
Concepts of Programming Languages

Lecture Notes: Expressions and Statements

Stefan Mitsch

School of Computing, DePaul University
smitsch@depaul.edu

Language Development: HowDoWe Support Computations?

The most basic function of computer programs is to aid humans in automating tedious com-
putational tasks, like adding two numbers. In this lecture, we explore the following questions:

® What building blocks should a programming language provide to let programmers ex-
press such computations in a convenient way?

® How should we integrate auxiliary functionality, such as printing the result of a compu-
tation?

® Which expressions must be fully evaluated to produce a result, and which ones can be
partially evaluated?

® What corner cases of expression evaluation exist and how should we treat them?

Learning Goals

� Identify different ways of expressing computations
� Identify sequencing in statements and expressions
� Express the difference between statements and expressions
� Identify strict vs. non-strict expression evaluation

Expressions and Statements

Assembly language consists of statements that are direct step-by-step instructions for a ma-
chine to execute. Let us start our journey of designing a programming language by asking
ourselves which higher-level constructs (but still basic building blocks) than direct machine
instructions are useful to express computations? Answering this question in an entirely ab-
stract way is difficult, which is why often programming language designers have some appli-
cation domain in mind. Still, there are some general-purpose mechanisms that we may find
useful across many application domains: one such example is that users may want to compute
the values of arithmetic expressions, or perform (limited) logic reasoning.

Expressions, in contrast to statements, are descriptive in nature; they describe a computa-
tion (e.g., the addition 1+ 2) and were added later to higher-level languages. Pure expressions
describe functions in the mathematical sense, they take arguments and return a result. Any-
thing else, such as assigning to a variable, changing the control flow (e.g., goto) or IO oper-
ations (e..g, printing to the console, writing to a file or network), is a side effect. As a rough
distinction, statements change state, expressions should not.

2 Stefan Mitsch

Example 1 (Is this C?). Since C is a prerequisite to this course, let’s build on our shared under-
standing to inspect expressions and statements. Below is a short code snippet of a C function
that returns1 if its input is non-zero (remember that in a conditional statement,0means false,
any non-zero value means true), else it returns 2. We can now ask whether this code snippet
is a well-formed program in C.

1 i n t f (i n t x) {
2 i n t y ;
3 i f (x) y = 1 ; e l s e y = 2 ;
4 r e t u r n y ;
5 }
6 i n t main () { p r i n t f (" %d \ n " , f (5)) ; r e t u r n 0 ; }

This question is about the syntax of the programming language, which means that we
can ask the C compiler whether the code snippet is a syntactically well-formed program in C.

1 g c c e x a m p l e 1 . c

In this case the compiler reassures us that it is. Let’s take a closer look at the code snippet
and we might notice that there both branches of the conditional statement share an assign-
ment to the variable y. What if we pull out that assignment to remove this “code duplication”,
is the result still C?

1 i n t f (i n t x) {
2 i n t y ;
3 y = i f (x) 1 ; e l s e 2 ;
4 r e t u r n y ;
5 }
6 i n t main () { p r i n t f (" %d \ n " , f (5)) ; r e t u r n 0 ; }

Now the answer is no. The reason is that the code snippet above (in terms of C) uses a
statement (the conditional statement if (x) 1; else 2;) on the right-hand side of an assign-
ment, where an expression is expected.

Expressions evaluate to values and do not have side effects (do not change program state,
such as write to variables, write to the console or a file), whereas statements may have side
effects.

There are now two interesting aspects that allow us to inspect expressions vs. statements
in C. Let’s first dissect the conditional statement if (x) 1; else 2; , which you may remem-
ber executes the statement on the “if-branch” whenx is true, else it executes the statement on
the “else-branch”. You may now ask: how are 1 and 2 statements? After all, they do not have
side effects and are just numbers that can equally well appear in expressions like x+ 1. In C,
any expression can be turned into a statement using the “;” operator, so 1 is an expression, but
1; is a statement.

Returning to the example, in order to get well-formed C we need to turn the right-hand
side of the assignment to y into an expression. Since conditional evaluation of expressions
is such a common use case, C provides dedicated expression syntax in terms of a (C’s only)
ternary operator x ? 1 : 2. Using this operator, we can now rephrase our example to again
obtain well-formed C.

1 i n t f (i n t x) {
2 i n t y ;

Concepts of Programming Languages 3

3 y = x ? 1 : 2 ;
4 r e t u r n y ;
5 }
6 i n t main () { p r i n t f (" %d \ n " , f (5)) ; r e t u r n 0 ; }

What if our conditional expression is more complicated and requires an algorithm to
compute, could we still express that inline like below? Not in C, but some languages sup-
port such syntax.

1 i n t f (i n t x) {
2 i n t y ;
3 y = { i n t z = 0 ; whi le (x > 0) { x −−; z + + ; } z }
4 r e t u r n y ;
5 }
6 i n t main () { p r i n t f (" %d \ n " , f (5)) ; r e t u r n 0 ; }

Expressions

Expressions in C are constructed from the following components:

– Literals (boolean, character, integer, string)
– Operators (arithmetic, bitwise, logical)
– Function calls, e.g., f (1+(2* strlen (" hello ")))

C knows side-effecting expressions, such as x++, x+=2, x=(y=5), x−=(y+=5), and any function
that changes (global) memory or writes to some resource.

Example 2 (Side-effecting Expressions in C). The example below is bad programming style,
but should give you an idea of how side-effecting expressions operate.

1 i n t g l o b a l = 0 ;
2
3 i n t p o s t _ i n c () {
4 r e t u r n g l o b a l ++;
5 }
6
7 i n t main () {
8 p r i n t f (" %d \ n " , p o s t _ i n c () + p o s t _ i n c ()) ;
9 }

The effect of this program is printing1; if we change line 4 to return ++global ; the output
would change to 3.

Note 1. The code above is clearly an example of bad programming style, which reminds us
that we must be thoughtful in how we use programming language; often, programming lan-
guages provide concepts that are useful for same use case or help in phrasing arguments in
a crisp and clear way, but may result in code that is hard to understand or maintain when
misused. As designers of programming languages, we should strive for a language design that
makes it difficult or impossible to write incorrect programs (here, with incorrect we mean
programs that violate functional or non-functional properties of programs).

4 Stefan Mitsch

A useful way of using side-effecting expressions is in combination with IO operations,
whose return value in C usually indicates success or failure, while the result is passed back
using a pointer argument.

Example 3 (A Useful Example of Side-effecting Expressions).

1 s t r i n g s ;
2 whi le (r e a d _ s t r i n g (s) , s . l e n () > 5) {
3 / / d o s o m e t h i n g
4 }

This examples uses the operator “ , ” of the shape (e1, e2, . . . , en) for sequential execu-
tion of expressions. This operator executes expressions e1 . . . en−1 sequentially for their side
effect, followed by en whose result is the result of the operator. In the example above, the
function read_string is called repeatedly to store the result in the string s; the loop keeps
repeating as long as the length of the string read exceeds 5.

Sequencing can also be used to write programs more concisely, as illustrated with the
following two examples.

1 i n t main () {
2 i n t x = 5 ;
3 x *= 2 ;
4 p r i n t f (" %d \ n " , x) ;
5 }

1 i n t main () {
2 i n t x = 5 ;
3 p r i n t f (" %d \ n " , (x *= 2 , x)) ;
4 }

In summary, besides atomic expressions, C provides compound expressions for sequenc-
ing (e1 ,..., en) and conditional evaluation of expressions (e1 ? e2 : e3).

Statements

Statements in many imperative programming languages, like C, are the most common way of
sequencing operations and deciding between different computation options. They typically
operate with mutable data (i.e., change memory locations by changing the values of variables)
and do not produce themselves a result.

– Return statements
– Selection, such as if-then-else, switch-case
– Iteration, such as while, do-while, for
– Expression statements (expressions terminated in “;”) including assignment

Strict and Nonstrict Expression Evaluation

Expressions are evaluated for their value, but do we need to evaluate all operands of an expres-
sion in order to determine the value of a compound expression? You may already guess that

Concepts of Programming Languages 5

the answer is no: strict expression evaluation evaluates all operands, whereas nonstrict expres-
sion evaluation evaluates operands only until the value of the result is determined regardless
of the values of the remaining operands.

Exercise 1 (Name some strict constructs in C). Before you read on, take some time to name
strict constructs in C.

– Arithmetic operators +,−, *, . . . (interestingly, multiplication could be non-strict but only
for the concrete argument 0)

– Comparison operators <, . . .
– Bitwise operators | , . . .
– Function calls
– . . .

Exercise 2 (Name some nonstrict constructs in C). Before you read on, take some time to name
strict constructs in C.

– Boolean operators &&, . . . (e1 && e2 is strict in e1 but non-strict in e2; another example
is p && p−>f() to check a pointer before dereferencing it)

– Conditional operator e1 ? e2 : e3 is strict in e1 but not in e2 or e3
– Macro expansion

Nonstrict evaluation is important because it allows us to define recursive algorithms. Let
us inspect an example that illustrates nonstrict evaluation by conditionally modifying one of
two memory locations.

Example 4 (Non-strict evaluation of operands of C’s ternary operator).

1 i n t main () {
2 f o r (i n t i = 0 ; i < 1 0 ; i ++) {
3 i n t x = 0 ;
4 i n t y = 0 ;
5 i n t z = (r a n d () %2) ? (x = 1 , 1 1 1) : (y = 2 , 2 2 2) ;
6 p r i n t f (" x=%d , y=%d , z =%d \ n " , x , y , z) ;
7 }
8 }

Save this code snippet as statements-01.c. We compile and execute the programming as
below.

1 $ g c c s t a t e m e n t s − 0 1 . c && . / a . o u t
2 x = 1 , y =0 , z = 1 1 1
3 x =0 , y = 2 , z = 2 2 2
4 . . .

Programming languages often have more than one way of expressing the same computa-
tion in several different ways. Below we compare an implementation of computing the facto-
rial of a number using conditional statements vs. conditional expressions. Nonstrict (partial)
expression evaluation is vital in such a recursive algorithm, because it allows us to terminate
with the base case; with strict expression evaluation, we would continue evaluating the recur-
sive case, even when we arrive at the base case.

6 Stefan Mitsch

Exercise 3 (Conditional statements vs. conditional expressions).

1 i n t f a c t (i n t n) {
2 i f (n <= 1) {
3 r e t u r n 1 ;
4 } e l s e {
5 r e t u r n n * f a c t (n − 1) ;
6 }
7 }

1 i n t f a c t (i n t n) {
2 r e t u r n (n <= 1) ? 1 : n * f a c t (n − 1) ;
3 }

Execute both programs to see whether there is a difference in how they execute. What
happens?

1 i n t f (i n t c , i n t t , i n t f) { r e t u r n c ? t : f ; }
2 i n t main () {
3 f o r (i n t i = 0 ; i < 1 0 ; i ++) {
4 i n t x = 0 ;
5 i n t y = 0 ;
6 i n t z = f (r a n d () %2 , (x = 1 , 1 1 1) , (y = 2 , 2 2 2)) ;
7 p r i n t f (" x=%d , y=%d , z =%d \ n " , x , y , z) ;
8 }
9 }

Remember that function calls are strict! As a result, the code above evaluates all operands
to f, which undoes the non-strict evaluation of the conditional expression that is used to
implement the function. Macro calls, in contrast, are non-strict.

1 # d e f i n e m(b , t , f) (b) ? (t) : (f)
2 i n t main () {
3 f o r (i n t i = 0 ; i < 1 0 ; i ++) {
4 i n t x = 0 ;
5 i n t y = 0 ;
6 i n t z = m(r a n d () %2 , (x = 1 , 1 1 1) , (y = 2 , 2 2 2)) ;
7 p r i n t f (" x=%d , y=%d , z =%d \ n " , x , y , z) ;
8 }
9 }

The reason is that macro calls are evaluated in the preprocessor stage during compilation,
by textual substitution, and our specific textual substitution introduces the nonstrict ternary
conditional operator. This means, that the compiler does not “see” the code that may look to
a programmer like a function call; the non-strict ternary operator is substituted directly into
main.

1 i n t f t r i p l e (i n t i) { r e t u r n i + i + i ; }
2 # d e f i n e m t r i p l e (i) (i) +(i) +(i)
3 i n t main () {
4 i n t x = 1 0 ;
5 i n t r x = f t r i p l e (x = x + 1) ;

Concepts of Programming Languages 7

6 i n t y = 1 0 ;
7 i n t r y = m t r i p l e (y=y + 1) ;
8 p r i n t f (" x=%d , r x =%d , y=%d , r y =%d \ n " , x , r x , y , r y) ;
9 }

Exercise 4 (Another way of expressing factorial). Before you read on, can you think of another
way of expressing this program?

1 i n t f a c t (i n t n) {
2 s w i t c h (n) {
3 c a s e 1 : r e t u r n 1 ;
4 d e f a u l t : r e t u r n n * f a c t (n − 1) ;
5 }
6 }

