[V RO S

Concepts of Programming Languages

Lecture Notes: Scala

Stefan Mitsch

School of Computing, DePaul University
smitsch@depaul.edu

ScaLa PRAGMATICS

We briefly discuss the major steps of setting up Scala and SBT, as well as first steps in using
Scala. In Scala, source code files at the top level may contain only class declarations and sin-
gleton object definitions.

object O:
// definition of singleton object O

class C:

// definition of class C

Small examples can be directly executed in the Scala REPL, larger examples are best typed
in a file and then executed. Scala is based on the Java Intermediate Language. In Scala 2 (no
longer available in Scala 3), we can disassemble the compiled code in the REPL. All homework
assignments come with test cases that you can use to determine whether you implemented the
required functionality. The following SBT commands execute unit tests:

testOnly fprtests // runs all fpitests

testOnly fprtests —— —n fprexos // runs the test fprexos from
the suite fprtests

~testOnly fprtests // runs tests continuously (
reruns when any file changes)

Make sure to run sbt from the correct directory. Type dir (on Windows) or 1s (on Linux
and MacOS) and check that the file build. sbt is in the current directory

ScALA INTRODUCTION

Scala is a multi-paradigm language, it integrates functional and object-oriented program-
ming. Syntactically, it borrows from Java, ML, and others. Unlike C and many other lan-
guages, it does not directly compile to machine code, but instead compiles to JVM Bytecode.
This enables bidirectional interoperation between Scala and Java. Its initial design motivation
was to build better Java, for distributed systems and data science. Some prominent examples
Twitter and Apache Spark, and there is a local Chicago meetup group on Scala. Besides com-
piling, Scala also has a REPL like Scheme.

Now we take a brief overview of the main syntactic elements in Scala. Scala has the usual
Boolean, numeric and string literals as familiar from Java.

[)

2, Stefan Mitsch

false || true
1+ 2
("hello" + " " + "world").length

We can use all of Java’s library.

val dir = java.io.File ("/tmp")
dir.listFiles . filter (f => f.isDirectory &% f.getName.startsWith
("e"))

// with explicit nulls

val dir = java.io.File ("/tmp")

dir.listFiles .nn.map(_.nn). filter (f => f.isDirectory & f.
getName.nn. startsWith ("c"))

Note 1 (Explicit nulls). Explicit nulls change the Scala type hierarchy. By default, Scala follows
Java with null being a subtype of all reference types. With explicit nulls enabled, the type
hierarchy changes so that Null becomes a subtype of Any and Matchable, but no longer of
AnyRef. This means, that we cannot initialize references to null unless we explicitly declare a
union type, e.g., val s: String | Null = null. The preferred way of resolving a union type is
pattern matching. The use of the method nn to resolve explicit nulls in the example above is
discouraged, because it again results in null-pointer exceptions at runtime.

Unlike in Java, which distinguishes between primitive and complex datatypes, everything
in Scala is an object with methods. For example, the integer value s:Int is an object of type
Int and it has conversion methods to Double as well as a toString method. Methods can have
symbolic names, which allows us for instance to implement numeric operations s.+ (6). In
order to allow us to write those methods in a natural way as operators, any call to a unary
function er.f(e2) can be written as er f e2.

s + 6 // 5.+(6)

Scala performs static type checking, but just as in Java, all type checks can be made dy-
namic by casting. We can use the REPL to print types of expressions. Scala comes with glue
code that adapts some of the Java types to the Scala type hierarchy:

— Wraps Java primitive types as Scala value types
— Wraps Java reference types as Scala reference types
— java .lang . Object becomes scala . AnyRef

Mutable and immutable data. Its syntax also differs from Java and C in the way that
mutable and immutable data are distinguished. In Java and C, variables are by default mutable
and reassignment is ok.

int x = 10; // declare and initialize x
X = I1; // assignment to x OK

In Scala, we need to flag mutable objects as being variable.

var x = 10 // declare and initialize x (type Int
inferred)
X = II // assignment to x OK

—

Concepts of Programming Languages 3

Immutable data require different syntax in all three languages.

// Java

final int x = 10; // declare and initialize «x

X = II; // assignment to x fails, compile error
const int x = 10; // declare and initialize x

X = II; // assignment to x fails, compile error
val x = 10 // declare and initialize x

X = II // assignment to x fails, compile error

Sequencing. Scala supports expression sequencing similar to C and Scheme, but it resem-
bles the sequencing syntax of C statements. When every expression is on its own line, the
semicolons are optional.

(e_1, e_2, ..., e_n) // C expression sequencing
(begin e_1 e_2 ... e_n) // Scheme expression sequencing
{e_1; e 2; ...; e_n} // Scala compound expression

// semicolon optional, whitespace sensitive

O N AN b ow B

—
= o

Methods. For expressing methods, Scala again mixes syntax familiar from functional lan-
guages with syntax familiar from imperative languages. Methods require type annotations;
the return type can usually be inferred, but it is strongly encouraged to annotate types on
public methods for documentation purposes (recursive methods always require type annota-
tions). The body of a method is an expression, the value of the expression is returned (void—

N N Nk A D

Unit—is a type whose only value is Nothing!).

def plus (x:Int, y:Int) : Int = x + y

// Scala 3 with significant whitespace

class C:
val x = 1
lazy val y = 1
def z = 1

// Scala 2z (closer to Java syntax)

class C {
val x = 1
lazy val y = 1
def z = 1

— wioR W N

[RS I

—

N Nk AN

4 Stefan Mitsch

Fields and parameter-less methods differ in the time and number of executing the initial-
izer: fields are always initialized on class instantiation and their value does not change once
initialized (val is strict); lazy fields are initialized on first access, subsequently their value stays
unchanged; parameter-less methods are executed every time (lazy val and def are non-strict).
Fields can additionally be distinguished into mutable and immutable fields (var vs. val).

Scala includes conditional expressions using if—then—else notation. Like in Scheme, we
can use compound expressions to execute expressions for side-effects before returning the
value of the last expression. The syntax for compound expressions resembles C statements,
but uses expressions!

Structured data. The most basic way of structuring data in Scala is in terms of tuples,
which represent a fixed number of (potentially) heterogeneous items, whereas lists are used
to represent a variable number of homogeneous items. Both have mutable and immutable

variants.

final List<Integer> xs = new List<> ();

List <Integer> ys = xs;

xs.add (4); xs.add (s); xs.add (6); // mutating list OK

xs = new List<> (); // reassignment fails

ys = new List<> (); // reassignment OK

val xs = List (4, s, 6) // scala.collection. List (mutable: scala
.collection . mutable. List)

var ys = xs

xs (1) =7 // mutating list fails

Xs = 0 :: XS // reassignment fails

ys = o :: Xs // reassignment OK

Arrays and more complicated data structures (sets, maps, trees ctc.) are available in scala
. collection as well as through wrappers of the Java library java . util . On tuples and lists (and
every other data structure that provides a deconstructor—not to be confused with the mean-
ing of deconstructor in C++!), Scala supports manipulation through pattern matching.

Constructing tuples (immutable) tuples in Scala is straightforward, but requires non-
trivial implementation effort in Java:

val p : (Int, String) = (5, "hello")
val x : Int = p(o)

public class Pair<X,Y> {
final X x;
final Y y;
public Pair (X x, Y y) { this.x = x; this.y = y; }

Pair <Integer , String> p = new Pair<> (5, "hello");
int x = p.x;

N O N N D

—
o

-

S WP

Concepts of Programming Languages S

Pattern matching. Pattern matching is an elegant way to deconstruct data structures into
their elements while simultaneously branching on conditions; it is supported in Scala on tu-
ples and lists.

// with pattern matching
def a(p:(Int,Int)) = p match
case (x,y) => x+y

// with projection
def a(p:(Int,Int)) =
if p==null then throw MatchError(p)

val x = p(o)
val y = p(1)
X +y

The syntax in the example above first lists the element that should be deconstructed into
its components (p match), followed by the different options for deconstructing that element.
The code branches into these options and picks the first matching case. When matching a
case, the components get bound to variables as listed in the case expression (e.g., case (x,y)
binds the left component of the tuple p to variable x and the right component to variable
y). Once bound, the variables can be used to produce a result expression (which can be com-
pound). Patterns—similar to ML, Haskell, Rust, or Swift—can be nested and use wildcard
operators to ignore irrelevant elements. When used well, pattern matching often improves
readability over extensive conditional expressions.

def f (xs: List[(Int,String)]) = xs match

case Nil => "List is empty"
case _::Nil => "List has one element”
case _::(x,_)::_ => s"The second int is ${x}" // string

interpolation , produces result like explicit

concatenation "The second int is " + x.toString

Notez (String interpolation). The code above uses string interpolation to build strings in-
stead of explicitly concatenating strings produced by implicit calls to toString .

From Scheme, Scala inherits a cons operator, but opts for infix notation: val xs =1 ::
2 :: 3 :: Nil. The operator is right-associative, so corresponds to (define xs (cons 1
(cons 2 (cons 3 ())))). There is also similarity between linked lists: (1ist 1 2 (+ 1
2)) in Schemevs. List (1, 2, 1+2).Projection onto list elements is done in Scala, like in many
languages, with head and tail vs. car and cdr in Scheme.

Recursion. Imperative programming often uses mutable data and iteration with loops,
whereas functional programming favors immutable data and recursion. This combination
of immutability and recursion makes expressing an idea through decomposition into smaller
descriptive computational artifacts in terms of local state well-understood (as opposed to the
prescriptive nature of imperative computing through manipulating states in iterations). To
make functional programming efficient at runtime, a programming language needs efficient
method calls. Compilers of functional programming languages can implement optimizations
that transform the functional style into an imperative style in order to avoid the overhead of
function calls (tail recursion, more on this later).

	Concepts of Programming Languages

