 and 4.5.9.

Lemma5.6.1 Consider sets of well-typed terms E; and E; such that %4 (E;) € %4(E2). Sup-

posethat R; € Relg(E1) and R, € Relg(E,) are the same variant of similarity, mutual similarity,

or bisimilarity on % (E1) and % (E>) respectively, eg., Ry = :é’fg(El) and R, = :Cg(Ez). If

M,N e Z(Ey)andT - (M,N) € Opn(E2,R2) : o, thenT - (M,N) € Opn(E1,R;) : o.

Proof If I =X;:01,...,% : Op, consider programs L € %5(E1)(0i), for 1 <i <n. Weknow
(M[L/X],N[L/X]) € Ry and want to show (M[L/x],N[L/x]) € Ry, where L = Lj,...,L,. This
can be established using a simple coinduction (or induction because the type system is well-
founded). Theinclusion % (E;1) C % (E>) isused to show that R, isfiner than Ry on programs
of function type because there are more programs to use as tests. O

5.6. THEORY OF THE LANGUAGE 161

Therefore Opn(.Z, f:"gg) isthe finest relation amongst the variants of similarity, mutual similar-

ity, and bisimilarity on the language fragments, and so the majority of rules in lemm&h.6.2 can
be used to deduce properties of the other relations. However, as discussed in sectionb.4, the
open extension of cornvex bisimilarity upon .4 is not known to be compatible. Note aso that
results for refinement similarity can be used to deduce properties of lower similarity and upper
similarity because:

OpN(Z, Sg) € OpN(L, 5) P NOPN(L, S32)

Lemmab.6.2

1. Consider M € % (P, (0)) and suppose that (N, | n < k) issuch that, for all K, M {™¥ K if
and only if there existsn < k such that K = [Ny]. If M ™ then M ~ 20 QU?(Np | N < K).

—CB
Otherwise, M ™ and M =28 2(Np | n < K).

2. The rule schema illustrated in figures[5.5 and 5.6l are valid, where term variables range
over .. Side conditions are presented as premises for brevity.

Proof A straightforward analysis of the may convergence and may divergence properties of
both sides after performing a closing substitution. d

Restrictions of convex bisimilarity for .Z(E) to .4(0) may differ according to the relative

definability equivalence classes of the programs in -4 (E). We now show that there are strict
inclusions corresponding to each equivalence class in the chain:

2(0) <20 QU2(0) <X QU2(0, 1) <2 2(0,1) < 2w

In fact, convex bisimilar programs are used instead of QU?(0) and QU?(0,1) to sidestep the
closure conditions on fragments that would force ?(0,1) into the corresponding fragments, so
the chain becomes:

20) <Pletx <2Q, [0]) inx <2 letx <2(Q, [0], [1]) inx <2020, 1) <202

Lemmal5.6.3 is used in proposition[5.6.4] to show that the second and third programs cannot be
used to distinguish other programs.

Lemma5.6.3 Consider aterm M such that:
X:P.(PL(nat)) - M € Z(0) : P, (nat)

Then:

1. If M[?(Q,[Q])/x] reduces to any canonical program, then there exists n € w such that, for

all N, M[2(Q,[0])/x] 4™ [N] impliesN~Z2n.

162 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

FFM—»detN:G

[(M,N) € Opn(Z,~2): o

N-M—-N:o

Z
M= (M,N) € Opn(ZL,<ge): O

=M :sum(0p|Nn<K)

'=cB

I (case M of (Xn.injnof Xy | N < K),M) € Opn(.¥
M :prod(on | n<K)
I (tuple(projnof M | n < K),M) € Opn(z,:”gg) :prod (On | N < K)
r’NFM:o—t x & Dom(I")
M (Ax:0.(Mx),M) € Opn(z,:‘gg) 0—T1
MrEM:P.(0) x ¢ Dom(I")
[(letx < Min[x,M) € Opn(.Z,~20) : P, (o)

) isum(0p | N < K)

M=L:P (o) Mx:okEM:P.(1) Fy:tEN:P.(p)
IF (lety < (letx<=LinM)inN,
. . %
letx <= Lin (lety <= MinN)) € Opn(.Z,~g) : PL(p)
Nr=L:P. (o) FrEM:PL(7) rx:o,y:TEN:P.(p)
I (letx < Lin(lety <= MinN),
. . “
lety <= Min (letx < LinN)) € Opn(.Z,~g) : PL(p)

Figure 5.5: Reduction, n, and sequential composition rules

5.6. THEORY OF THE LANGUAGE 163

[-M:P, (0)
[(MUM,M) € Opn(.Z,~2) : P, (o)
F’M:P(6) TFN:P.(0)
[+ (MUN,NUM) € Opn(.Z,~2) : P, (o)
-L:P(6) TFM:P (o) TFN:P.(0)
[+ (LUM)UN,LU(MUN)) € Opn(.Z,~23) : P, (o)
{TEM;:P(0)|1<i<n} x¢Dom()
M= (MiUMaU...UMy,letx <=?(M1,My,...,Mp)inX) € Opn(ﬁ,ﬁfo)

: PJ_(O-)

{TEMy:0o|n<kKi}
{TFNh:o|n<Ko}
{Mp|n<ki}={Nn|n<ko}

[(2(Mn | n< K1), 2(Nn | N < K2)) € Opn(Z, =) : P, (0)
{TEMy:0|n<kKi}
{TENh:o|n<Ko}

{Mp|n<ki} D{Nn|n<ko}

[(?(Mn | n< K1), 2(Nn | N < K2)) € Opn(Z, S2l) : PL(0)

rEM:P (o)
£
M- (QUM,Q) e Opn(.Z,<zd) : PL(0)
rEM:P (o)
%
M- (QUM,M) € Opn(.Z, <RJ) 1 PL(0)
rEM:P (o)
4
M- (QUM,M) € Opn(.Z,~5) : P (0)
rEM:P (o)
[F(QUM,Q) € Opn(.Z,~2) : P, (o)

M- (MN) € 0pn(Z,5(9) : Pu(0)
[+ (MUN,N) € Opn(2,~2) : P, (o)
[F(M.N) €0pn(.Z, <0%) : PL(0)
[(M,MUN) € Opn(.Z,~2) : P ()
M (L,M) € 0pn(Z, <) 1 Pi(0) Tk (M,N)eOpn(Z, <) : P (o)

Z
M+ (LUMUN,LUN) € Opn(Z,~3) : P.(0)

Figure 5.6: Erratic choice rules

164 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

2. Suppose there exist terms Ny, N, and natural numbers g £ n, such that Ny :"gg ng, N2 fgg ny,
and:
M[(Q, (0], [2])/X 4™ [No] and M[Q,[0],[1])/X 4™ [Ne]
Then M[Q, [0}, [1]) /] 4™
Proof More generally, consider aterm M such that:
N=Me Z2(0): P (nat)

where ' = x:P, (P, (nat)),x1:P, (nat),...,Xm:P.(nat). By lemmal3.4.6, M is canonical, there
exists aunique term N such that M — N, or M is blocked on a variable appearing inT". If M is
canonical, then there exists n € w such that:

[(M, [n]) € Opn(.Z,~5) : Po(nat)

The type system prevents variables from I from being used in the reduction sequence from the
immediate subterm of M, although they may appear as free variables of M. If there exists a

unique term N such that M — N, then lemmal3.4.10(1) allows substitution of closed terms, such
as 2(Q,[0]) or 2Q,[0],[1]), into both sides. If M 4 X, then M # x because they have different
types. Therefore there must exist afresh variable y and terms M and N such that M’ 4 y and:

M = M’y letXmi1 < XinN]
Then:
[, [0]) /X
"Iy letxm1 <= xinN][?(Q, [0]) /X]
[y letXm1 <= XinN][x—2(Q, [0])][%(Q, [0]) /X]
[y letXm1 <=2(Q,[0]) inN][%(Q, [0]) /X
Ty letxm.1 <= [Q]inN][%Q, [0]) /X]
MY — N[Q /Xm1]][2(Q, [0]) /X
'l

y+= NJ[Q,[0]) /X][Q/Xm1]
Similarly:

M[2(Q, [0])/X] —" M’[y—N][%Q, [0])/X][[0] /%m-1]

All of the reduction sequences of length two or more from M[?(Q, [0]) /x| pass through instances
of M’[y— N][(Q,[0])/x], where xn1 is substituted with either Q or [0]. In addition:

[Xmt1: PL(nat) = M'[y—N] € Z(0) : P, (nat)

Thus, although reductions are non-deterministic, we do know the general form of the results. A
similar argument holds for M[?(Q, [0], [1]) /x]. Now suppose M / %, where1 <i<m. If Q is
substituted for x in M, then the result always diverges. If A =T\ (x, P, (nat)) then:

x| € Z(0) : P (nat)
x| € Z(0) : P (nat)

A MO

/
A+ M[[1)/

5.6. THEORY OF THE LANGUAGE 165

Now we can complete both arguments. For M[?(Q, [0])/x], we iteratively reduce and discard
substitutions for new variables that are introduced from ?(Q, [0]) until we reach aterm that is
blocked on a variable . Note that all reductions must be instances of this term. The branch
of the reduction tree where Q is substituted for the blocked variable may be discarded because
it never leads to a canonical program, so it is only necessary to consider the branch where [0]
is substituted for . Therefore al reduction sequences are constrained to either diverge or to
lead to canonical programs that are convex bisimilar to one another because the substitutions
are no longer relevant. This completes the argument for (1). For M[?(Q, [0], [1]) /X], we assume
it can converge to at least two canonica programs that are not related by convex bisimilarity
and so there must be a branch in the reduction tree. The branch must arise when [0] and [1] are
substituted for some blocked variable %, but then Q can also be substituted for ¥ and so the term
may diverge. Therefore M[?(Q, [0], [1])/x] may diverge, as required for (2). O

Proposition 5.6.4 Define programs Ly, L, L3, La, Ls by:

L. €20)

L, © letx <2(Q, [0])inx
L3d_ef letx <=2(Q, 0], [1]) inX
Ls £20,1)

Ls L2

The restrictions of the following relations to .2 (0) form astrict chain with respect to inclusion:

DLs) Al (s L) (L)
—CB —CB —CB —CB —CB

Proof Theinclusions follow easily from the relative definability results of sectionb.5. In each
case, we give examples to show that the inclusions are strict. Note that in each fragment the
open extension of convex bisimilarity is compatible.

(L) z(L)
For ~Z5 " and ~g * defineM and N by:

M % Ax.lety < xin[[0]] : P, (nat) — P, (P, (nat))

- N % Ax lety < xin[letz <= xin[0]] : P, (nat) — P, (P, (nat))
We prove M _fg("l) N and M gé“% L2 N, For M :gg(“) N, it suffices to show that, for all L €
Zo(L1)(Py(nat)), ML ~ "%(Ll) NL. Now L; =?(0) _"gg(“) [0], and so we obtain a program
L' € %4(0) such that L:é’fg(“) L’ by replacing all occurrences of Ly with [0] and using com-
patibility. Then ML~22" ML’ and NL~Z8"/NL’. But L’ is deterministic, and so, by
examining the possible reductions of both programs and using compatibility, it can be shown
that ML’ ~28" N L', Therefore M~Z0"N. For M 228" N, we observe ML, £ NL,.
By examining reductions and using compatlblllty, we can show that M L, ~ NJ o)y [[0]] and

N~ LR (0], it 2 U 0] £ 2 U0 U 0], Therdore M0 N

166 CHAPTER 5. PROGRAMMING LANGUAGE TTSs
Zo(La) z(L : .
For ~25" and ~g ' define M and N by:

Mm% AX.lety <= Xin [plus (y,Y)] : P.(nat) — P, (nat)
N % ax. lety <= Xinletz <= Xin [plus (y,2)] : P, (nat) — P, (nat)

Zo(

~)N and Myéfo “IN. For M:”gg(“) N, it suffices to show that, for all L €

Zo(L2)(PL(nat)), ML ~Z8)NL. Clearly, ML 1™ if and only if NL /™. Also, there must
exist aterm L’ such that L = L'[?(Q,0)/x] and:

We prove M ~

X: P (P.(nat)) F L' € %(0) : P, (nat)

If L may converge at all, by lemmal5.6.3(1), there is a unique natural number n such that, for all
K, L ™ K implies K_“ég(LZ) [n]. By compatibility, it follows that if:

lety < Lin [plus(y,y)] 4™ [plus (Ng, Ny)]
lety < Linletz< Lin[plus(Y,2)] 4™ [plus (N2, N3)]

Then [plus (N1, Ny)] =20 [plus (N2, N3)]. Therefore M =202 N. For M £ 28/ N, we observe

MLs géfo LN L. By examining reductions and using compatibility, we have:

M L3 —ﬁ(LB)QUO<p|US (Q Q) p|US(1)>
NLs fo(Ls)QU’?<P|us(Q 0),plus(0,1),plus(1,0),plus(1,1))

They are not related by convex bisimilarity, and therefore M féﬁ“ﬂ

For :gg("?’) and ~ _fO(L“) define M and N by:

-m ¥ AX.lety <= xin[0] : P, (nat) — P, (nat)
N % ax. lety <= Xinletz <= Xinifeq (Y, z) then[Q]else Q : P, (nat) — P, (nat)

fo(Ls)

We prove M~ 2"*'N and M gé“%)N, For M :gg(L3) N, it suffices to show that, for al L

2o(L3) (P, (nat)), ML_”gg(“)NL. It is clear that both ML and NL may converge to [O] if
and only if L may converge, and neither one can converge to another canonical program. Now
ML ™ if and only if L }™¥. Also, L }™®¥ implies NL 1™®. Thus we only have to show
NL ™ implies L ™¥. The only case to consider is when the conditional reduces to Q in
the else branch because L may cornverge to programs representing two different numbers. By
lemmal.6.3(2), L 1™® and we are done. Therefore M ~ N”%(L” N. For M gé‘f 0k N, we observe

MLy ;ﬁ”% LINLy. By examining reductions, we have:

(L
MLy~ [0
(L
NLs =2 Qulg)

5.6. THEORY OF THE LANGUAGE 167

They are not related by convex bisimilarity, and therefore M qf’gg(“) N
For _"gg L) and :é’fg(LS) define M and N by:
RV AX.lety <= Xin[0] : P (nat) — P, (nat)
N % ax ((ffix f.Ay.letz< Xinif It (y,z) then f zelse[0]) 0) : P, (nat) — P, (nat)

We prove M _"gg(“) N and M ;ﬁ"%)N, For M :”éfg(“) N, it suffices to show that, for all L €

Zo(La)(PL(nat)), ML =2 NL. Now ML ™ if and only if L ™, ML |J™® [0] if and
only if there exists K such that L ™ K, and ML cannot converge to any other program. If
L ™ then NL 1™, and if L cannot converge to any program, then neither can NL. If L can
converge to at least one program, then NL ™ [0]. This leaves the possibility that NL 1™
and L /™S, But then the true branch of the conditional must be chosen at each iteration within
NL, and thisis only possible if L can converge to a set of programs that represent an infinite
set of natural numbers, because y must take values from a strictly increasing sequence of natural
numbers. Lemmal3.4.8(2) rules this out because L ™. So we have NL ™ if and only if

LA™ NL ™ [0] if and only if there exists K such that L ™ K, and NL cannot converge
to any other program. Therefore M ~ fO(L“) N. For M gé“% Ls) N, we observe M Ls ;ﬁfo Ls)N L.
The program NLs may diverge. To see thls define N’ by:

N' % if It (y,2) then f zelse[0]
Then, for al n € w:

(ffix f.Ay.letz<=2winN") n

(Ay.letz <<2win N'[ffix f.Ay.letz<=2winN'/f])n

let z <<2win N'[ffix f.Ay.letz<=2winN'/f][n/y]

letz < [n+ 1]in N[ffix f. Ay.letz <=2winN'/f][n/y]

if It (n,n+ 1) then (ffix f.Ay.letz<=2winN')n+ 1 else [0]
(ffix f.Ay.letz<=2winN)n+1

AR

By examining other reductions, we have:

Lo(L
MLs~ca ' [0]
NLs ~2"™ Quo]
They are not related by convex bisimilarity, and therefore M qé‘f;g(LS) N. O

Perhaps more surprisingly, convex bisimilarity for language fragments more expressive than

Z(?w) can be finer than :"gg() The example in proposition[5.6.5 was suggested by Alan
Jeffrey.

Proposition 5.6.5 If A Cpe wis not recursively enumerable, then the restriction of ~7 (AW 1o

20(?w) is strictly finer than _‘gg()

168 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

Proof There are countably many termsin -4 (?w) (up to a-equivalence) and we assume an
enumeration (M, | n < K) of programs in £p(?w) (P, (nat)) (possibly containing repetitions).
DefineM and N by:

FM ® Ax.2AM, | n < K) : PL(nat) — P, (P, (nat))
N % Ax UMy | n < K) : P, (nat) — P, (P, (nat))

For any L € %(?w) (P, (nat)), there exists m € w such that L = My, Therefore:

ML =28 oMy, | n < k) 228 M U2(M, | 0 < k) =22 NL

But, M and N can be distinguished by ?A because, by lemmab.5.6(4), there is no m € w such
that M= ™ 2A. Thus:

M (2A) =22 oM, | n < k) £ [2A]U2(Mn | n < K) =~ P2IN(24)

—Cl

This does not complete the proof because M and N are not in 4 (?w). However, we can

construct programs in % (?w) that are convex bisimilar to M and N. To see this, note that not
only is.Z(?w) countable, but type checking and the reduction relation are recursive on asuitable
encoding of terms as natural numbers. We denote the encoding of aterm L € .2 (?w) byL € w.

Now there exists a program interp such that:

Finterp € .Z(?w) : nat — P (nat)
and:

|nterpm_”%() L if 3L € % () (P (nat)).m=L
- [0] otherwise

If 2(Mn | n < K) 4™ [Mpy] then:

lety <=?win [interpy]
— ety < [Mp M) in [interpy]
— [mterpM]

And it follows that:

?2(Mp | n<K) gg()Iety <?win [interpy]|

The argument above holds when we redefine M and N by:

- M % Ax lety <2win[interpy] : P, (nat) — Py (P, (nat))
N % ax. [X]Ulety <2win[interpy] : P| (nat) — P, (P (nat))

Therefore M ~22'°)NandMgé‘fo B

~ N, where M,N € % (?w). O

5.7. FIXED-POINTS 169

5.7 Fixed-Points

In this section we prove the Scott induction principle for the lower, upper, and convex variants
of similarity, i.e., fixed-point terms are |least fixed-points with respect to those relations.

With deterministic A-calculi it is often possible to define finite approximations to a fixed-point
term and prove that their least upper bound is equivalent to the fixed-point (see MST96, [Pit97,

San97]). The situation with non-deterministic A-calculi is more complex because w-continuity
usually fails and the variants of mutual similarity and bisimilarity do not coincide. There are a
number of approaches to resolving the lack of w-continuity in a denotational setting, including
lower, upper, and convex powerdomain models [Plo76, [Po83, [Gun92] and categorical power-

domain models [Leh76, Abr83, IPR88, Rus90]. These approaches are not entirely satisfactory
because they make unwanted identifications [PIo83,/0ng93, IMW95] or do not make necessary

identifications such as capturing the idempotency of binary erratic choice. In addition, the results
of section[5.6 suggest that a range of models will be required to model languages with different
forms of erratic non-determinism (with respect to relative definability).

Lassen [[Las98b] proves positive and negative results about unwinding, continuity, and Scott in-

duction for contextual preorders upon A-calculi with finite and countable erratic non-determinism,
as well as a continuity result for upper similarity in the presence of finite non-determinism. He
also gives anumber of examples, one of which demonstrates the failure of w-continuity for lower

similarity. Thisisrephrased for .Z in exampleb.71l

Example5.7.1 Definethe term M by:

def

X: P (P (nat))F M [[O]U (lety <= Xinletz< yin [plus(z1)])] : PL (P, (nat))

It can be shown that:

- fixx. M =20 [QU2w) : P, (P, (nat))

Asan aside, varying the placement of the unit term constructors in M changes the convex bisim-
ilarity equivalence class.

Now, for n € w, define the nth unwinding fix™ x.M of the fixed-point program fixx. M by:

- fixOxM € QP (P, (nat))
- fix™ D x M E Mfix™x.M/x] : P, (P, (nat))
The finite unwindings of fixx. M are related by convex bisimilarity to ssmple programs:
fix(® x. M ~20 0

—CB

fixMx. M =20 [QU2(0)]

fix(®x. M =20 [QU2(0,1)]

fixMYx. M ~20 [QU2(0,1,...,n)]

170 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

The program N] QU(QU?(m| m<n) | n< w) isaleast upper bound of the finite unwindings
with respect to the preorder lower similarity, but it isnot afixed-point of M with respect to mutual
lower similarity because M[N/x] ‘L@/" N. However, the additional unwinding does coincide with
the fixed-point:

MIN/x] =20 fixx. M ~20 [QU2w)

If the unwinding for the limit ordinal wis defined by fix® x.M % N, and the previous definition

is extended for successor ordinals, then the closure ordinal of the function that takes aterm and
substitutes it into M for x is w+ 1 = Succ(w). In general, least upper bounds with respect to
lower similarity are definable in . only if the set of terms is countable, and so unwindings
cannot be defined for uncountable limit ordinals. Note also that N is not a least upper bound
with respect to upper or convex similarity.

Theusual technique for proving asyntactic formulation of Scott induction relies on w-continuity,
but this does not hold in general for erratic non-determinism. In the remainder of this section, we
develop anovel technique that does not depend upon w-continuity, and prove the Scott induction
principle for the lower, upper, and convex variants of similarity upon .# and all of the language
fragments. However, wefirst observe that Scott induction does not hold for refinement similarity.

Example5.7.2 1f M % x and N [4], then - M[N /x| SN : P, (o), but:

fixx. M~’g Q Zag K] ~cg N

The components of the Scott induction result make use of aform of compatibility result where
related terms are also related when placed in the same reduction context.

Lemma5.7.3 Consider a compatible relation R € Rel(E) and terms L, M, N such that L 4 x
and:

Mx:oFLeZE):t
rx:o-(MN)eR :o

Thenl,x:otF (Lx—M],Lx—N]) eR :t

Proof Reflexivity of R follows from compatibility by induction and lemma5.3:8(2). The
result follows by induction on the derivation of L 4 x. The coproduct and product cases require
the fragment . (E) to be closed under blocked substitution. O

5.7. FIXED-POINTS 171

LemmalB.74 is more specific, and is used to replace a substituted term only at the blocked
occurrence of avariable.

Lemma5.7.4 Consider a compatible relation R € Rel(E) and terms L, M, N such that L 4 x
and:

R [1d(Z(E)) R
rx:oFLeZE):t
rx:okMeZE):o
r-Ne”z(E):o
r=(M[N/x,N)eR :o

Then T F (L[x—M][N/X,L[N/x)) €R :T.

Proof By lemmab.73
[x:ok (Lx—M[N/X],Lx—N]) €R :T

With T+ (N,N) € 1d(Z(E)) : o and R [Id(Z(E))] C R , thisimplies:
[+ (L[x— MN/x]J[N/x], L[x— N][N/x]) €R :1

By lemmaB4T(1,2):

L[x— M][N/x] = L[x— M[N/X]][N/X]
LIN/X] = L[x— N][N/x]

Therefore " F (L[x— M][N/x],L[N/x]) eR :t O

We now make the following assumptions and definitions until proposition.7.8l (inclusively):

1. Thereisapreorder R € Relp(E) such that the open extension of R is compatible:
Cmp(E,Opn(E,R)) € Opn(E,R)
By lemmalb.3.4(2):
Opn(E R)[Id(£(E))] € Opn(E R)

The relation R is intended to be the lower, upper, or convex variant of similarity upon
A(E).

172 CHAPTER 5. PROGRAMMING LANGUAGE TTSs
2. Thereisaterm M and a program N such that:

x:P(o)FMe Z(E):P.(0)
FNe ZE):P. (o)
F(M[N/X,N) €R : P, (0)

With additional constraints on R we prove in theorem5.7.9 that:

F (fixx.M,N) € R : P, (0)

3. Definetherelation S € Relg(E) by:
s {(D[fixx.M/x],D[N/X]) | xP (0)-De Z(E):1}

Therelation S isused for acoinductive proof. The meta-variable D ranges over terms that
function as contexts in the following proofs. However, we only substitute programs for x.
Consequently, contextual substitution with variable capture is unnecessary, and we may
restrict ourselves to ordinary substitution.

Therelation S cannot be defined by relational substitution, but does satisfy a property similar to
that of lemmab.3.6(5).

Lemma5.7.5
S C {{fixx.M,N)} U Cls(Cmp(E ,Opn(E,S)))

Proof Byacaseanaysisonx:P (o)FDe Z(E):t.If D=xthen:
(D[fixx.M/x],D[N/x]) = (fixx.M,N)

and we are done. Otherwise D is not a variable and we have to show:
+ (D[fixx.M/x],D[N/x]) € Cmp(E ,Opn(E.S)) : 1

In each case, substituting fixx. M and N for x into the immediate subterms of D results in terms
that are related by Opn(E ,S) (for variable binding term constructors we use the fact that fixx. M

and N are closed to commute substitutions). Finally, D[fixx.M/X],D[N/X] € Z(E) because
fragments are closed under substitution, and therefore:

+ (D[fixx.M/x],D[N/x]) € Cmp(E ,Opn(E.S)) : 1

5.7. FIXED-POINTS 173

We now use the preceding lemmas to prove propositions dealing with the behaviour of terms
resulting from a substitution of fixx. M and N into the same term D. In each proposition, theidea
is to use the fact that a reduction of DIfixx.M /x] or D[N /x| does not involve either substitution

(sothereisaterm E suchthat D — E) or D 4 x. For theformer case, D[fixx. M /x| — E[fixx.M /X

and D[N/x] — E[N/X]. In the latter case, D[fixx.M/X] -, D[x— M][fixx.M /x| and we have
the relationship

F (D[x—M][N/X],D[N/X]) €R :1

And then the proofs continue working with the terms resulting from substituting fixx. M and N
into D[x+— M]. Proposition[5.7.6] handles the case for the function <~>£(E). Propositions[5.7.7]

andB.Z.8 establish the two clauses in the alternative formulation of <->"f§(E) on page[@1.
Proposition 5.7.6 Suppose R C (R)“LZ;’(E) and there is aterm D and a program K; such that
x:P (o) De Z(E):1and D[fixx.M /x| {™ Kj;. Then there exists a program K, such that

DIN/X] |™ K, and - (K1,Kz) € Cmp(E ,Opn(E,S;R)) : 1.

Proof By induction on the length of the reduction sequence DIfixx. M /x| — K. For the base
case, D[fixx. M /x| = K1. By lemmal3.2.2, D iscanonical because fixx. M isnot canonical. Hence
D[N/x] isalso canonical. In addition, by lemmab.7.5;

+ (Dl[fixx.M/x],DIN/X]) € Cmp(E,Opn(E,S)) : 1

Now R is a preorder, hence reflexive, so S C S;R, and the open extension and compatible
refinement are monotone, so:

Cmp(E,Opn(E,S)) € Cmp(E,Opn(E,S;R))
Therefore:
+ (Dl[fixx.M/x],D|N/x]) € Cmp(E,Opn(E,S;R)):1

For the inductive step, suppose that D[fixx.M/x] — L —" K;. By lemma[3Z.I0(2), either

D 4 x or there exists aterm E such that D — E and L = E[fixx.M/x]. Suppose D 4 x. By
lemmal3.4.11(4), D|fixx. M /x| has precisely one reduction:

D[fixx.M/X] =, D[x— M][fixx. M/X]

So L = D[x— M|[fixx. M/x]. Applying the induction hypothesis to (note that language fragments
are closed under blocked substitution):

D[x+— M][fixx.M/x] {|™ K
yields a program K; such that D[x— M][N/x] ™ K and:

F (Ky,Kz) € Cmp(E,Opn(E,S;R)) : 1

174 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

By lemmalb.7.4
- (D[x— M][N/x],D[N/x]) € Opn(E R) : T

So (D[x— M][N/x],D[N/x]) e R C (R >”|_2§(E). By lemmal5.3.9(1), there exists a program K
such that D[N /x| | K3 and:

H <K27K3> € Cmp(E,Opn(E,R)) T
Therelation R istransitive, soS;R ;R C S;R . Using lemma5.3.4(3) and[5.3.6(4) we have:

Cmp(E ,Opn(E,S;R));Cmp(E,Opn(E,R)) € Cmp(E,Opn(E,S;R))
Therefore:

- (K1,Ks) € Cmp(E,Opn(E,S;R)) : 1

This completes the case when D 4 x. Now consider the case when D — E and L = E[fixx. M /X].
Applying the induction hypothesis to E[fixx.M /x| ™ K3, gives us a program K; such that
E[N/x {™ K, and:

F (K1,K2) € Cmp(E,Opn(E,S;R)): T
Using lemmaB.4.10(1), D[N/x] — E[N/x], so D|[N/x] |™® K, and we are done. O

Proposition 5.7.7 If R € (R >“5§(E) and thereisaterem D such that x: P (o)F De Z(E):t

and DIN/x] ™. Then D{fixx. M/x] ™.

Proof By coinduction it suffices to show that there exists aterm E such that D[fixx. M /x| —
E[fixx.M/x] wherex: P, (0)F E € Z(E):tand E[N/X ™. By lemma3:4.10(2), D[N /x| &
implies either D 4 x or there exists aterm E such that D — E and E[N/x] /™. Suppose D / x.
By lemmal5.7.4

- (Dpxi—M][N/X,DIN/x]) € Opn(E R) : T

By using (D[x— M][N/x],D[N/x) € R C (R)" and D[N/x] 1™ we may deduce that
Dx— M][N/x] t"¥. By lemmal3.4.11)(4), Dfixx. M /x| has one reduction:

D[fixx.M/X] = D[x— M][fixx. M/X]

Therefore, we may take E = D[x+— M], and this concludes the case when D 4 x. Now consider
the case when D — E and E[N/x] ™. By lemmal3.4.10(1), D[fixx. M /x| — E[fixx.M /x], and
we are done. O

5.7. FIXED-POINTS 175

Proposition 5.7.8 Suppose R C (R)”jﬂg(E) and there is aterm D and a program K, such that

x:P (0)FDe Z(E):tand D[N/x | Ky. Then D[fixx. M /x| ™ or there exists a program
K1 such that D[fixx. M /x] ™ K; and:

F (K1,K2) € Cmp(E,Opn(E,S;R)): T

Proof Supposethat D is canonical, so D # x and both D[fixx. M /x] and D[N /x] are canonical.
By lemmab. 7.5

 (Dl[fixx.M/x],DIN/X]) € Cmp(E,Opn(E,S)) : 1

Now suppose that D is not canonical. We claim that D[fixx. M /x] {™¥ or there exists aterm E
and a program K3 such that D[fixx. M /x] — E[fixx. M /x], E[N/X] |™®¥ K3, and:

- <K37 K2> € Cmp(E,Opn(E,R)) T

Either D =xand N iscanonical, so D 4 x, or D[N /x] is not canonical and there exists L such that
D[N/X] — L —" Ka. In the latter case, by lemmaB:4.10(2), either D 4 x or there exists aterm E

such that D — E and L = E[N/x]. Suppose D 4 x. By lemmab.7.4
- (D[M]IN/x],DIN/x]) € Opn(E R) : T

Using (D[x— M][N/x,D[N/x]) € R C (R)2®) and D|N/X] ™ K, by lemma5.3.9(2), we
have that D[x— M][N/x] 1™ or there exists K3 such that D[x— M][N/x] ™ K3 and:

- <K37 K2> € Cmp(E,Opn(E,R)) T

If D[x— M][N/X] +™® then proposition[5.7.7]implies that D[x+— M][fixx. M /x| f™®. Also, by
lemmaB.4.11(4):

D[fixx.M /x| = D[Xx— M][fixx. M/X]

Hence D{x+— M][N/x] #™® implies D[fixx.M/x] t™®¥. Otherwise, define E = D[x— M], so
D[fixx.M/X] =4 E[fixx.M/x] and E[N/x] ||™¥ K. This establishes the claim when D / x.

Now suppose there exists aterm E such that D — E and E[N/x] ™ K,. By lemmal3.4.10(1),
Difixx.M/x] — E[fixx. M /x]. Therefore we may take Kz = Ky, because:
+ <K27 K2> € Cmp(E,Opn(E,R)) T

We can now deduce the result. By iterating the above argument, we obtain a sequence of reduc-
tions:

D[fixx.M /x| — Ej[fixx. M /X] — Ep[fixX.M/X] — ...

176 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

where, fori > 1, Ej[N/x] | K, and:
- <Ki+27 Ki+1> € Cmp(E,Opn(E,R)) T

The sequence may terminate when E,[fixx. M /x| ™, in which case DIfixx.M/x] }™®, or a
term E,, is canonical. Otherwise the sequence is infinite, so D[fixx. M /x| {™¥. Thus, we need
only consider the case when E, is canonical. We have:

D[fixx.M/x] 4™ Epl[fixx. M /X|
 (En[fixx.M/X],En[N/x]) € Cmp(E,Opn(E,S)) : T
En[N/X] = Kny2

F (Knt2,K2) € Cmp(E,Opn(E,R)) : 1

Therefore:
F (En[fixx.M/x],K2) € Cmp(E,Opn(E,S;R)): T

We may set K3 = Eq[fixx. M /x|, and we are done. O

The Scott induction result for the variants of lower, upper, and convex variants of similarity
upon every language fragment can be established using propositions.7.6, [5.7.7, and 5.7.8.
This shows that Scott induction is a robust principle that requires no restrictions upon the form
of erratic non-determinism.

<$0(E)

Theorem 5.7.9 Supposethat R € Relg(E) islower similarity <“%(E), upper similarity <5,

~LS
<$0(E)

or convex similarity Scs and there are terms M and N such that:

rx:P (o)FMe Z(E):P.(0)
rNENe Z(E):P(o)
= (M[N/x],N) € Opn(E,R) : P (0)

ThenT + (fixx.M,N) € Opn(E,R) : P (o).

Proof Supposethat I' isthe empty environment. Then the assumptions on pagel71]apply to

R, M, and N for propositions5.7.6,[5.7.7, and5.7.8 It sufficesto proveS C R . By the “up to”
result of lemmaR2.3.10, this follows from:

1.5 C (S;R)Z® whenR = 52F).

2. SC(S;R >“5§(E) whenR = gfg(E).

3.SC (SR >”|_2§(E)H<S;R >’f§(E) whenR = gfg(E).

5.7. FIXED-POINTS 177

Using lemmalb:3.9, these inclusions follow immediately from propositions[5.7.6], and
[5.7.8. This completes the case for the empty environment.

Now consider ' = X3 : O1,...,%y : On and programs L; € %4 (E)(oi), foral 1 <i <n. If L=
Lq,...,Ln, we have to show:

- ((fixx. M)[L/X],N[L/X]) €R : P, (o)
Now I - (M[N/x],N) € Opn(E,R) : P, (o) implies:
= (M[N/X[L/RI,N[L/R)) €R : PL(0)
By lenma3.3.4
MIN/X][L/X] = M[L/S[N[L/%]/X
And so:
= (MIL/XNIL/X)/X,N[L/S)) €R 2Py (0)
By the argument above for the empty environment:
- (fixx. (M[L/X]),N[L/%]) R : P, (0)
But fixx. (M[L/X]) = (fixx.M)[L/X], and so:
- ((fixx. M)[L/X,N[L/X]) €R : P, (0)

Therefore I - (fixx.M,N) € Opn(E,R) : P_(0). O

178 CHAPTER 5. PROGRAMMING LANGUAGE TTSs

Chapter 6
Discussion

In this section we summarise the work presented in this dissertation and then discuss applications
and future research.

6.1 Summary

Chapter [2 reviews and demonstrates relationships between ordinals (including recursive ordi-
nals), well-founded relations, trees, transition systems (labelled and unlabelled, with and with-
out divergence), and the coinductively-defined similarity and bisimilarity relations. The variants
of similarity and bisimilarity upon transition systems with divergence serve as an introduction
to the more complex typed transition systems defined in chapterld, and are used to compare
different binary choice operators from the literature.

Chapter [introduces a A-calculus . that exhibits a general form of erratic non-determinism.
To allow more genera definitions and results, types and terms may be infinite objects and are
not restricted to recursive trees. The operational semantics is presented as a reduction seman-
tics and an evaluation semantics. The latter makes use of the duality between least and greatest
fixed-points to present the inductively-defined must convergence predicate as the complement
of the coinductively-defined may divergence predicate, and this relationship turns out to be use-
ful for the compatibility theorems of chapter B A family of non-deterministic A-calculi with
uniformly defined operational semanticsis generated using closure conditions upon sets of well-
typed terms. This allows consideration of A-calculi with more restrictive forms of erratic non-
determinism, which isimportant because some similarity and bisimilarity relations are sensitive
to the forms of erratic non-determinism present in the language.

Chapter [identifies typed transition systems as the appropriate abstract structures representing
the behaviour of . and its language fragments. Typed transition systems are a special case of
labelled transition systems with divergence, and so the definitions of the variants of similarity
and bisimilarity from chapter[2 can be replayed. Genera inclusions are established between the
relations.

A typed transition system . is defined by interpreting each type constructor by its set-theoretic
counterpart, where the computation type P (0) isinterpreted by the set of non-empty subsets of

179

180 CHAPTER 6. DISCUSSION

thelift of theinterpretation of 6. Thisis possible because the type system for ¢, and hence typed
transition systems, does not permit recursive types. The definition is determined by the structure
of typed transition systems, but (unsurprisingly) cannot be used as a denotational model because
it lacks general fixed-points. It is nevertheless useful for constructing examples that distinguish
the variants of similarity, mutual similarity, and bisimilarity, and for formalising properties of
typed transition systems. In addition, a category of maps between typed transition systems is
defined and every typed transition system that can be quotiented by convex bisimilarity, and that
satisfies another minor condition, is the source of amap with target .. Intuitively, the target of
amap is apartial quotient of the source typed transition system, with additional elements.

Chapter [Bl defines typed transition systems for . and its fragments. The variants of similarity
and bisimilarity correspond to their usua definitions for non-deterministic A-calculi. The lower,
upper, and convex variants of similarity are shown to be compatible for all fragments using
an extension (due to Lassen and discovered independently by the author) of techniques due to
Howe and Ong. In particular, the compatibility results apply to fragments exhibiting finite non-
determinism ?(0, 1), countable non-determinism 2w, and more complex forms of indexed erratic
non-determinism such as ?A, where A Cre is anon-recursively enumerable set.

Another technique, also due to Howe, is used to prove compatibility of the variants of bisim-
ilarity. However, an additional assumption is required to handle infinitary terms and “incom-
plete” fragments. Thisis unfortunate, but not overly restrictive because the excluded infinitary
terms are rarely used (and the assumption holds for the common forms of indexed erratic non-
determinism mentioned above), and term constructors that cause fragments to be “incomplete”
would be replaced by term constructors of lower arity, e.g., ?(0,1) would be a term constructor
of arity O rather than aterm constructor of arity 2 with immediate subterms 0 and 1.

A novel technique is used to prove compatibility of Lassen’s refinement similarity by relating
the dual of the transitive closure of Howe's congruence candidate to the transitive closure of
Howe's congruence candidate for the dua of the underlying relation.

The compatibility proofs apply not to asingle language, but to collections of languages obtained
asfragments of .Z. The proofsthemselves are greatly simplified by the use of Lassen’srelational
operators and the fact that the variants of similarity and bisimilarity are defined in terms of only

two simulation functions, <->L‘75 and <->'55, on relations.

Relative definability of programs with respect to convex bisimilarity is considered, with the
focus on programs of type P, (nat). Thisis arobust notion because convex bisimilarity at this
type does not depend upon the fragment. The following chain exists with respect to relative
definability (where QU?(0, 1) =2 QU7w):

20) < QuU(0) <P QU2(0, 1) <20 2(0,1) <0 2w

For each consecutive pair, the second program can be used to distinguish programs from the
deterministic, recursive fragment . (0) that the first program cannot. In addition, if A Ce wis
anon-recursively enumerable set, then ?A can be used to distinguish programs from . (2w) that
2w cannot. Thisis relevant to the study of denotational models for erratic non-determinism be-
cause amodel for a more expressive form of erratic non-determinism will be too discriminating

for a programming language with less expressive forms of erratic non-determinism.

6.2. FURTHER WORK 181

Finally, the Scott induction principle is proven for the lower, upper, and convex variants of
similarity in all language fragments. Results for lower similarity for finite non-determinism and
countable non-determinism, and upper similarity for finite non-determinism, are unpublished
but were known to Lassen and can be proven using techniques similar to those developed in
his dissertation [Las98b] for contextual approximation. The novel technique introduced here
appliesto al three relations by examining the reductions of terms with substitutions of programs,
applying singleinstances of substitutions only when they arein areduction context, and avoiding
the use of contextual substitution.

6.2 Further Work

There are several avenues for future work, and we divide them roughly into applications for
non-deterministic/concurrent higher-order languages and to denotational models.

Non-Deter ministic A-Calculi

The operational theory of A-calculi exhibiting erratic non-determinism is well-developed, and
it is tempting to look for a specification and refinement formalism that makes use of structured
data types and the higher-order nature of the A-calculus, as opposed to Dijkstra’'s more frugal
Guarded Command Language (GCL). As afirst step, we discuss some of the issues involved in
trandating the GCL to .Z.

Dijkstra’s GCL [|Dij76,dB80, Kal QOE isaminimal imperative language with constructs for non-
deterministic alternation and iteration. Variables are often booleans, natural numbers, integers,
or arrays. For the sake of argument, we consider two variables, a a natural number and b an
array of length 5 of natural numbers. Define the type o by:

0 nat x (sum (unit | n < 5) — nat)

Following the usual approach to state transformer semantics of simple imperative languages
[Pio83], we would like to transform GCL programs using the variables a and b into programs
of .Z with type 0 — P, (0). If P and Q are GCL programs and their translations are [P], [Q]
£ (0 — P, (0)), then the trandation of the sequential composition P;Q is given by:

[P; Q] % Ax.lety < [P]xin[Q]y € Z(0 — P, (0))

Thetrandations of alternation and iteration statements must evaluate all guards (boolean expres-
sions that must not diverge) and then non-deterministically choose between the statements whose
guards are true. Alternation introduces the possibility of a program failing when no guards are
true [AO91]. Failure can be identified with divergence or modelled using a coproduct type, in
which case it must be propagated by trandations.

From a precondition and a postcondition we can define a program that is the minimal program,
with respect to upper similarity, satisfying the precondition and postcondition. If we consider

1de Bakker’s book [dB80] contains aformal treatment of the GCL that is particularly useful in this context.

182 CHAPTER 6. DISCUSSION

only the variable a, as well as a precondition predicate pre C w and a postcondition relation
post C w x w, then one such program is:

AX. case Xof (Ym.Mm | m< w) € Zp(nat — P (nat))

where, for m € w, we define My, € £5(P, (nat)) and An C w by:

def | Q ifmgpreor An=0
" | 2An otherwise

Amo':er {n| (m,n) € post}

Given arepresentation of anatural number as an initial state, this program diverges if the initial
state does not satisfy the precondition or there are no terminal states that satisfy the postcondition
with thisinitial state.

In generdl, it is necessary to use a case statement indexed by w to make use of variables of type
nat, because variables of . cannot appear in the indexing expression of an erratic choice term
constructor. Consequently, it may be difficult to specify properties of lists of unbounded size.
For example, asimilar program for preconditions and postconditions over the variables a and b
must have 6 nested case statements, 1 for aand 5 for b.

A second program satisfies a precondition and postcondition if it is greater than or equal to,
with respect to upper similarity, the program derived from those conditions. The finer rela-
tions, refinement similarity, convex similarity, upper bisimilarity, and convex bisimilarity, may
be useful for identifying stronger relationships between programs. If the bisimilarity relations
are used then it would be sensible to restrict attention from . to the fragment .# in order to
have compatibility.

The next step would be to investigate how proof principles for GCL programs, particularly
loops, can be carried over to their trandations into . programs. If this proves successful, it
would be interesting to generalise those principles for developing functional programs from
non-deterministic functional programs representing specifications. Thiswould allow structured
(coproduct and product) and function types to be used for program development. Such types
are not normally available in the GCL, perhaps because preconditions and postconditions use
program variables within the terms of well-formed formulae. If the types of program variables
are not flat, then it is tempting to introduce a more expressive term language, but this can lead to
partially-defined terms with their associated problems [CJO1].

It should be straightforward to extend ¢ with algebraic data types, re-prove the compatibil-
ity and Scott induction results, and construct a structure that corresponds to .. With such
a language, it may be possible to adapt some of Bird and de Moor's development techniques
[BAM97]. However, the settings are mismatched because Bird and de Moor’s model alows a
program to have no outcome and does not incorporate divergence and general recursion. In-
stead primitive recursion is used to define functions over (well-founded) algebraic data types.
Removing the fixed-point term constructor or creating a subtype P (o) of R (o) that permits
non-determinism but not divergence solves the latter problem. The possibility of no outcome
follows from a more serious problem: much of Bird and de Moor’'s work is based upon spec-
ifying the behaviour of a program in terms of the dual of afunction. It seems unlikely that it

6.2. FURTHER WORK 183

would be possible to give an operational semantics for the dual of ahigher-order program. In the
special case of afunction between algebraic data types, it may be possible to define a program
that acts as the dual of a program up to convex bisimilarity. For example, the dua of a program

M of type nat — P (nat) could be a program M®, also of type nat — P (nat), defined by:

M & \x. case xof (Yn-?An | N < W)

where A, C wis defined by:

A ® {me w|3IN.Mm ™ [N] AN=ZE)

In addition, there will be countably many cornvex bisimilarity equivalence classes of programs
with a fixed algebraic data type such as finite lists or trees, and so we can expect to be able to
define the dual of functions operating on such data types. However, in generd, it would not
be possible to define the dual of an open term or to internalise the dual operation within the
programming language.

The addition of recursive types would cause several problems. The duals suggested above would
have no anal ogue for anon-deterministic program with type nat — P (list (nat)), wherelist (nat)
represents finite or infinite lists of natural numbers, because there is no way to recognise infinite
lists. Countable non-determinism may be useful for specifying such programs by testing that all
finite prefixes of lists satisfy some property (see the take lemmain BdM93]). Recursive types
would also introduce divergence at al types, not just computation types, and would prevent the
definition of a structure corresponding to .. Similarity and bisimilarity could be defined, and
the compatibility and Scott induction results should hold with few changes. However, a new
strategy may be required to prove compatibility of the variants of bisimilarity if the possibility
of divergence at value types weakens lemma4.2.5

Concurrent A-Calculi

The operational semantics derived here for the binary erratic choice operator MUN differs from
Jeffrey’s [Jet99] operational semantics for internal choice;

M— M’ N — N’
M[N— M'[N M[N—-M[]N’
KI]N—DK |\/||]K—«>K

The variants of similarity and bisimilarity considered here cannot distinguish between M UN
and M [N, because although their reduction trees are different, they do have the same leaves
(labelled with canonical programs). However, higher-order weak similarity and bisimilarity can
distinguish them because those relations are sensitive to reduction behaviour. If higher-order
weak similarity is denoted by =, then, for programs M, N of the same computation type, we
have M < N if and only if:

(YM'.M — M’ = IN’.N —" N'AM’ < N) A
(YM'.M = [M'] = 3IN'.N —" [N]AM’ < N’)

184 CHAPTER 6. DISCUSSION

Higher-order weak bisimilarity is defined in the obvious way. For example, convex bisimilarity
relates the programs [x] U Q and fixx. [x] U X, both of type P, (unit), but they are not related
by higher-order weak bisimilarity because Q and fixx. [x| UX are not related by higher-order
weak bisimilarity. The interest in higher-order weak similarity and bisimilarity is motivated by
applications to languages, such as CML, with concurrency and communication primitives.

It would be useful to understand the relationship between languages with binary erratic choice
with respect to the lower, upper, and convex variants of similarity and bisimilarity and languages
with internal choice with respect to higher-order weak similarity and bisimilarity.

Denotational M odels

The variants of bisimilarity are strictly finer than the corresponding variants of mutual simi-
larity (see example[4.4.5 and the discussion in section5.2). This prompts the question, are
partial orders appropriate for modelling the variants of bisimilarity, and, if not, which properties
characterise the fixed-point operator with respect to the variants of bisimilarity? There are a
number of related equational treatments of fixed-point operators: iteration and iterative theories
[Blo89, Wag94], traced monoidal categories [JSV96, [HasA7], dinatura fixed-point operators
[Sim93, [PS00], and FLRy [M0s89, IM0s95]. It would be interesting to see whether the variants
of bisimilarity satisfy such properties, because then the quotient of the language fragment by the
bisimilarity would be amodel of the equational axioms that does not arise directly from apartial
order, in contrast to the usual domain-theoretic examples.

For example, the dinaturality property isthat, for arelation R € Reb(E) and termsI™,x: P, (o) F
M:P.(t)andT,y: P (1) N: P, (o), we have:

I (fixy. M[N/x],M[fixx.N[M/y]/X]) € Opn(E ,R) : P, (1)

It may be possible to give a direct proof of dinaturality with respect to the variants of bisimi-
larity using techniques similar to those used for the Scott induction result (theorem5.7.9). An
aternative is to try to adapt Lassen and Moran's LM99] proof of dinaturality with respect to
mutual cost similarity for a A-calculus with ambiguous choice.

Bibliography

[Abrg3]

[Abrg74]

[Abr87b]

[Abrgg]

[Abroo]

[Abro1]

[AC98]

[Acz77]

[Acz88]

[Acz94]

[AD9S]

S. Abramsky. On semantic foundations for applicative multiprogramming. In
J. Diaz, editor, Automata, Languages and Programming, volume 154 of Lecture
Notes in Computer Science. Springer-Verlag, 1983.

S. Abramsky. Domain Theory and the Logic of Observable Properties. PhD thesis,
University of London, 1987.

S. Abramsky. Observation equivalence as atesting equivalence. Theoretical Com-
puter Science, 53:225-241, 1987. [33,[39

S. Abramsky. A generdized Kahn principle for abstract asynchronous networks.
In M. Mislove M. Main, A. Melton and D. Schmidt, editors, Proceedings of the
5th Conference on Mathematical Foundations of Programming Semantics, volume
442 of Lecture Notes in Computer Science, pages 1-21. Springer-Verlag, 1989. [16

S. Abramsky. Thelazy lambdacalculus. In Turner [Tur90b], pages 65-117. B,[10,
[111[20, 21,[39, 88, 88 (88} [88, [120,

S. Abramsky. A domain equation for bisimulation. Information and Computation,
92(2):161-218, 1991. [8/[39

R. M. Amadio and P-L. Curien. Domains and Lambda-Calculi. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1998. [10, 441

P. Aczel. Anintroduction to inductive definitions. In Barwise [Bar/7], pages 739—
782. [9[23 [35,[35 [42

P. Aczel. Non-Well-Founded Sets, volume 14 of CSLI Lecture Notes. Center for
the Study of Language and Information, Stanford University, 1988. [9,[32, 43

P. Aczel. Final universes of processes. Lecture Notesin Computer Science, 802:1—
28, 1994,

R. M. Amadio and M. Dam. Reasoning about higher-order processes. In
P. D. Mosses, M. Nielsen, and M. |. Schwarzbach, editors, TAPSOFT '95: The-
ory and Practice of Software Development, 6th International Joint Conference
CAAP/FASE, volume 915 of Lecture Notes in Computer Science, pages 202-216.
Springer-Verlag, 1995. Full version as SICS Research Report RR:94/18, October
1994. [17]

185

186

[AGM94]

[AJ94]
[AIM94]

[ALT95]

[Amag3]

[Ama94]

[AO91]

[AO93]

[APS6]

[BA81]

[Bac80]

[Bacss]

[Bar77]

BIBLIOGRAPHY

S. Abramsky, D. Gabbay, and T. S. E. Maibaum, editors. Semantic Structures,
volume 3 of Handbook of Logic in Computer Science. Clarendon Press, 1994.
(186, 198

S. Abramsky and A. Jung. Domain theory. In Abramsky et al. [AGM94]. [44]

S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF (extended
abstract). In M. Hagiyaand J. C. Mitchell, editors, Theoretical Aspects of Computer
Software TACS 94, volume 789 of Lecture Notesin Computer Science, pages 1-15.
Springer-Verlag, 1994.

R. M. Amadio, L. Leth, and B. Thomsen. From a concurrent A-calculus to the
T-calculus. In H. Reichel, editor, Fundamentals of Computation Theory (FCT ' 95,
10th International Conference, Dresden, Germany), volume 965 of Lecture Notes
in Theoretical Computer Science, pages 106-115. Springer-Verlag, 1995. Full ver-
sion as Technical Report ECRC-95-18. [17

R. M. Amadio. On the reduction of CHOCS bisimulation to rcalculus bisimula-
tion. In E. Best, editor, CONCUR '93: 4th International Conference on Concur-
rency Theory, volume 715 of Lecture Notes in Computer Science, pages 112—-126.
Springer-Verlag, August 1993. [17

R. M. Amadio. Trandating core Facile. Technica Report ECRC-TR-3-94, Euro-
pean Computer-Industry Research Center, GmbH, Munich, 1994. Also available
as atechnical report from CRIN(CNRS)-Inria (Nancy). [I1

K.R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs.
Texts and Monographs in Computer Science. Springer-Verlag, 1991.

S. Abramsky and C.-H. L. Ong. Full abstraction in the lazy lambda calculus. In-
formation and Computation, 105(2):159-267, 1993. [10, 20, (21 88

K. R. Apt and G. D. Plotkin. Countable nondeterminism and random assignment.
Journal of the ACM, 33(4):724-767, October 1986. [6] 20, [81, 81} [157]

J. D. Brock and W. B. Ackerman. Scenarios: A model of non-determinate com-
putation. In J. Diaz and |. Ramos, editors, Proceedings of the International Collo-
guium on Formalization of Programming Concepts, volume 107 of Lecture Notes
in Computer Science, pages 252—259. Springer-Verlag, 1981.

R. J. R. Back. Semantics of unbounded nondeterminism. In J. W. de Bakker and
J. van Leeuwen, editors, Automata, Languages and Programming, 7th Colloquium,
volume 85 of Lecture Notes in Computer Science, pages 51-63. Springer-Verlag,
1980. BB

R. J. R. Back. A calculus of refinements for program derivations. Acta Informatica,
25:593-624, 1988.

J. Barwise, editor. Handbook of Mathematical Logic. Number 90 in Studies in
Logic and the Foundations of Mathematics. North-Holland, 1977. [185,[192 [192

BIBLIOGRAPHY 187

[Bar84]

[Bar92]

[BAM93]

[BAM97]

[Berog]

[BL95]

[Blogg]

[BM96]

[Bou93]

[Bou94q]

[Bou94b]

[Bou97d]

[Bou97h]

H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103
of Studies in Logic and the Foundations of Mathematics. North-Holland, revised
edition, 1984. O, 10, 58,69,

H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay, and
T. S. E. Maibaum, editors, Background: Computational Structures, volume 2 of
Handbook of Logic in Computer Science. Clarendon Press, 1992.

R. S. Bird and O. de Moor. Solving optimisation problems with catamorphisms.
In R. S. Bird, C. C. Morgan, and J. C. P. Woodcock, editors, 2nd International
Conference on the Mathematics of Program Construction, volume 669 of Lecture
Notes in Computer Science, pages 45-66. Springer-Verlag, 1993.

R. S. Bird and O. de Moor. Algebra of Programming. International Series in
Computer Science. Prentice Hall, 1997.

K. L. Bernstein. A congruence theorem for structured operational semantics of
higher-order languages. In 13th Annual IEEE Symposium on Logic in Computer
Science. IEEE Computer Society Press, 1998. [11

G. Boudol and C. Laneve. A-calculus, multiplicities and the T-calculus. Technical
Report INRIA Res. Report 2581, INRIA Sophia-Antopolis, June 1995.

S. L. Bloom. The equational logic of iterative processes. In J. Csirik, J. Demetro-
vics, and F. Gécseg, editors, Fundamentals of Computation Theory, volume 380 of
Lecture Notes in Computer Science, pages 47-57. Springer-Verlag, 1989.

J. Barwise and L. Moss. Vicious Circles; on the Mathematics of Non-Wellfounded
Phenomena. Number 60 in CSLI Lecture Notes. CSLI publications, 1996. [@[32,

G. Boudol. The A-calculus with multiplicities. Technical Report INRIA Res. Re-
port 2025, INRIA, September 1993.

G. Boudol. The discriminating power of multiplicities in the A-calculus. Technical
Report INRIA Res. Report 2441, INRIA, December 1994. [13

G. Boudol. Lambda-calculi for (strict) parallel functions. Information and Com-
putation, 108:51-127, 1994.

G. Boudol. The tecalculus in direct style. In Conference Record of POPL ’97:
The 24th ACM SIGPLAN-S GACT Symposium on Principles of Programming Lan-
guages, pages 228-241, January 1997. [17]

G. Boudol. Typing the use of resources in a concurrent calculus. In R. K. Shya
masundar and K. Ueda, editors, Advances in Computing Science, Proceedings of
ASIAN '97, the Asian Computing Science Conference (Kathmandu, Nepal), vol-
ume 1345 of Lecture Notes in Computer Science, pages 239-253. Springer-Verlag,
1997. [I7

188

[BPRY0]

[Bro86]

[Bro8g|

[BRWSS]

[Buc97]

[Bursg]

[CCO2]

[CGYS5]

[Chu38]

[C91]

[CK37]

[Cli82]

[CMO3]

[CP92]

BIBLIOGRAPHY

D. B. Benson, P. Panangaden, and J. R. Russell. Defining fair merge as a colimit:
Towards a fixed-point theory for indeterminate dataflow. In M. Z. Kwiatkowska,
M. W. Shields, and R. M. Thomas, editors, Semantics for Concurrency, Leicester,
Workshops in Computing, pages 175-184. Springer-Verlag, 1990.

M. Broy. A theory for nondeterminism, parallelism, communication, and concur-
rency. Theoretical Computer Science, 45:1-61, 1986.

M. Broy. Nondeterministic data flow programs. How to avoid the merge anomaly.
Science of Computer Programming, 10:65-85, 1988.

S. D. Brookes, A. W. Roscoe, and D. J. Walker. An operational semantics for CSP.
Technical report, Programming Research Group, University of Oxford, 1988.

A. Bucciarelli. Degrees of parallelism in the continuous type hierarchy. Theoretical
Computer Science, 177(1):59-71, April 1997.

F. W. Burton. Nondeterminism with referential transparency in functional pro-
gramming languages. The Computer Journal, 31(3):243-247, June 1988.

P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpreta-
tions. In Conference Record of the 19th ACM Symposium on Principles of Pro-
gramming Languages, pages 83-94, 1992. 15,53,

R. L. Crole and A. D. Gordon. A sound metalogical semantics for input/output
effects. In L. Pacholski and J. Tiuryn, editors, Computer science logic: 8th work-
shop, CSL ' 94, volume 933 of Lecture Notesin Computer Science, pages 339-353.
Springer-Verlag, 1995. [19,[59, 69

C. A. Church. The constructive second number class. Bull. Amer. Math. Soc.,
44:224-232, 1938.

J. H. Cheng and C. B. Jones. On the usability of logics which handle partial func-
tions. In C. Morgan and J. C. P. Woodcock, editors, Proceedings of the Third Re-
finement Workshop, Workshops in Computing Series, pages 51-69, Berlin, 1991.
Springer-Verlag.

C.A.Churchand S. C. Kleene. Formal definitionsin the theory of ordinal numbers.
Fund. Math., 28:11-21, 1937. (48

W. Clinger. Nondeterministic call by need is neither lazy nor by name. In ACM
Symposium on Lisp and Functional Programming, pages 226-234, 1982. 17

P. Cenciarelli and E. Moggi. A syntactic approach to modularity in denotational
semantics. In Proceedings of the Conference on Category Theory and Computer
Science, Amsterdam, CWI Technical Report, 1993.

R. L. Crole and A. M. Pitts. New foundations for fixpoint computations: FIX-
hyperdoctrines and the FIX-logic. Information and Computation, 98(2):171-210,
1992. [1I9

BIBLIOGRAPHY 189

[Cro93]

[Cut80]

[dB8O]

[Deng4]

[dGHLPY4]

[Dij76]
[DPYO]

[Ear97]

[Faus2]

[FF86]

[FH83]

[FHJ95]

[FHL94]

[Fio94]

[Fra36]

R. L. Crole. Categories for Types. Cambridge Mathematical Textbooks. Cambridge
University Press, 1993. [58][59,

N. Cutland. Computability: An Introduction to Recursive Function Theory. Cam-
bridge University Press, 1980. [/1

J. de Bakker. Mathematical Theory of Program Correctness. International Series
in Computer Science. Prentice Hall, 1980. @, 187} 181

J. B. Dennis. Data flow computation. In M. Broy, editor, Control Flow and Data
Flow: Concepts of Distributed Programming., volume 14 of NATO Advanced Sci-
ence Institutes Series F: Computer and System Sciences. Springer-Verlag, 1984. A
collection of 5 essays.

P. di Gianantonio, F. Honsdll, S. Liani, and G. D. Plotkin. Countable non-
determinism and uncountable limits. In B. Jonsson and J. Parrow, editors, CON-
CUR'94: Concurrency Theory, 5th International Conference, volume 836 of Lec-
ture Notes in Computer Science, pages 130-145. Springer-Verlag, August 1994.
6

E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976. {4, B, [181l

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
Mathematical Textbooks. Cambridge University Press, 1990. [30,

B. Earl. Toolsfor domain theory. Master’sthesis, University of Oxford, Computing
Laboratory, September 1997. [101

A. A. Faustini. The Equivalence of an Operational and a Denotational Semantics
for Pure Dataflow. PhD thesis, University of Warwick, 1982.

M. Felleisen and D. P. Friedman. Control operators, the SECD-machine and the
A-calculus. In Formal Description of Programming Concepts |11, pages 193-217.
North-Holland, 1986. [65

M. Forti and F. Honsell. Set theory with free construction principles. Annali Scuola
Normale Qupeiore di Pisa, Classe di Scienze, 10:493-522, 1983. 43

W. Ferreira, M. Hennessy, and A. Jeffrey. A theory of weak bisimulation for core
CML. Technical Report 05/95, University of Sussex, September 1995. [17,[68,

M. Forti, F. Honsell, and M. Lenisa. Processes and hyperuniverses. In I. Privara,
B. Rovan, and P. Ruzicka, editors, Mathematical Foundations of Computer Science
1994 19th International Symposium, volume 841 of Lecture Notes in Computer
Science, pages 352-363. Springer-Verlag, 1994. [9, 32l [43

M. P. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. PhD thesis,
University of Edinburgh, 1994.

N. Francez. Fairness. Texts and Monographs in Computer Science. Springer-
Verlag, 1986.

190

[Gal91]

[Gir87]

[GLT89]

[Gor94]

[Gor954]

[Gor95h]

[Grig]

[Gru93]

[Gun92]

[HAS0]

[Has97]

[Hens2]

[Hen94]

[HMO5]

BIBLIOGRAPHY

J. H. Gallier. What's so specia about Kruskal’s theorem and the ordinal I'x? A sur-
vey of some resultsin proof theory. Annals of Pure and Applied Logic, 53(3):199—
260, September 1991.

J.-Y. Girard. Proof Theory and Logical Complexity, volume 1 of Studies in Proof
Theory. Bibliopolis, 1987. 23 45,[46

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Number 7 in Cambridge
Tractsin Theoretical Computer Science. Cambridge University Press, 1989.

A. D. Gordon. Functional Programming and Input/Output. Distinguished Disser-
tations in Computer Science. Cambridge University Press, 1994. [17], 19, 21, 58,
59,

A. D. Gordon. Bisimilarity as atheory of functional programming. BRICS Notes
Series NS-95-3, Department of Computer Science, University of Aarhus, 1995.
[LT,[38,189, [120

A. D. Gordon. A tutorial on co-induction and functional programming. In Pro-
ceedings of the 1994 Glasgow Workshop on Functional Programming, Workshops
in Computing, 1995. [11][39,

D. Gries. The Science of Programming. Texts and Monographs in Computer Sci-
ence. Springer-Verlag, 1981.

J. Grundy. A Method of Program Refinement. PhD thesis, University of Cambridge,
1993. 4

C. A. Gunter. Semantics of Programming Languages. Structures and Techniques.
Foundations of Computing. MIT Press, 1992. [©, 10, 11, (33, (44, [72, [76, [88, 112,
169

M. C. B. Hennessy and E. A. Ashcroft. A mathematical semantics for a nonde-
terministic typed A-calculus. Theoretical Computer Science, 11(3):227—-245, 1980.
12

M. Hasegawa. Models of Sharing Graphs: A Categorical Semantics of Let and
Letrec. PhD thesis, University of Edinburgh, 1997.

P. Henderson. Purely functional operating systems. In J. Darlington, P. Henderson,
and D. Turner, editors, Functional Programming and its Applications, pages 177—
192. Cambridge University Press, 1982.

M. Hennessy. Higher-order process and their models. In S. Abiteboul and
E. Shamir, editors, Automata, Languages and Programming, 21st International
Colloguium, volume 820 of Lecture Notes in Computer Science, pages 286-303,
Jerusalem, Israel, July 1994. Springer-Verlag. [17]

J. Hughes and A. K. Moran. Making choices lazily. In Functional Programming
and Computer Architecture, pages 108-119. ACM Press, June 1995. [12,[14, [17,
1973

BIBLIOGRAPHY 191

[HO89]

[HOO0]

[Hoa69]

[Hoas5)

[Hows9)]

[How96]

[HS86]

[1S98]

[Jefos5]

[Jefog)]

[Joh87]

[JRO7]

[JSV96]

J. Hughes and J. T. O’ Donnell. Expressing and reasoning about non-deterministic
functional programs. In Functional Programming (Glasgow), Workshops in Com-
puting, pages 308-328. Springer-Verlag, 1989. [16

J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF. Information and
Computation, 163:285-408, 2000.

C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:576-580, 1969. [3

C. A. R. Hoare. Communicating Sequential Processes. International Series in
Computer Science. Prentice Hall, 1985. [7]

D. J. Howe. Equality in lazy computation systems. In Proceedings, 4th Annual
Symposium on Logic in Computer Science, pages 198-203. |EEE Computer Soci-
ety Press, 1989. [11],[12] (21, 89] 129, (134,

D. J. Howe. Proving congruence of bisimulation in functional programming lan-
guages. Information and Computation, 124(2):103-112, 1996. [11], 21,
[134,

J. R. Hindley and J. P. Seldin. Introduction to Combinators and A-calculus. Num-
ber 1 in London Mathematical Society Student Texts. Cambridge University Press,
1986.

H. Ibraheem and D. A. Schmidt. Adapting big-step semantics to small-step style:
Coinductive interpretations and “ higher-order” derivations. In A. D. Gordon, A. M.
Pitts, and C. Talcott, editors, Proc. 2nd Workshop on Higher Order Operational
Technigues in Semantics, Sanford, December 1997, volume 10 of Electronic Notes
in Theoretical Computer Science. Elsevier, 1998.

A.SA. Jeffrey. A fully abstract semantics for a concurrent functional language
with monadic types. In Proceedings, Tenth Annual |EEE Symposium on Logic in
Computer Science, pages 255264, San Diego, California, 26—29 June 1995. |IEEE
Computer Society Press. [17,[120

A.SA. Jeffrey. A fully abstract semantics for a higher-order functional language
with nondeterministic computation. Theoretical Computer Science, 228(1-2):105—
150, 1999. [13,[19,[59, B9, [68,

P. T. Johnstone. Notes on Logic and Set Theory. Cambridge Mathematical Text-
books. Cambridge University Press, 1987. [23,

B. Jacobs and J.J.M.M. Rutten. A tutorial on (co)algebras and (co)induction. Bul-
letin of EATCS, 62:222-259, 1997.

A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Math. Proc. Camb.
Phil. Soc., 119:447-468, 1996.

192

[Kah74]

[Kah87]

[Kal90]

[Kei77]
[Kle38]

[KSS99]

[Kun77]

[Kun80]

[Las97]

[Las98d]

[L as98b]

[Lau93]

[Lavo3]

[Leh76]

[Lev79]

[Lico6]

BIBLIOGRAPHY

G. Kahn. The semantics of a smple language for parallel programming. In J. L.
Rosenfeld, editor, Information Processing ' 74: Proceedings of the IFIP Congress,
pages 471-475. North-Holland, 1974. [16

G. Kahn. Natural semantics. In F. J. Brandenburg, G. Vidal-Naquet, and M. Wirs-
ing, editors, STACS 87, volume 247 of Lecture Notes in Computer Science, pages
22-39. Springer-Verlag, 1987. O, [72

A. Kaldewaij. Programming: the derivation of algorithms. International Seriesin
Computer Science. Prentice Hall, 1990. B, 181

H. J. Keisler. Fundamentals of model theory. In Barwise [Bar77].

S. C. Kleene. On notation for ordinal numbers. The Journal of Symbolic Logic,
3(4):150-155, December 1938. [46

A. Kutzner and M. Schmidt-SchauR. A non-deterministic call-by-need lambda
calculus. ACM SIGPLAN Notices, 34(1):324-335, January 1999. [12,

K. Kunen. Combinatorics. In Barwise [Bar77]. [23

K. Kunen. Set Theory: an introduction to independence proofs, volume 102 of
Studies in Logic and the Foundations of Mathematics. North-Holland, 1980. [23,
o8|

S. B. Lassen. Action semantics reasoning about functional programs. Math. Sruct.
in Comp. Science, 7(5):557-589, 1997. [12,[12, [13, [73,

S. B. Lassen. Relational reasoning about contexts. In A. D. Gordon and A. M.
Pitts, editors, Higher Order Operational Techniques in Semantics, Publications of
the Newton Institute, pages 91-135. Cambridge University Press, 1998.

S. B. Lassen. Relational Reasoning about Functions and Nondeterminism. PhD
thesis, Department of Computer Science, University of Aarhus, Denmark, 1998.

J. Launchbury. A natural semantics for lazy evaluation. In Conference Record of
the Twentieth Annual ACM SSGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 144-154, 1993.

C. Lavatelli. Non-deterministic lazy A-calculus vs Tecalculus. Technical Report
Technical Report 93-15, DMI, LIENS, 1993. [13,[13

D. J. Lehmann. Categories for Fixpoint Semantics. PhD thesis, Department of
Computer Science, University of Warwick, 1976.

A. Levy. Basic Set Theory. Perspectivesin Mathematical Logic. Springer-Verlag,
1979. 2335

B. Lichtenthaler. Degrees of Parallelism. Masters thesis, Informatik-Bericht, Jan-
uary 1996. Abridged English version. [18|[77

BIBLIOGRAPHY 193

[LM9g]

[LPOS]

[LS36]

[McC63)]

[Mil89]

[Mil90]

[Mil91]

[Mit96]

[Mog89al

[Mog89b]

[Mog91]

[Mor90]

[Mor94]

S.B. Lassen and A. K. Moran. Unique fixed point induction for McCarthy’s Amb.
In Proc. of MFCS 99, the 26" Symposium on Mathematical Foundations of Com-
puter Science, volume 1672 of Lecture Notesin Computer Science, pages 198-208.
Springer-Verlag, September 1999.

S. B. Lassen and C. S. Pitcher. Similarity and bisimilarity for countable non-
determinism and higher-order functions. In A. D. Gordon, A. M. Fitts, and C. Tal-
cott, editors, Proc. 2nd Workshop on Higher Order Operational Techniques in Se-
mantics, Sanford, December 1997, volume 10 of Electronic Notes in Theoretical
Computer Science. Elsevier, 1998. [12] 13, 135

J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Num-
ber 7 in Cambridge Studies in Advanced Mathematics. Cambridge University
Press, 1986.

J. McCarthy. A basis for amathematical theory of computation. In P. Braffort and
D. Hirschberg, editors, Computer Programming and Formal Systems, pages 33—70.
North-Holland, 1963. [14][16

R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989. [7[8,[9, 30, [35, 38, B9, 57

R. Milner. Functions as processes. In M. S. Paterson, editor, Automata, Languages
and Programming, volume 443 of Lecture Notes in Computer Science, pages 166—
180. Springer-Verlag, 1990.

R. Milner. The polyadic Tecalculus: A tutorial. Technical report, LFCS, University
of Edinburgh, 1991. [7

J. C. Mitchell. Foundations for Programming Languages. MIT Press, 1996. 0,[21]
88

E. Moggi. An abstract view of programming languages. Technical Report ECS-
LFCS-90-113, University of Edinburgh, 1989. Lecture Notes for course CS 359,
Stanford University. [19, B5

E. Moggi. Computational lambda-calculus and monads. In Proceedings, 4th An-
nual Symposium on Logic in Computer Science, pages 14-23. |EEE Computer So-
ciety Press, 1989. [19,

E. Moggi. Notions of computations and monads. Information and Computation,
93(1):55-92, 1991. [19,55 59

C. C. Morgan. Programming from Specifications. International Seriesin Computer
Science. Prentice Hall, 1990. [6

A. K. Moran. Natural semantics for non-determinism. Licentiate thesis, Chalmers
University of Technology and University of Goteborg, May 1994. [12,[12, 14!

194

[Mor9g]

[Mos74]

[Mos89]

[M0s90]

[Mos91]

[Mos95]

[Mos98]

[MPS6]

[MPW92]

[MST96]

[MT88]

[MWO5]

[Odi8g]

[Ong924]

[Ong92b]

BIBLIOGRAPHY

A. K. Moran. Call-by-name, Call-by-need, and McCarthy's Amb. PhD thesis,
Department of Computing Science, Chalmers University of Technology, Goteborg,
Sweden, September 1998. [12, 12 [14, 16 [16, 17, 19, [70, 75

Y. N. Moschovakis. Elementary Induction on Abstract Sructures. Studiesin Logic
and the Foundations of Mathematics. North-Holland, 1974.

Y. N. Moschovakis. The formal language of recursion. The Journal of Symbolic
Logic, 54(4):1216-1252, December 1989.

Y. N. Moschovakis. Descriptive Set Theory. North-Holland, 1990.

Y. N. Moschovakis. A model of concurrency with fair merge and full recursion.
Information and Computation, 93(1):114-171, 1991.

Y. N. Moschovakis. Computable concurrent processes. Theoretical Computer Sci-
ence, 139(1-2):243-273, 1995. [16, 184

Y. N. Moschovakis. A game-theoretic, concurrent and fair model of the typed
lambda-calculus, with full recursion. In M. Nielsen and W. Thomas, editors, CSL
'97, volume 1414 of Lecture Notesin Computer Science, pages 341-359. Springer-
Verlag, 1998. [16

A. Moitra and P. Panangaden. Finitary choice cannot express fairness. A metric
space technique. Technical Report TR86-788, Cornell University, 1986.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part | + 1.
Information and Computation, 100(1):1-77, 1992. [1

I. A. Mason, S. F. Smith, and C. L. Talcott. From operational semantics to domain
theory. Information and Computation, 128(1):26-47, 1996. [169]

R. Milner and M. Tofte. Co-induction in relational semantics. Technical Report
ECS-LFCS-88-58, LFCS, University of Edinburgh, 1988.

Y. N. Moschovakis and G. T. Whitney. Powerdomains, powerstructures and fair-
ness. In L. Pacholski and J. Tiuryn, editors, Computer Science Logic ' 94, volume
933 of Lecture Notes in Computer Science, pages 382—396. Springer-Verlag, 1995.
@,

P. Odifreddi. Classical Recursion Theory, volume 125 of Studies in Logic and the
Foundations of Mathematics. North-Holland, 1989. (18,23, 45, [46, [77,

C.-H. L. Ong. Concurrent lambda calculus, and a general pre-congruence theorem
for applicative bisimulation. Preliminary version, August 1992. 13 [21] [21[89,[89,

C.-H. L. Ong. Functions, non-determinism and concurrency. Working draft, Jan-
uary 1992. [13,189,[89

BIBLIOGRAPHY 195

[ONng93]

[OP93]

[Par79]

[Par81]

[PGM 9]

[Pit91]

[Pit97]

[Plo75]

[Plo76]

[Plo77]

[Plo81]

[Plo82]

[Plo83]

C.-H. L. Ong. Non-determinism in a functiona setting. In Proceedings, 8th An-
nual Symposium on Logic in Computer Science, pages 275-286. |EEE Computer
Society Press, 1993. [12,[12, 18] 89,89, 169

C.-H.L.Ong and A. M. PRitts. Systematic programming semantics, 1993. Case for
support.

D. M. Park. On the semantics of fair parallelism. In D. Bjgrner, editor, Abstract
Software Specification, volume 86 of Lecture Notes in Computer Science, pages
504-526. Springer-Verlag, 1979. 6,8, [35,

D. M. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Conference on Theoretical Computer Science, volume 104 of Lecture Notes
in Computer Science, pages 167-183. Springer-Verlag, 1981. [6,[8[35, 39

S. Prasad, A. Giacalone, and P. Mishra. Operational and algebraic semantics for
Facile: A symmetric integration of concurrent and functional programming. In
M. S. Paterson, editor, Automata, Languages and Programming, volume 443 of
Lecture Notes in Computer Science, pages 765—-780. Springer-Verlag, 1990. 17

A. M. Pitts. Evaluation logic. In G. Birtwistle, editor, 4th Higher Order Workshop,
Banff 1990, Workshops in Computing, pages 162—-189. Springer-Verlag, Berlin,
1991.

A. M. Pitts. Operationally-based theories of program equivalence. In P. Dybjer and
A. M. Ritts, editors, Semantics and Logics of Computation. Cambridge University
Press, 1997. Lectures given at the CLICS-II Summer School on Semantics and
Logics of Computation, I1saac Newton Institute for Mathematical Sciences, Cam-
bridge, UK, September 1995. [, [65 [69,[169

G. D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Cont
puter Science, 1:125-159, 1975.

G. D. Plotkin. A powerdomain construction. SAM J. Comput., 5(3):452-487,
1976. [44,[169

G. D. Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5:223-255, 1977.

G. D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Computer Science Department, Aarhus University, 1981. [7,[9,[11]

G. D. Plotkin. A powerdomain for countable non-determinism (extended abstract).
In M. Nielson and E. M. Schmidt, editors, International Colloquium on Automata,
Languages and Programs, volume 140 of Lecture Notes in Computer Science,
pages 418-428. Springer-Verlag, 1982. [6] [14

G. D. Plotkin. Domains. Course notes, 1983. [44] [169] [169 [181

196

[Plog5]

[Pot90]

[PRSS]

[PS87]

[PS883]

[PS88b]

[PS00]

[Rep92]

[Rep9g]

[Rog67]

[Ros88]

[Ros98]

[Rus90]

[San93]

[San94]

BIBLIOGRAPHY

G. D. Plotkin. Denotational semantics with partial functions. Lecture notes,
C.S.L.I. Summer School, Stanford, 1985.

M. D. Potter. Seats: An Introduction. Oxford Science Publications. Oxford Univer-
sity Press, 1990.

P. Panangaden and J. Russell. A category-theoretic semantics for unbounded in-
determinacy. Technical Report 88-957, Cornell University, December 1988. [57,
169

P. Panangaden and V. Shanbhogue. On the expressive power of indeterminate net-
work primitives. Technical Report 87-891, Cornell University, December 1987.

P. Panangaden and V. Shanbhogue. McCarthy’s amb cannot implement fair merge.
Technical Report 88-913, Cornell University, May 1988. [16

P. Panangaden and E. W. Stark. Computations, residuals, and the power of indeter-
minacy. In T. Lepistd and A. Saloman, editors, 15th ICALP, volume 317 of Lecture
Notes in Computer Science, pages 439-454. Springer-Verlag, 1988. [18

G. Plotkin and A. K. Simpson. Complete axioms for categorical fixed-point oper-
ators. In Fifteenth Annual |EEE Symposium on Logic in Computer Science, pages
3044, 2000.

J. H. Reppy. Higher-order Concurrency. PhD thesis, Department of Computer
Science, Cornell University, June 1992. TR 92-1285. [17,[17

J. H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.

H. Rogers, J. Theory of Recursive Functions and Effective Computability.
McGraw-Hill Series in Higher Mathematics. McGraw-Hill, 1967. [45, [71,
[153,[158

A. W. Roscoe. Two papers on CSP. Technical Report PRG-67, Programming Re-
sarch Group, Oxford University Computing Laboratory, July 1988. (An alternative
order for the failures model & Unbounded nondeterminism in CSP). [57]

A. W. Roscoe. The Theory and Practice of Concurrency. International Seriesin
Computer Science. Prentice Hall, 1998. [7, 8,39,

J. R. Russell. Full Abstraction and Fixed-Point Principles for Indeter minate Cont+
putation. PhD thesis, Department of Computer Science, Cornell University, April
1990. Available as TR90-1120. [16][57, [169

D. Sangiorgi. Expressing Mobility in Process Algebras. First-Order and Higher-
Order Paradigms. PhD thesis, University of Edinburgh, 1993. [17

D. Sangiorgi. The lazy lambda calculus in a concurrency scenario. Information
and Computation, 111(1):120-153, 1994. [13

BIBLIOGRAPHY 197

[San97]

[Saz75]

[Sco93]

[Shag0]

[Sho71]

[Sie93]

[Simo3]

[Smy78]

[Spi89]

[Spio0]

[SS92]

[Stes7]

[Sta90]

[Sti97]

D. Sands. From SOS rules to proof principles: An operational metatheory for
functional languages. In Proceedings of the 24th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pages 428-441,
January 1997.

V. Yu. Sazonov. Sequentially and parallel computable functionals. In G. Goos
and J. Hartmanis, editors, A-calculus and Computer Science Theory, volume 37 of
Lecture Notes in Computer Science, pages 312-319. Springer-Verlag, 1975. [18,
[

D. S. Scott. A type-theoretical aternative to ISWIM, CUCH, OWHY. Theo-
retical Computer Science, 121(1-2):411-440, 1993. Reprint of an unpublished
manuscript written in 1969.

V. Shanbhogue. The Expressiveness of Indeterminate Dataflow Primitives. PhD
thesis, Cornell University, 1990. Available as TR90-1147. [16 [16, [16]

J. R. Shoenfield. Degrees of Unsolvability. North-Holland, 1971. [18

K. Sieber. Call-by-value and nondeterminism. In Proceedings of the Conference
on Typed Lambda Calculus and its Applications, volume 664 of Lecture Notes in
Computer Science, pages 376-390. Springer-Verlag, 1993.

A. K. Simpson. A characterisation of the least-fixed-point operator by dinaturality.
Theoretical Computer Science, 118(2):301-314, September 1993.

M. B. Smyth. Power domains. Journal of Computer and System Sciences,
16(1):23-36, 1978. [44

J. M. Spivey. A categorical approach to the theory of lists. In J. L. A. van de
Snepscheut, editor, Mathematics of Program Construction, volume 375 of Lecture
Notes in Computer Science, pages 399-408. Springer-Verlag, 1989.

J. M. Spivey. A functional theory of exceptions. Science of Computer Progrant
ming, 14:25-42, 1990.

H. Sendergaard and P. Sestoft. Non-determinism in functional languages. Com-
puter Journal, 35(5):514-523, October 1992. [17]

E. W. Stark. Concurrent transition system semantics of process networks. In Con-
ference Record of the 14th ACM Symposium on Principles of Programming Lan-
guages, pages 199-210, 1987. [16

E. W. Stark. A simple generalisation of Kahn's principle to indeterminate dataflow
networks. In M. Z. Kwiatkowska, M. W. Shields, and R. M. Thomas, editors,
Semantics for Concurrency, Leicester, pages 157-176. Springer-Verlag, 1990.

C. Stirling. Bisimulation, model-checking and other games. Notes for Mathfit
instructional meeting on games and computation, Edinburgh, June 1997. @, 42

198

[Thos9]

[Tho91]

[Tho93]

[Tho95]

[Tur90g]

[Tur90b)]

[Van9O]

[Van93]

[Van94]

[Wad92]

[Wag94]
[Wal90]

[Whio4]

[Wing3]

[WNO5]

BIBLIOGRAPHY

B. Thomsen. A calculus of higher order communicating systems. In Conference
Record of the 16th ACM Symposium on Principles of Programming Languages,
pages 143-154, 1989. [17

S. Thompson. Type Theory and Functional Programming. International Computer
Science Series. Addison Wesley, 1991.

B. Thomsen. Plain CHOCS: A second generation calculus for higher order pro-
cesses. Acta Informatica, 30(1):1-59, January 1993. [17

B. Thomsen. A Theory of Higher Order Communication Systems. Information
and Computation, 116(1):38-57, 1995. [14

D. A. Turner. An approach to functional operating systems. In Research Topicsin
Functional Programming [Tur900].

D. A. Turner, editor. Research Topics in Functional Programming. The UT Year
of Programming Series. Addison-Wesley, 1990. [185,

R. J. Van Glabbeek. Thelinear time — branching time spectrum. Report CS-R9029,
CWI, 1990. 8,39

R. J. Van Glabbeek. The linear time — branching time spectrum Il (the semantics
of sequential systems with silent moves). In E. Best, editor, Proceedings CON-
CUR’ 93, 4™ International Conference on Concurrency Theory, Hildesheim, Ger-
many, volume 715, pages 66-81, 1993. [8,[39

R. J. Van Glabbeek. What is branching time semantics and why to use it? In
M. Nielsen, editor, The Concurrency Column, pages 191-198. Bulletin of the
EATCS53, 1994. 8

P. L. Wadler. Comprehending monads. Mathematical Structures in Computer Sci-
ence, 2:461-493, 1992. 1959

E. G. Wagner. Algebraic semantics. In Abramsky et a. [AGM94].

D. J Waker. Bismulation and divergence. Information and Computation,
85(2):202-241, 1990. [33,39

G. T. Whitney. Recursion Structures for Non-Determinism and Concurrency. PhD
thesis, University of California, Los Angeles, March 1994.

G. Winskel. The Formal Semantics of Programming Languages. An Introduction.
Foundations of Computing Series. MIT Press, February 1993.

G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D. Gabbay,
and T. S. E. Maibaum, editors, Semantic Modelling, volume 4 of Handbook of
Logic in Computer Science. Clarendon Press, 1995. [7,[32

Glossary of Symbols

Sets

W . o natural numbers (including 0),[23

of Lo least non-recursive ordind,

W . e least non-countable ordinal

A+B digoint union of sets Aand B

AL oo digoint union of setsAand { L}
Succ(A) successor of aset A, Succ(A) = AU{A}LZ3
Dom(f) domain of function f

Im(f) image of function f

PA powerset of set A

N set of all non-empty subsets of set A
Sequences

O 0o empty sequence

a, (ap,a1,...,an) . . . finite sequences

(@liely indexed sequence

C prefix order

S lexicographic order,[46

SKkB - e Kleene-Brouwer order, [46]

Relations

dA) ..o identity or diagonal relation of set A,[127]
R* reflexive, transitive closure of relation R
RT transitive closure of relation R

R:S. diagrammatic composition of relationsR and S ,[127
R® dual of relation R ,[127]

199

200 GLOSSARY OF SYMBOLS

Partial Orders

T least element of partial order (or an urelement),[34]
T ... grestest element of partial order,[34]

arnb. binary meet of a and b,[34

allb. binary join of aand b,[34

A - meet of set A,

A L. join of set A,

a complement of a,

paF@ least fixed-point of function F,34]

vaF(@ greatest fixed-point of function F,34

Trees

Rank(a,<) rank of a with respect to well-founded relation < [27
Len(A,<) length of tree (A, <),

Tree(A) e-tree of set A,

ST((S,—),s)synchronisation tree of transition system (S —) rooted at state s[32

Transition Systems

s—t unlabelled transition from state sto state t,[30

s&t transition from state sto state t, labelled with a,[30,
sy L state s may diverge, [33,

symust o state s must converge,

TSA) e-transition system of set A,[31]

TSAMD(A) e-transition system with divergence of set A[33

Typed Transition Systems

L typed transition system,[120

LE) . typed transition system,[120

My ..o typed transition system, 147

S typed transition system,[99

Total(o) hereditarily total elements of typed transition system .7 ,[87]
Det(7) hereditarily deterministic elements of typed transition system .7 [81]
PR category of maps between typed transition systems,[109

Ext(7) extensional collapse of typed transition system .7 ,[111]

TIX ... restriction of TTS .7 to set of states X,[112

o) choice function at type o,[115

GLOSSARY OF SYMBOLS 201

Simulation Operators

(R)ssmulation operator for transition systems, 0

(R)s . lower simulation operator for transition systems with divergence, 43
(R)us - . upper simulation operator for transition systems with divergence,[43
(R >|i : . lower simulation operator for typed transition system .7,00

(R >U2 : . Upper simulation operator for typed transition system .7,00

Similarity and Bisimilarity for Transition Systems

< . similarity, 40
~g . mutual similarity, [40
~p . bisimilarity,[40

Similarity and Bisimilarity for Transition Systemswith Divergence
gLS, Sus’ gcs, gRS . lower, upper, convex, refinement similarity, 44!
~ o us Yeg rs - |OWer, upper, convex, refinement mutual similarity, 44

~ B U “cp' “rp - |OWer, upper, convex, refinement bisimilarity,[44

Similarity and Bisimilarity for Typed Transition System .7

Né, guys, 5(‘:75, 555 . lower, upper, convex, refinement similarity, @11

7 7 T T

~LS' ~US' —CS —RS
7 7 7

=L _UB’ _CB’ _RB

. lower, upper, convex, refinement mutual similarity, 911
. lower, upper, convex, refinement bisimilarity,[91

Binary Choice Operators

GAng(A,B) global angelic choice of sets A and B, 50l
Amb(A,B) ambiguous choice of sets A and B,E0
Err(A,B) eratic choice of setsAand B,[50
LDem(A,B) local demonic choice of sets A and B,50

GDem(A,B) global demonic choice of sets Aand B, 50

202 GLOSSARY OF SYMBOLS

Programming L anguage

L .. set of terms of programming language .#,[60

L set of programs of .Z,

Canp set of canonical programs of . ,[60

ZE) .o set of terms of smallest fragment containing set of terms E [77]
ZHE) o set of programs of smallest fragment containing set of terms E [77
M set of terms of fragment . ,[147

My .o set of programs of fragment .7 ,[147

POrd(o) P-order of type g,

Var set of variables,

Fv(M) free variables of term M,[57

MINi,...,Nn/X1,...,X:] Simultaneous substitution of terms Ny, ..., Ny for variables xq, . . ., Xp,
Red(o) reducibility candidates of type o,[7§

Operational Semantics

M= N. .o term M reduces in one step to program N (deterministic), 65

M—N term M reduces in one step to program N, [65]

M=% . term M diverges, [66

Msx term M blocked at variable x,[66

Mx—NJ] substitution of term N for occurrence of variable x blocking term M [66)
M™K. program M may converge to canonical program K, [72]
Mmoo program M may diverge,[73

Mmust program M must converge, [74

MymustA program M has must convergence rank A,[80

Relo(E) set of binary relations on programs of . (E),[123
Rel(BE). set of binary relations on terms of .Z(E),127
ClsR) closed restriction of relation R ,[128

Opm(E,R) open extension of relation R ,[128

RIS] relational substition of relation S into relation R 128
Cmp(E,R) compatible refinement of R ,[129

Cand(E,R) congruence candidate of R ,[134!

| ndex

a-equivalent terms,[58

| urelement, 45,

€-LTSWD for Ppe(w,), 51

e-induction principle,[25

c-tree, 271, [31]

A-calculus
call-by-name, (16
call-by-need,
call-by-value,
computational 19,55,
lazy, 89,120
non-deterministic, @1,
strongly normalising,[75

Tecalculus, [7,
higher-order, 17

o-simulation,

o-evaluation system,

1-labelled transition,

abbreviation
term,
type,
active type, seetype
algebra, [33
alternation, 4} [181]
ambiguous choice, 2, [16-18] 44, [50,
[76
angelic choice, global,[50
angelic merge,
application,
applicative
bisimilarity, 10, 39,
compatibility, 89} [97, [111], [125,
133
context,
similarity, 10} [39,[88
structure,
transition system, 88} [07, 120

203

quasi,[97,
arithmetic, 58| [79
arithmetical operators, 62
arrays, [181]
asymmetry,
ATS, see applicative transition system
axiom of
Anti-Foundation, [32]
Choice,
Extensionality,
Foundation, 25, [27,
Super Strong Extensionality,

big-step semantics,[72

bisimilarity, [40,[76
convex, see convex bisimilarity
higher-order weak,[68, [183
lower, see lower bisimilarity
refinement, see refinement bisimilarity
upper, see upper bisimilarity
weak,[9

blocked substitution, [65, 66, [71] [/, [156,

[164, 171, [173H175]

blocking relation,

blue calculus,

bounded non-determinism,H

branches,

calculus of communicating systems, see CCS
calculus of higher-order communicating sys-
tems, see CHOCS
call-by-name
A-calculus, see A-calculus
operational semantics,
reduction strategy, 17
call-by-need, [19, [76
A-calculus, see A-calculus
reduction strategy, [17]

204

call-by-value
A-calculus, see A-calculus
reduction strategy,[17
term abbreviation,
canonical
program,
term,

Cantorian normal form,[25
capture-free substitution, see substitution
cardinal, (56
regular,
cardinality,
case statement,
categorical notation, 1]
category, 33,
category-theoretic semanticsfor erratic non-
determinism,
CCS,[712, 17 B7,
channel,
characteristic function,
CHOCS, 17
choice
ambiguous, see ambiguous choice
angelic, see angelic choice
demonic, see demonic choice
erratic, see erratic choice
internal, see internal choice
Church-Rosser property,
Church-style type assignment,[55
closed
restriction, 125, (128
term, see term
closure conditions, [77, [131],
CML,
coalgebra,
coding,
coinduction, [8[33, 40|
origins of term,
principle,
strong,
coinductive type, see type
commitment,

communicating sequential processes, see CSP

commutativity, lack of,[24]
compatible, 8, [8, 11, 12 [15[18, 57, [74,

INDEX
[90, 125 [131] (133, 147,

refinement,
compatible refinement, 129
complement,[34, 35 [42, [73, [74
compl ete | attice, [34} [107]
compositional,
computable,

map,
computation type, see type
computational A-calculus, see A-calculus
concurrent

evaluation,[14

higher-order languages,[120]
ML, see CML

systems, [, [2

configuration,
congruence, [,
candidate, 1311 (134, 137
asymmetry of, [142
context, 9, [10,
contextual
equivalence, Q] 17,20,
preorder, [10, [12,
may,
must,
substitution, 65, 172
continuous function space,[88
contraction,
contravariant,
converges, [12,[66
convex
bisimilarity, 12142 153, [160,[161] 184
powerdomain, see powerdomain
similarity, 12} [141],
coproduct type, see type
countable
choice,
erratic choice, see erratic choice
non-determinism, 5 16, [70, 811 183
well-order,
countably-branching well-founded tree,[57]
counter, 2
CSR[7 12 17
with unbounded non-determinism,[57
cycle, 31,32

INDEX

datafl ow, [16,
definable,

elements, [77

relatively, see relative definability
degrees

of parallelism, 18,77

Turing, see Turing degrees
demonic choice

global,

local,
denotational

model,

semantics,
derivation tree,[45

for must convergence judgement,[74]
deterministic programming language, [73
diagonalisation, [46
dinatural fixed-point operators,[184]
directed-complete partial order,[77,
disconnected elements,[31
disoint union of LTSs,41]
divergence,
diverges, 12,
domain-theoretic model,[13
dove-tailed computations,
down-set,
dual of afunction,[182

Egli-Milner construction, (44
empty environment,[60
environment,
erratic choice, 2, [, [T}
binary, 17,26, 57, 64, [76, [79
countable, [171
indexed,
infinite,[137
evauation,
semantics, 111 15,
exception, 59
expressive,
extensiona
collapse of aTTS,[108,
relation,

Facile,
failure, [187

205

fair,[14
merge,
operational semantics,
scheduler,
scheduling algorithm, 2
fairness,[16,
finality, 33
finitary term constructors, 142
finite
element,
non-determinism, 5,
product category,
finitely-branching,
fixed-point
greatest,[34,
least,[34, 571132
post-,[33
pre-,
properties,
terms,
unique,
forest,[25, 26l
with limit elements, 25
fragment, [18| [77, 131
frame,
free variable,
function
preserves and reflects|abelled transitions
and may divergence,
functor, 33
fundamental theorem of logical relations, 90

game,[9, 42

GCL,[4 1311

general recursion,

global angelic choice, see angelic choice
global demonic choice, see demonic choice
greatest fixed-point, see fixed-point

ground context,

guard,[3][4] (187

guarded command language, see GCL

Hasse diagram,

Henkin model, B8l

hereditarily
deterministic,[87, B3]

206

total,[87,
Hoare
powerdomain, see powerdomain
triple, 3
Howe's
congruence candidate, see congruence
candidate
technique, (12, [147
hypersets, [32

identifications between relations,
immediate subterms,
imperative languages,[181]
inclusion maps,
inclusions between relations,[93,
indexed erratic choice,[I7]
indexing set, 55H57]
induction, 33,

principle,

strong,

inductive

proof,[39

type, see type
infinitary

conjunctions,

disunctions,

languages,

term constructors,

terms, 55,
infinite

branching,[74

path, 42
infinity-fair merge, [16]
infinity-fair2 merge,[16
initial state,[182
initiality,
input event,[16
interleaved computations,Z} 13
interleaving semantics,[7]
internal choice,[183
invariant, 4
iteration, [4]

theories,
iterative theories,

join, 33,104

INDEX

join-infinite distributive law,

kernel, 35

Kleene equivalent,
Kleene-Brouwer order,
K naster-Tarski theorem,
Konig's lemma,

labelled transition, [12,[120

relation,
system, [,
with divergence, [33,

language of guarded commands, see GCL
lattice, complete, see complete lattice
lazy
A-calculus, see A-calculus
lists,[16
least
fixed-point, see fixed-point
non-recursive ordinal,
length of atree,28
lexicographic order, 46
lifting
construct, 11
functor,
limit,
element, 31
ordinal, see ordinal
list comprehension,
logical operators,
logical relation,[9}[20, 87
loops,
lower
bisimilarity, 12,
powerdomain, see powerdomain
Set,
similarity, 12} 147,
simulation function, 43| [137
LTS, seelabelled transition system
LTSWD, see labelled transition system
Lusin-Sierpinski order,

many-sorted equational logic, 59

maximal equivalence classes,[06

may contextual preorder, see contextual pre-
order

INDEX

may convergence
predicate,
relation, 12 [15, [72] 120

may divergence predicate, (12, 5] [32, [33,

McCarthy’s ambiguous choice, see ambigu-

ous choice

meet, 33,

meet-infinite distributive law,[34]

merge
angelic, see angelic merge
fair, see fair merge
infinity-fair, see infinity-fair merge
infinity-fair2, see infinity-fair2 merge
operator, 16

message-passing,

minimal program,

mode!-checking,

Moggi’s computational A-calculus, see A-calculus

monad,
monotone function,[I0
monotonicity,
multi-tasking system,2
multiplication of amonad, 59
must contextual preorder, see contextual pre-
order
must convergence
predicate, 12| 33, [74
rank,
rules, [137
mutual similarity,

NATS, see non-deterministic applicative tran-

sition system

natural numbers,[23

type,
natural semantics,
non-definable elements, 18
non-deterministic

A-calculus, see A-calculus

applicative transition system,[97]

quasi, [89, 97,111

extensions,[18

program,
non-divergent program,[70,

207

non-idempotent,
non-terminating program,[55
non-termination, 4
non-well-founded

Set,

set theory,[9l

type, 87
normalisation, 79
notions of computation,

open
extension, [125,[128,
term, seeterm

operational semantics,[33
operationally-defined equivalences,[30
oracle,
order-isomorphic, 45
ordinal,[23

arithmetic,

limit,[24]

recursive, [45 [81

P-order, B3] [100,
parallel composition,
partial

function, [77]

recursive function, [77, [79,
passive type, seetype
PCF,[77,
Plotkin powerdomain, see powerdomain
post-fixed-point, see fixed-point
postcondition, [3,
powerdomain

convex, [44]

Hoare, [44

lower,

Plotkin, (44

Smyth, [44]

upper, 44
powerset,
PR category,
pre-fixed-point, see fixed-point
pre-frame,
precondition, 3, 181
predomains,
prefix order, [26,

208

primitive recursion,
principle of mathematical induction,
probabilistic systems, 2
problematic term constructors,
process calculi,[11]
product type, see type
program, [60, [119
specification,
synthesis, 4
program verification, 4

QATS, see applicative transition system

gNATS, see non-deterministic applicative tran-
sition system

guotient of aTTS,[07

rank, 27, 28, 56, [74
must convergence, see must convergence
rank
rank of derivation treesfor must convergence
judgements,
reachable,
recursive
ordinal, see ordinal
tree, [49,
type, seetype
well-order,
recursively
decidable,
enumerable,
reducibility candidate,

reduction
constructors,

context,
relation, 15,
deterministic, 65l

semantics, 111 12, A5

steps, 186,

strategy, [17, [65)
refinement, 11

similarity, 12} [44],
regular cardinal, see cardinal
relational substitution,
relative definability, 16 (18, 55, [77,
removing states,[108
resolution of non-determinism,[18

INDEX

resource annotations, 3, 14, (15} [17]
restriction, [L12,
root of aforest,[26

Sazonov’s degrees of parallelism, see degrees
of paralelism
scheduler, 6, [,
scheduling
agorithm,2
behaviours, 1]
Scott induction, 18,38, [71] [1786,
sequencing term constructor, 59
sequential, [77]
composition, [I87]
set inclusion,[34
set-theoretic tuples of terms,[57]
sharing, [I71
signature,
silent T-transitions,
similarity,
convex, see convex similarity
higher-order weak,
lower, see lower similarity
refinement, see refinement similarity
upper, see upper similarity
singular choice,
small-step relation,[65
Smyth powerdomain, see powerdomain
specification, [T, 58] 181
split term constructor,[58
state, 30, 119
transformer, 181
stream, [16 (17
strong
bisimilarity,
coinduction principle, see coinduction
principle
induction principle, see induction prin-
ciple
monad,
strongly normalising A-calculus, see A-calculus
structural operational semantics,[65
subject reduction,68
substitution,
blocked, see blocked substitution

INDEX

capture-free,
subterm closure condition,[79
subterms, [125
subtype,
SUCCESSOr,

relation,
symmetry, 147,
synchronisation tree,
syntactic

continuity,

identity, 17
syntactic trandations,
syntactically identical, 57
syntax-free,
System F,

Tait’s method, 79
tape, 1
term
abbreviation,
closed,[57
formation inconsistencies,[131]
open, 571
well-typed,
termina state,
termination, [12, [120]
terms, [57]
higher-order, [76
threads, [17
thunk,
timing, 1l
trace behaviour, 18
transition
relation,
system,
with divergence,
transitive closure of the congruence candi-

date, 142, 147,
tranglation of GCL,[18]]
tree, [25,[26

finite, [183
length,

recursive, see recursive tree
TS, see transition system
TSWD, see transition system

209

TTS, see typed transition system
tuples,[57
of terms, 57
Turing
degrees,[18, [77
reducible, [158
type, 39,
abbreviation,
active,[120
algebraic,
coinductive,
computation, (19,55,
coproduct,
flat,
inductive,
inference, 55
passive,
product, 55
recursive, (10, (20, B5} [75,[87, B0, 183
system,
well-founded, see well-founded type
system
value, 56} [183]
typed transition system, 20} 33, [86,

undefined behaviour, [4]

unfair, 5,14 15

unfolding,

unique
fixed-point, see fixed-point
state, [87

unit of amonad,

unit term constructor,

unwinding, [7T,
syntactic,

upper
bisimilarity, 12 [142
powerdomain, see powerdomain
Set,
similarity, 02, 147,
simulation function, 43, (137

value type, see type,[73,
variable

binding, 571
capture,

210 INDEX

renaming,

weak normalisation, [75
weakening,
well-founded, 24

c-tree, 31

derivation tree, [74,

forest,

induction, 24

partial order,[25

relation, [24, (81

et

tree, [26,[27, 39, [47

tree of reductions,

type system,
well-order, [24]

recursive,[83
well-typed term,
winning strategy, 9,

	Introduction
	Motivation
	Related Work
	Non-Deterministic Imperative Programming Languages
	Process Calculi
	Functional Programming, Non-Determinism, and Concurrency

	Outline of Dissertation
	Contributions

	Preliminaries
	Ordinals and Trees
	Transition Systems
	Induction and Coinduction
	Similarity and Bisimilarity
	Recursive Ordinals and Recursive Trees
	Binary Choice Operators

	The Non-Deterministic $lambda $-Calculus $thepl $
	Types
	Language
	Type Assignment
	Reduction Semantics
	Evaluation Semantics
	Normalisation
	Fragments of $thepl $
	Rank of Must Convergence

	Typed Transition Systems
	Typed Transition Systems
	Similarity and Bisimilarity
	The TTS $setstts $ and Bisimilarity
	The TTS $setstts $ and Similarity
	A Category of TTS{s}

	Programming Language TTSlittles
	$languagetts $ and $languagefragmenttts {E }$
	Similarity and Bisimilarity
	Relations on Open Terms
	Compatibility
	Relative Definability
	Theory of the Language
	Fixed-Points

	Discussion
	Summary
	Further Work

