
λ-RBAC: Programming with Role-Based Access Control

Radha Jagadeesan1,?, Alan Jeffrey2,?, Corin Pitcher1??, and James Riely1,? ??

1 School of CTI, DePaul University
2 Bell Labs, Lucent Technologies

Abstract. We study mechanisms that permit program components to express
role constraints on clients, focusing on programmatic security mechanisms, which
permit access controls to be expressed, in situ, as part of the code realizing basic
functionality. In this setting, two questions immediately arise:

– The user of a component faces the issue of safety: is a particular role suffi-
cient to use the component?

– The component designer faces the dual issue of protection: is a particular
role demanded in all execution paths of the component?

We provide a formal calculus and static analysis to answer both questions.

1 Introduction

This paper addresses programmatic security mechanisms as realized in systems such
as Java Authentication and Authorization Service (JAAS) and .NET. JAAS and .NET
enable two forms of access control mechanisms3. First, they permit declarative access
control to describe security specifications that are orthogonal and separate from de-
scriptions of functionality, e.g. in an interface I, a declarative access control mechanism
could require the caller to possess a minimum set of rights. Second, JAAS and .NET
also permit programmatic mechanisms that permit access control code to be intertwined
with functionality code, e.g. in the code of a component implementing interface I. Why
commingle conceptually separate concerns? To enable the programmer to enforce ac-
cess control that is sensitive to the control and dataflow of the code implementing the
functionality.

There is extensive literature on policy languages to specify and implement policies
(e.g. [14,25,13,3,26,12] to name but a few). This research studies security policies as
separate and orthogonal additions to component code, and is thus focused on declarative
security in the parlance of JAAS/.NET.

In contrast, we study programmatic security mechanisms. Our motivation is to ex-
tract the security guarantees provided by access control code which has been written
inline with component code. We address this issue from two viewpoints:

? Supported by NSF Cybertrust 0430175
?? Supported by the DePaul University Research Council

??? Supported by NSF Career 0347542
3 In this paper, we discuss only authorization mechanisms, ignoring the authentication mecha-

nisms that are also part of these infrastructures.

2 Radha Jagadeesan and Alan Jeffrey and Corin Pitcher and James Riely

– The user of a component faces the issue of safety: is a particular set of rights suffi-
cient to use the component? (ie. any greater set of rights will also be allowed to use
the component)

– The component designer faces the dual issue of protection: is a particular set of
rights demanded in all execution paths of the component? (ie. any lesser set of
rights will not be allowed to use the component)

The main contribution of this paper is separate static analyses to calculate approxima-
tions to these two questions. An approximate answer to the first question is a set of
rights, perhaps bigger than necessary, that is sufficient to use the component. On the
other hand, an approximate answer to the second question, is a set of rights, perhaps
smaller than what is actually enforced, that is necessary to use the component.

Related work. There is extensive literature on Role-Based Access-Control (RBAC)
models including NIST standards for RBAC [22,11]; see [10] for a textbook survey.

The main motivation for RBAC, in software architectures (e.g. [19,18]) and frame-
works such as JAAS/.NET is that it enables the enforcement of security policies at
a granularity demanded by the application. In these examples, RBAC allows permis-
sions to be de-coupled from users: Roles are the unit of administration for users and
permissions are assigned to roles. Roles are often arranged in a hierarchy for succinct
representation of the mapping of permissions. Component programmers design code in
terms of a static collection of roles. When the application is deployed, administrators
map the roles defined in the application to users in the particular domain.

Unified frameworks encompassing RBAC and trust–management systems have also
been studied [23], in part by incorporating history-sensitive ideas into the RBAC model [4].
Our work is close in spirit, if not in technical development, to edit automata [14], which
use aspects to avoid the explicit intermingling of security and baseline code.

The papers most closely related to our work are those of Braghin, Gorla and Sas-
sone [6] and Compagnoni, Garalda and Gunter [9]. [6] presents the first concurrent
calculus with a notion of RBAC, whereas [9]’s language enables privileges depending
upon location. This paper extends the lambda calculus with RBACand internalizes the
lattice structure of roles. We present a more detailed comparison at the end of the paper.

An overview of our technical contributions. We study a lambda calculus enriched with
primitives for access control, dubbed λ-RBAC. The underlying lambda calculus serves as
an abstraction of the ambient programming framework in a real system. We draw inspi-
ration from the programming idioms in JAASand .NET to determine the expressiveness
required for the access control mechanisms

Roughly, the operation of λ-RBAC is as follows. Program execution takes place in
the context of a role, which can be viewed concretely as a set of permissions. Roles are
closed under union and intersection operations. The set of roles used in a program is
static: we do not allow the dynamic creation of roles. The only run-time operations on
roles are as follows. There are combinators to check that the role-context is at least some
minimum role: an exception is raised if the check fails. Rights modulation (c.f. “ses-
sions” in RBAC) is achieved by impersonation: this enables an application to operate
under the guise of different users at different times .

λ-RBAC: Programming with Role-Based Access Control 3

We assume that roles form a lattice: abstracting the concrete union/intersection oper-
ations of the motivating examples. Some of our results assume that the lattice is boolean,
i.e. the lattice has a negation operation abstracting the concrete set complement of the
motivating examples. Our study is parametric on the underlying role lattice. Our calcu-
lus includes a single combinator for role checking and two combinators for imperson-
ation: one for rights weakening and the other for rights amplification. We internalize
the right to amplify rights by considering role lattices with an explicit role constructor,
amplify. This enables the reuse of the access control mechanisms of λ-RBAC to control
rights amplification.

We demonstrate the expressiveness of the calculus by building a range of useful
combinators and a variety of small illustrative examples. We discuss type systems to
perform the two analyses alluded to earlier: (a) an analysis to detect and remove unnec-
essary role-checks in a piece of code for a caller at a sufficiently high role, and (b) an
analysis to determine the (maximal) role that is guaranteed to be required by a piece of
code. For both we prove preservation and progress properties.

Rest of the paper. We begin with a discussion of the dynamic semantics of λ-RBAC in
section 2, illustrating the expressiveness of the language with examples in section 3.
Section 4 describes the static analyses. The following section 5 provides types for the
examples of section 3. We conclude with a summary of related work in section 6.

2 Language and Operational Semantics

2.1 Roles

The language of roles is built up from role constructors. The choice of role construc-
tors is application dependent, but must include at least the six constructors discussed
below. We assume that each role constructor κ has an associated arity, arity(κ). Roles
P,Q,R,S,T have the form κ(R1, . . . ,Rn).

The semantics of roles is defined by the relation “` R > S” which states that R
dominates S. We do not define this relation, but rather assume that it has a suitable,
application-specific definition; we impose only the following requirements.

We require that all constructors be monotone with respect to >.
Further we require that roles form a boolean lattice. So, the role lattice is distribu-

tive: we require that the set of constructors include the nullary constructors ⊥ and >
and binary constructors t and u (which we write infix). ⊥ is the least element; > is the
greatest element; t and u are idempotent, commutative, associative, and mutually dis-
tributive meet and join operations on the lattice of roles. For any R, S, we have ` R >⊥
and ` > > R and ` Rt S > R and ` R > Ru S. In addition, there is a complement R?

for every role R, where R and S are complements if RuS =⊥ and RtS =>.
Finally, in example 4 we require the unary constructor amplify, where amplify(R)

represents the right to store R in a piece of code; i.e. if P = amplify(R), then role P
stands for the right to provide the role R.

In summary, the syntax is as follows.

P,Q,R,S,T ::= κ(R1, . . . ,Rn) κ ::= · · · | ⊥ | > | t | u | ? | amplify

4 Radha Jagadeesan and Alan Jeffrey and Corin Pitcher and James Riely

2.2 Terms

Our goal is to capture the essence of role-based systems, where roles are used to regulate
the interaction of components of the system. We have chosen to base our language on
the call-by-value lambda calculus4 because it is simple and well understood, yet rich
enough to capture the key concepts. (We expect that our ideas can be adapted to both
process and object calculi.) The “components” in a lambda term are abstractions and
their calling contexts. Thus it is function calls and returns that we seek to regulate, and,
therefore, the language has roles decorating abstractions and applications. Abstraction
is written “{Q}λx.M” where role Q is demanded to execute M. Application is written
“↓P U V ” where the caller restricts its rights to P during the execution of function U .

We define evaluation using a small-step operational semantics; therefore, we include
explicit syntax for the frame “↓P[M]” which represents the execution of term M with
rights restricted to P. We use frames additionally for rights escalation, with the form
“↑P[M].” The two forms of frames together allows code to assume any role, which —
if entirely uncontrolled — allows code to circumvent an intended policy. We address
this issue in example 4, where we describe the use of the amplify constructor to control
rights escalation.

Let x,y,z, f,g range over variable names. The syntax of values and terms are as
follows.

U,V ::= · · · | x | {Q}λx.M

M,N,L ::= · · · | U | let x=M; N | ↓P U V | ↓P[M] | ↑P[M]

Evaluation is defined in terms of a role context. Formally, we define a judgment R `
M → N, which indicates R is authorized to compute a single step of the initial program
M, resulting in the new program N.

EVALUATION (R ` M → N)

` R > Q
R ` ↓P ({Q}λx.M) U →↓P[M[U/x]]

R ` M → M′

R ` let x=M; N → let x=M′; N
RuP ` M → M′

R ` ↓P[M]→↓P[M′]

RtP ` M → M′

R ` ↑P[M]→↑P[M′]

R ` let x=U; N → N[U/x] R ` ↓P[U]→U R ` ↑P[U]→U

The rules are straightforward, but for application; note only that a frame is discarded
when the guarded term is fully evaluated. Application involves two participants: the
caller (or calling context) and the callee (or abstraction). Each participant may wish
to protect itself from the other. When the caller ↓P V U transfers control to V , it may

4 We have chosen an explicitly sequenced variant (with let). Implicit sequencing can be recov-
ered as follows: ↓R M N M= let x=M; let y=N; ↓R x y. When x does not appear free in N, we
abbreviate let x=M; N as M; N . To focus the presentation, we elide base types, indicating
them in the syntax using ellipses. In examples, we use base types with the usual operators and
semantics, including Int (with values 0, 1, etc), Bool (with values true, false) and Unit (with
value ()). We write M[U/x] for the capture-avoiding substitution of U for x in M.

λ-RBAC: Programming with Role-Based Access Control 5

protect itself by restricting the role context to P while executing V . Symmetrically,
the callee ({Q}λx.M) may protect itself by demanding that the role context before
the call dominates Q. Significantly, the restricting frame created by the caller does not
take effect until after the guard is satisfied. In brief, the protocol is “call-test-restrict,”
with the callee controlling the middle step. This alternation explains why restriction is
syntactically fused into application.

A role is trivial if it has no effect on evaluation. Thus> is trivial in restricting frames
and applications, whereas ⊥ is trivial in providing frames and abstractions. We often
elide trivial roles and trivial frames; thus, λx.M is read as {⊥}λx.M (the check always
succeeds), and U V is read as ↓>U V (the role context is unaffected by the resulting
frame). In our semantics, these terms evaluate like ordinary lambda terms.

By stringing together a series of small steps, the final value for the program can
be determined. Successful termination is written R ` M ⇓ U which indicates that R
is authorized to run the program M to completion, with result U . Evaluation can fail
because the term diverges or because an inadequate role is provided at some point in
the computation; we write the latter as R ` M ⇓ fail5.

LEMMA 1. If S ` M → M′ and ` R > S then R ` M → M′. �

3 Examples

EXAMPLE 2 (ACCESS CONTROL LISTS). Consider a web server that provides remote
access to files protected by Access Control Lists (ACLs) at the filesystem layer. A read-
only filesystem can be modeled as:

filesystem def= λname.if name = "file1" then check ADMIN; "content1"
else if name = "file2" then check ALICEuBOB; "content2"
else "error: file not found"

Where check R M= ({R}λ_.())(). Assuming incomparable roles ALICE, BOB, and
CHARLIE each strictly dominated by ADMIN, code running in the ADMIN role can
access both files:

ADMIN ` filesystem "file1" →∗ check ADMIN; "content1" →∗ "content1"
ADMIN ` filesystem "file2" →∗ check ALICEuBOB; "content2" →∗ "content2"

Code running as ALICE or BOB cannot access the first file but can access the second:

ALICE ` filesystem "file1" →∗ check ADMIN; "content1" ⇓ fail
BOB ` filesystem "file2" →∗ check ALICEuBOB; "content2" →∗ "content2"

Finally, assuming that CHARLIE 6≥ ALICEuBOB, code running as CHARLIE cannot
access either file:

CHARLIE ` filesystem "file1" →∗ check ADMIN; "content1" ⇓ fail
CHARLIE ` filesystem "file2" →∗ check ALICEuBOB; "content2" ⇓ fail

5 Write “R`M0 →∗ Mn” if there exist terms Mi such that R`Mi →Mi+1, for all i (0≤ i≤ n−1).
Write “R ` M ⇓ U” if R ` M →∗ U . Write “R ` M ⇓” if R ` M →∗ U for some U . Write
“R ` M ⇓ fail” if R ` M →∗ M′ where R ` M′ X→ and M′ is not a value.

6 Radha Jagadeesan and Alan Jeffrey and Corin Pitcher and James Riely

Now the web server can use the role assigned to a caller to access the filesystem (unless
the web server’s caller withholds its role). To prevent an attacker determining the non-
existence of files via the web server, the web server fails when an attempt is made to
access an unknown file unless the DEBUG role is activated.

webserver def= λname.if name = "file1" then filesystem name
else if name = "file2" then filesystem name
else check DEBUG; "error: file not found"

For example, code running as Alice can access "file2" via the web server:

ALICE ` webserver "file2" →∗ filesystem "file2"
→∗ check ALICEuBOB; "content2" →∗ "content2" �

Example 3 illustrates how the Domain-Type Enforcement (DTE) security mech-
anism [5,27], as found in the NSA’s Security-Enhanced Linux (SELinux) [15], can be
implemented in λ-RBAC. Further discussion of the relationship between RBAC and DTE
can be found in [10,12].

EXAMPLE 3 (DOMAIN-TYPE ENFORCEMENT / SELINUX). DTE grants or denies ac-
cess requests according to the domain of the requesting process and the type assigned
to the object, e.g., a file or port. The domain of a process only changes when another
image is executed. DTE facilitates least privilege by limiting domain transitions based
upon the source and target domains, and type assigned to the invoked executable file.

The DTE domain transition from role R to role S (each acting as domains) can be
modeled by the function R E−→ S that allows code running at role R to apply a function
at role S: R E−→ S def= {R}λ(f ,x).↓⊥ f ({E}λg.↑S[g x]).

However, the domain transition is only performed when the function is associated
with role E, modeling assignment of DTE type E to an executable file. Association of
a function g with role E is achieved by accepting a continuation that is called back at
role E with the function g. The function assignTypeE allows code running at ADMIN

to assign DTE types to other code: assignTypeE
def= {ADMIN}λg.λh.↑E[↓⊥ h g]. For

example, for a function value U :

ADMIN ` ↓⊥ assignTypeE U →∗
λh.↑E[↓⊥ h U]

Then given a value V such that S `U V →∗ W , we have:

R ` ↓⊥ (R E−→ S) (λh.↑E[↓⊥ h U],V)→∗ W

With the R E−→ S and assignTypeE functions we can adapt the login example from [27]
to λ-RBAC. In this example, the DTE mechanism is used to force every invocation of
administrative code (running at ADMIN) from daemon code (running at DAEMON)
to occur via trusted login code (running at LOGIN). This is achieved by providing
domain transitions from DAEMON to LOGIN, and LOGIN to ADMIN, but no others.
Moreover, code permitted to run at LOGIN must be assigned DTE type LOGINEXE,
and similarly for ADMIN and ADMINEXE. Thus a full program running daemon code

λ-RBAC: Programming with Role-Based Access Control 7

M has the following form, where neither M nor the code assigned to g variables contain
rights amplification:

let daemonToLogin=DAEMON LOGINEXE−−−−−−−→ LOGIN;

let loginToAdmin=LOGIN ADMINEXE−−−−−−−→ ADMIN;

let shell= let g= . . .; ↓⊥ assignTypeADMINEXE (g);
let login= let g= λ(password,cmd).

if password = "secret" then↓⊥ loginToAdmin (shell,cmd)
else . . .;

↓⊥ assignTypeLOGINEXE (g);

↓DAEMON[M]

In the above program, the daemon code M must provide the correct password in order
to execute the shell at ADMIN because the login provides the sole gateway to ADMIN.
In addition, removal of the domain transition daemonToLogin makes it impossible for
the daemon code to execute any code at ADMIN. �

EXAMPLE 4 (CONTROLLING RIGHTS AMPLIFICATION). The amplify constructor pro-
vides a flexible dynamic way to control rights amplification. Suppose that M contains no
direct rights amplification (subterms of the form ↑P[·]). Then, in “let g=U; ↓R[M]”
we may view U as a Trusted Computing Base (TCB) — a privileged function which
may escalate rights — and to N as restricted user code; g is then an entry point to the
TCB and R is the user role. User code is therefore executed at the restricted role R, and
rights amplification may only occur through invokation of g.

Non-trivial programs have larger TCBs with more entry points. As the size of the
TCB grows, it becomes too difficult to understand the security guarantees offered by
a system allowing arbitrary rights amplification in all TCB code. To manage this com-
plexity, one may enforce a coding convention that requires rights increases be justified
by earlier checks. As an example, consider the following.

let doP ={amplify(P)}λ f.λx.↑P[f x];

The privileged function doP that performs rights amplification (for P) is justified by the
check for amplify(P) on any caller of doP. One may also wish to explictly prohibit a
term N from direct amplification of some right Q; with such a convention in place, this
can be achieved using the frame ↓(amplify(Q)?)[N].

A formal and systematic general mechanism to enforce such a coding convention
— by requiring code to use definable higher order combinators in place of unchecked
frames — is omitted from this extended abstract for space reasons. �

4 Statics

We consider two kinds of static analysis: (i) a type system to enable removal of unnec-
essary role-checks in a piece of code for a caller at a sufficiently high role, and (ii) a
type system to determine the amount of protection that is enforced by the callee.

8 Radha Jagadeesan and Alan Jeffrey and Corin Pitcher and James Riely

To make the issues as clear as possible, we treat a simply-typed calculus with sub-
typing in the main text. In the rest of this section, we assume that all roles (and therefore
all types) are well-formed, in the sense that role constructors have the correct number
of arguments.

4.1 A type system to calculate caller roles

Our first type system attempts to calculate a caller role that guarantees that all execution
paths are successful. The judgment Γ ` M : {R} τ asserts that R suffices to evaluate M,
i.e. if M is executed with a role that dominates R, then all access checks in M are
guaranteed to be successful. Values require no computation to evaluate, thus the value
judgment Γ `U : τ includes only the type τ. The syntax of types is as follows.

σ,τ ::= · · · | σ →{Q.R} τ Γ,∆ ::= x1:σ1, . . . ,xn:σn

The type language includes base types (which we elide in the formal presentation)
and function types. The function type σ →{Q.R} τ is decorated with two latent ef-
fects; roughly, these indicate that the role context must dominate Q in order to pass the
function’s guard, and that the caller must provide a role context of at least R for execu-
tion of the function body to succeed. The least role ⊥ is trivial in function types; thus
σ → τ abbreviates σ →{⊥.⊥} τ. We also write σ →{R} τ for σ →{⊥.R} τ. If all
roles occurring in a term are trivial, our typing rules degenerate to those of the standard
simply-typed lambda calculus. The typing judgments are as follows.

VALUE AND TERM TYPING (Γ `U : τ) (Γ ` M : {R} τ)

(VAL-VAR)

Γ(x) = τ

Γ ` x : τ

(VAL-ABS)

Γ,x:σ ` M : {R} τ

Γ ` {Q}λx.M : σ →{Q.R} τ

(TERM-VAL)

Γ `U : τ

Γ `U : {⊥} τ

(TERM-LET)

Γ ` M : {R} σ

Γ,x:σ ` N : {S} τ

Γ ` let x=M; N : {RtS} τ

(TERM-APP)

Γ `U : σ →{Q.RuP} τ

Γ `V : σ

Γ ` ↓P U V : {QtR} τ

(TERM-RESTRICT)

Γ ` M : {RuP} τ

Γ ` ↓P[M] : {R} τ

(TERM-PROVIDE)

Γ ` M : {RtP} τ

Γ ` ↑P[M] : {R} τ

(TERM-SUBEFFECT)

Γ ` M : {S} τ

` R > S
Γ ` M : {R} τ

VAL-ABS simply records the effects that the abstraction will incur when run. By TERM-
VAL, a value can be treated as a term that evaluates without error in every role context.
TERM-LET indicates that two expressions must succeed sequentially if the current role
guarantees success of each individually. TERM-RESTRICT (resp. TERM-PROVIDE) cap-
tures the associated rights weakening (resp. amplification). TERM-APP incorporates the
role required to evaluate the function to an abstraction and the role required to evaluate
the body of the function (while allowing for rights weakening).

Subtyping. A natural notion of subtyping is induced from the role ordering. Formally,
subtyping is the least precongruence on types induced by SUBTYPING-BASE.
(SUBTYPING-BASE)

` σ′ <: σ ` Q′ > Q ` S′ > S ` τ <: τ′

` (σ →{Q.S} τ) <: (σ′ →{Q′ .S′} τ′)

(VAL-SUBTYPE)

Γ `U : σ ` σ <: σ′

Γ `U : σ′

(TERM-SUBTYPE)

Γ ` M : {R} τ ` τ <: τ′

Γ ` M : {R} τ′

λ-RBAC: Programming with Role-Based Access Control 9

The following example of Church booleans, illustrates the use of subtyping. The Church
booleans, λt.λf.t and λt.λf.f can be given type (σ →{R} τ) → (σ →{S} τ) → (σ
→{RtS} τ).

The type system satisfies standard preservation and progress properties.

THEOREM 5. If Γ ` M : {R} τ and S ` M → M′, then Γ ` M′ : {R} τ.
If Γ ` M : {R} τ then either M is a value, or R ` M → M′, for some M′.

4.2 A type system to determine callee protection

Our second type system (“”) has aims “dual” to the previous type system. Rather
than attempting to calculate a caller role that guarantees that all execution paths are
successful, we deduce the minimum protection demanded by the callee on all execution
paths. View Γ M : {S} τ as asserting that it is not possible for M to evaluate to a value
without using a role above S, i.e. the guaranteed protection for M is at least S.

The type system presented below has altered versions of TERM-APP, TERM-RESTRICT,
TERM-PROVIDE and inverted versions of TERM-SUBEFFECT and SUBTYPING-BASE.

(TERM-SUBEFFECT)

Γ M : {S} τ ` S > R

Γ M : {R} τ

(SUBTYPING-BASE)

 σ′ <: σ ` Q > Q′ ` S > S′ τ <: τ′

 (σ →{Q.S} τ) <: (σ′ →{Q′ .S′} τ′)

(TERM-APP)

Γ U : σ →{Q.R} τ

Γ V : σ′ ` σ′ <: σ

Γ ↓P U V : {QtR} τ

(TERM-RESTRICT)

Γ M : {R} τ

Γ ↓P[M] : {R} τ

(TERM-PROVIDE)

Γ M : {R} τ

Γ ↑P[M] : {RuP?} τ

In TERM-SUBEFFECT above, it is sound to weaken the role since the asserted protection
is only reduced. ↑P[M] adds P to the role context in the operational semantics. So, in
TERM-PROVIDE, the guaranteed protection for ↑P[M] removes P from the guaranteed
protection for M.

As a consequence of the above rules, if M is a value, we can deduce that it must be
typed at role ⊥; values are already in normal form, so do not enforce any protection.
Furthermore, in this system, the Church booleans may be given type: (σ→{R} τ)→ (σ
→{S} τ) → (σ →{RuS} τ). illustrating the “minimum over all paths” principle via
Ru S (to be contrasted with Rt S in the previous typing system.). More generally, the
following theorem enables us to understand the invariants established by typing in this
system 6.

THEOREM 6. If Γ M : {S} τ, ` R 6> S and R ` M → M′, then Γ M′ : {S} τ.

If we start execution in a role context (R in the theorem) that does not suffice to pass
the minimum protection guarantee (S in the theorem), then a single step of reduction
has only two possibilities: (i) a check, e.g., for S, that is not passed by R occurs and the
term gets stuck, or (ii) the check for S does not happen at this step but the invariant that
the minimum protection is S continues to get preserved.

6 The usual form of the type preservation result does not hold for this system. For example
 ({>}λ_.()) () : {>} Unit and > ` ({>}λ_.()) ()→ () but 6 () : {>} Unit.

10 Radha Jagadeesan and Alan Jeffrey and Corin Pitcher and James Riely

5 Typing Examples

EXAMPLE 7. Recall the filesystem and web server from example 2. The filesystem
code can be assigned the following type, meaning that a caller must possess a role from
each of the ACLs in order to guarantee that access checks will not fail:

` filesystem : String→{⊥.ADMINt (ALICEuBOB)t⊥} String

In the above type, the final role ⊥ arises from the “unknown file” branch that does not
require an access check. The lack of an access check explains the weaker type:

 filesystem : String→{⊥.ADMINu (ALICEuBOB)u⊥} String

This type indicates that filesystem has the potential to expose some information to
unprivileged callers with role ADMINu (ALICEuBOB)u⊥=⊥, perhaps causing the
code to be flagged for security review.

The access check in the web server does prevent the “unknown file” error message
leaking unless the DEBUG role is active, but, unfortunately, it is not possible to assign
a role strictly greater than ⊥ to the web server using the type system because the
filesystem type does not record the different roles that must be checked depending upon
the filename argument, and hence:

6 webserver : String→{⊥.ADMINu (ALICEuBOB)uDEBUG} String �

EXAMPLE 8. Recall the encoding of the DTE/SELinux domain transition mechanism
from example 3. Define types for functions running at role S (acting as a domain) and
functions that can prove their assigned DTE role is E by calling back with that role:

Func(σ,τ,S) def= σ →{S} τ

FuncDTEType(σ,τ,S,E) def= (Func(σ,τ,S)→{E .⊥} τ)→{⊥} τ

A domain transition will certainly succeed if the caller possesses role R and the function
invoked after the domain transition requires at most role S:

` R E−→ S : FuncDTEType(σ,τ,S,E)×σ →{R.⊥} τ

In contrast, the following type guarantees that role R will be demanded from the caller:

 R E−→ S : FuncDTEType(σ,τ,S,E)×σ →{R.⊥} τ �

6 Conclusions

We have presented methods to aid the designer and use of components which include
access control code (as permitted in the programmatic RBAC of JAAS/.NET). Our first
analysis enables users of code to deduce the role at which code must be run. The other
analysis method enables code designers to deduce the protection guarantees of their
code by calculating the role that is verified on all execution paths.

λ-RBAC: Programming with Role-Based Access Control 11

In future work, we will explore extensions to role polymorphism and recursive roles
following the techniques of [7,2].

Our paper falls into the broad area of research enlarging the scope of foundational,
language-based security methods (see [24,16,1] for surveys). The papers that are most
directly relevant to the current paper are [6,9]. Both these papers start off with a mobile
process-based computational model. Both calculi have primitives to activate and deac-
tivate roles: these roles are used to prevent undesired mobility and/or communication,
and are similar to the primitives for role restriction and amplification in this paper. We
expect that our ideas can be adapted to the process calculi framework. In future work,
we also hope to integrate the powerful bisimulation principles of these papers.

[6,9] develop type systems to provide guarantees about the minimal role required
for execution to be successful — our first type system occupies the same conceptual
space as this static analysis. However, our second type system that calculates minimum
access controls does not seem to have an analogue in these papers. More globally, our
paper has been influenced by the desire to serve loosely as a metalanguage for program-
ming RBAC mechanisms in examples such as the JAAS/.NET frameworks. Thus, our
treatment internalizes rights amplification by program combinators and the amplify role
constructor in role lattices. In contrast, the above papers use external — i.e. not part of
the process language — mechanisms (namely, user policies in [9], and RBAC-schemes
in [6]) to enforce control on rights activation.

Our paper deals with access control, so the extensive work on information flow, e.g.,
see [20] for a survey, is not directly relevant. However, we note that rights amplification
plays the same role in λ-RBAC that declassification and delimited release [8,21,17] plays
in the context of information flow; namely that of permitting access that would not have
been possible otherwise. In addition, by internalizing the ability to amplify code rights
into the role lattice, our system permits access control code to actively participate in
managing rights amplification.

References

1. M. Abadi, G. Morrisett, and A. Sabelfeld. Language-based security. J. Funct. Program.,
15(2):129, 2005.

2. R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM TOPLAS, 15(4):575–631,
1993.

3. S. Barker and P. J. Stuckey. Flexible access control policy specification with constraint logic
programming. ACM Trans. Inf. Syst. Secur., 6(4):501–546, 2003.

4. E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: A temporal role-based access control
model. ACM Trans. Inf. Syst. Secur., 4(3):191–233, 2001.

5. W. E. Boebert and R. Y. Kain. A practical alternative to hierarchical integrity policies. In
Proceedings of the Eighth National Computer Security Conference, 1985.

6. C. Braghin, D. Gorla, and V. Sassone. A distributed calculus for role-based access control.
In CSFW, pages 48–60, 2004.

7. M. Brandt and F. Henglein. Coinductive axiomatization of recursive type equality and sub-
typing. Fundam. Inf., 33(4):309–338, 1998.

8. S. Chong and A. C. Myers. Security policies for downgrading. In ACM Conference on
Computer and Communications Security, pages 198–209, 2004.

12 Radha Jagadeesan and Alan Jeffrey and Corin Pitcher and James Riely

9. A. Compagnoni, P. Garralda, and E. Gunter. Role-based access control in a mobile environ-
ment. In Symposium on Trustworthy Global Computing, 2005.

10. D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-Based Access Control. Computer
Security Series. Artech House, 2003.

11. D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed NIST
standard for role-based access control. ACM Trans. Inf. Syst. Secur., 4(3):224–274, 2001.

12. J. Hoffman. Implementing RBAC on a type enforced system. In 13th Annual Computer
Security Applications Conference (ACSAC ’97), pages 158–163, 1997.

13. S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible support for multiple
access control policies. ACM Trans. Database Syst., 26(2):214–260, 2001.

14. J. Ligatti, L. Bauer, and D. Walker. Edit automata: enforcement mechanisms for run-time
security policies. Int. J. Inf. Sec., 4(1-2):2–16, 2005.

15. P. A. Loscocco and S. D. Smalley. Meeting critical security objectives with Security-
Enhanced Linux. In Proceedings of the 2001 Ottawa Linux Symposium, 2001.

16. J. C. Mitchell. Programming language methods in computer security. In POPL, pages 1–26,
2001.

17. A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification. In CSFW,
pages 172–186, 2004.

18. S. Osborn, R. Sandhu, and Q. Munawer. Configuring role-based access control to enforce
mandatory and discretionary access control policies. ACM Trans. Inf. Syst. Secur., 3(2):85–
106, 2000.

19. J. S. Park, R. S. Sandhu, and G.-J. Ahn. Role-based access control on the web. ACM Trans.
Inf. Syst. Secur., 4(1):37–71, 2001.

20. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected
Areas in Communications, 21(1):5–19, Jan. 2003.

21. A. Sabelfeld and A. C. Myers. A model for delimited information release. In ISSS, pages
174–191, 2003.

22. R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access control models. IEEE
Computer, 29(2), 1996.

23. R. S. Sandhu and J. Park. Usage control: A vision for next generation access control. ACM
Trans. Inf. Syst. Secur., 2004.

24. F. B. Schneider, G. Morrisett, and R. Harper. A language-based approach to security. In
Informatics—10 Years Back, 10 Years Ahead, volume 2000 of LNCS, pages 86–101, 2000.

25. F. Siewe, A. Cau, and H. Zedan. A compositional framework for access control policies
enforcement. In FMSE, pages 32–42, 2003.

26. E. G. Sirer and K. Wang. An access control language for web services. In SACMAT ’02:
Proceedings of the seventh ACM symposium on Access control models and technologies,
pages 23–30, 2002.

27. K. M. Walker, D. F. Sterne, M. L. Badger, M. J. Petkac, D. L. Shermann, and K. A. Oosten-
dorp. Confining root programs with Domain and Type Enforcement (DTE). In Proceedings
of the Sixth USENIX UNIX Security Symposium, 1996.

