AN AW

AN AW N

Concepts of Programming Languages

Lecture Notes: Functional Programming

Stefan Mitsch

School of Computing, DePaul University
smitsch@depaul.edu

Scala is a multi-paradigm language that combines functional and object-oriented pro-
gramming. In this lecture, we discuss pattern matching, list processing functions, and com-
pare the difference between methods and functions in Scala in more depth.

PATTERN MATCHING

When expressing contracts, we often want to describe properties about the resulting data.
These can be as simple as comparing values (e.g., > 0), but usually require us to describe
the expected shape of the result in more detail.

For example, when faced with the following description of how to process a list, a large
language model may generate code that we want to safeguard with a contract.
>— In Scala, implement a method that takes a list of at least three
numbers and returns it with the first three sorted in ascending order.
o Large language model response:

def f (numbers: List[Int]) : List[Int] = {
require (numbers.length >= 3, "The list must contain at least 3
elements")
val (firstThree, rest) = numbers.splitAt(3)
val sortedFirstThree = firstThree.sorted
sortedFirstThree ++ rest
} ensuring { case xs => ??? }

The 777 operator throws a Not ImplementException and it is our task to describe
our requirements more formally with a suitable contract. In this example, we are interested
in testing the shape of the list and that the first three elements are in ascending order.

In a traditional imperative programming language style we often access the elements of
the list by index like below, or using projections:

ensuring { case xs =>
val x1 = xs(o) // xs.head
val x2 = xs(1) // «xs.tail.head
val x3 = xs(2) // xs.tail.tail.head
X1 <= x2 && x2 <= Xx3

This style results in lengthy contracts that do not clearly express the intended shape of the
result. Pattern matchz‘ng is an alternative way of decomposing a complex data structure into
its elements: it emphasizes the shape of the result and simultaneously branches on shapes and
binds variables.

(VLR NECCRE S R

BN

wi AW N

[NV N S S I S

2, Stefan Mitsch

ensuring {
case xs =>
val x1 :: x2 :: x3 :: Nil = xs
X1 <= x2 && x2 <= X3

Even more concisely, we can express the pattern immediately in the signature of the func-
tion that we pass to ensuring as follows:

ensuring {
case xI1 :: x2 :: x3 :: Nil =>
X1 <= x2 && x2 <= X3

Pattern matching binds variables to the components of a data structure according to the
specified shape. For example, when computing the sum of two numbers in a tuple of type
(Int, Int),atraditional approach may use a conditional expression to check for the tuple
being non-null, and then accesses the tuple elements by their index as below:

def sum(p: (Int,Int)) : Int =
if p==null then throw MatchError(p)

val x = p(o)
val y = p(1)
X +y

Using pattern matching, we can express the same behavior by listing cases for the expected
shapes, and in each case, listing the variables that stand for the components of the complex
data structure.

def sum(p: (Int,Int)) = p match
case (x,y) => x+y

Types are optional:

def sum(p: (Int,Int)) = p match
case (x: Int, y: Int) => x+y

Pattern matching branches between multiple cases. This is useful when a data structure
can take one of multiple shapes (e.g., an empty list vs. a list with at least one element) and
we want to produce different results for those shapes. In the following example, we print the
first element of a non-empty list; otherwise we print that the list is empty. In an imperative
programming approach, we typically use a conditional expression to distinguish the cases.
Each branch of the conditional expression then performs a different computation, as below:

def printHead(xs: List[Int]) : String =

if xs == Nil then "List is empty"
else

val y: Int = xs.head

val ys = xs.tail

s"List is non—empty, head is $y"

The same functionality can be achieved with pattern matching:

B I SR

N 0N N AW N

Concepts of Programming Languages 3

def printHead(xs: List[Int]) : String = xs match
case Nil => "List is empty"
case (y: Int) :: ys => s"List is non—empty, head is $y"

The code matches on the shape of list xs. If xs is the empty list (case Nil), then we
return the string "List is empty";else (case (y: Int) :: ys), we have a list with
head y and tail ys and we print the head. Unused variables (tail ys above) can be omitted
from the pattern shape using the wildcard operator _ as below:

def printHead(xs: List[Int]) = xs match
case Nil => "List is empty"
case y :: _ => s"List is non—empty, head is $y"

Patterns can be nested to take any arbitrarily complicated shape:

def f (xs: List[(Int,String)]) = xs match

case Nil => "List is empty"
case _ :: Nil => "List has one element”
case _ :: (x,_) :: _ => s"The second int is $x"

The code above lists three cases:

— case Nil matches the empty list to return string "List is empty"

— case _ :: Nil matches alist with exactly one element

— case _ :: (x, _) :: _ matches any list of at least two elements, and it binds the
Int of the second element to variable x

FuNcTIONS OVER LisTS

We start by inspecting an example to print the elements of a list.

def printList (xs:List[Int]) : Unit = xs match
case Nil = ()
case y::ys =>
println(y) // can format: printin("ox%ozx". format(y))
printList (ys)

val xs = List(r1,21,31)
printList (xs)
// 11 21 31

In the example above, we see two ways of printing the elements of the list (unformatted
vs. formatted).

What if we now want to apply some other function to every element of the list? The basic
setup of the recursive algorithm wouldn’t change, only the specific operation that we apply
at each element does. We can describe that abstract idea of processing every element with a
recursive algorithm that, in addition to the list being processed, takes a function to be applied
to each element as an argument.

def foreach (xs:List[Int], f:Int=>Unit) : Unit = xs match
case Nil = ()
case y::ys =>

[o I B Y

[N S SR

) WV, N NI N R

4 Stefan Mitsch

£ (y)
foreach (ys, f)

val xs = List(r1,21,31)
foreach (xs, println)

Now it becomes easy to make variations.

def printHex (x:Int) = println("ox%o2x".format(x))
foreach (xs, printHex)

But do we really care about the elements in the list? An additional improvement makes
the element type a type parameter of the method.

def foreach [X] (xs:List[X], f:X=>Unit) : Unit = xs match
case Nil => ()
case y::ys =>
£ (y)
foreach (ys, f)

Finally, we may not even always want to define the functions that we apply to each ele-
ment. For this, Scala supports Lambda expressions (anonymous functions):

foreach (xs, (x:Int) => println("ox%o2x".format(x)))
foreach (xs, println("ox%o2x".format(_)))

// also possible
val printHex = (x:Int) => println ("ox%o2x".format(x))
foreach (xss, printLength)

We do not need to implement foreach ourselves, Scala collections provide it!

The examples above use both type and value parameters: type parameters are in square
brackets, whereas value parameters are in round brackets. All type parameters must be de-
clared before value parameters. Functions themselves are of function type: for example, X=
>Int is the type of a function taking an argument of type X and returns a result of type Int.
In Lambda expression, types are often unnecessary if Scala can infer them (type inference is
smarter on methods than functions).

List comprehensions. From mathematics, we might be familiar with sez comprebensions
of the form

{(m,n) |me{0,...,10} Ane{0,...,10} Am <n} .

List comprehensions of a similar form are included in many programming languages, such as
SETL, Haskell, Scala, and JavaScript.

Scala provides another builtin special syntax to express foreach using list comprehensions
(named for-expressions in Scala).

for x <— xs do println ("ox%o2x".format(x))

We are now inspecting a (less-than-optimal) way of expressing imperative loops with our
foreach implementation, by using a variable in scope:

BN N

[U

N N A w N

(VLR NEECCRE S)

(e

Concepts of Programming Languages S

def sum (xs:List[Int]) : Int =

var result = o
xs.foreach ((x:Int) => result = result + x)
result

Later, we’ll see how folds provide a better way of expressing such ideas.

A note on equality: Java uses builtin operators for reference equality, and a method for
value equality; Scala has methods for both, the operator symbol method == for value equality
and method eq for reference equality.

Transformers. A frequent operation on collections is the modification of elements in the
collection. To this end, tzansformers are functions to build a list of modified elements while
traversing a collection recursively (unlike above where we only print elements but do not ma-
nipulate them).

def transform (xs:List[Int]) : List[String] = xs match
case Nil => Nil
case y::ys => ("ox%o2x".format (y)) :: transform (ys)

A transformer is expected to take one cons cell as input and produce another cons cell as
output. Just like foreach, there is a builtin way of applying transformers to collections: map.
Scala again provides special notation to apply transformers in a for-expression:

for x <— xs do println ("ox%o2x".format(x))

// is compiled to xs.foreach (x => printin ("ox%ozx". format(x)))

for x <— xs yield "ox%o2x".format(x)
// is compiled to xs.map (x => "ox%ozx". format(x))

Filtering. Often, we want to apply a function only to elements satisfying a certain condi-
tion, omitting the remaining elements in the output collection.

def filter [X] (xs:List[X], f:X=>Boolean) : List[X] = xs match
case Nil => Nil
case y::ys if f (y) =>y :: filter (ys, f)
case _::ys => filter (ys, f)

val zs = (o to 7).toList
filter(zs, ((_:Int) % 3 != o))

Again in special for—expression notation:

for z <— zs; if z % 3 != o yield z
// compiles to zs.filter (z => 2 % 3 != o)

for z <— zs; if z % 3 != o yield "ox%o2x".format(z)
// compiles to zs.filter (z => 2 % 3 != o). map (z => "ox%ozx’.

format(z))

for z <— zs; if z % 3 != o do println ("ox%o2x".format(z))
// compiles to zs.filter (z => 2 % 3 != o). foreach (z => printin
("ox%o0zx". format(z)))

(VLR NECCRE S R

BN N

[S

[©) WV NS U S

o N

6 Stefan Mitsch

def flatten [X] (xs:List[List[X]]) : List[X] = xs match
case Nil => Nil
case y::ys =>y ::: flatten (ys)

val xss = List(List(rr,21,31),List(),List(41,51))

In the above implementation of flatten, we use operator :::.

Multiple iterators. For-expressions are quite general and can combine nested iterators in
a single pass.

val xss = List(List(rr,21,31),List(),List(41,51))

for xs <— xss;
x <— xs yield (x, xs.length)

// result: List[(Int, Int)] = List((r1,3), (21,3), (31,3),
(41,2), (51,2))

We can also compute the cross product of independent iterators.

val xs = List(r1,21,31)

val ys = List("a","b")

for x <— xs;
y <— ys yield (x, y)

// result: List[(Int, String)] = List((1r1,a), (11,b), (21,a),
(21,b), (31,a), (31,b))

CURRYING

We say that functions are fzrst-class if they can be

— declared within any scope
— passed as arguments to other functions, and
— returned as results of functions.

Higher-order functions are functions that can take other functions as arguments (e.g.,
map etc.). Methods that take multiple arguments can be defined in the “usual” way with mul-
tiple formal arguments, or in a curried way as higher-order definitions that take one argument
ata time and produce methods that take the remaining arguments.

// paired method
def addi(x:Int, y:Int) = x+y
addr (11, 21)

// curried method

def adda(x:Int)(y:Int)
type (y: Int): Int

add2 (11) (21)

x+y // takes an Int, returns method of

// paired function

1I
I2

3

15
16

N AN AW N

N N AW N

[NV R IS S I S

Concepts of Programming Languages 7

val add3 = (x:Int, y:Int) => x+y

// curried function
val add4 = (x:Int) => (y:Int) => x+y // takes an Int, returns a
function of type Int=>Int

// can mix notations: method returns a function
def adds(x:Int) = (y:Int) => x+y

Both paired and curried notation support partial function application:

// paired
val addip = addi(4, _)
addip (1) // resulr 5

// curried

val add4p = add4(4)
add4p (1) // resulr s
add4p(2) // resulr ¢

Functions and methods in Scala can also be created explicitly by instantiating the appro-
priate classes:

def a (x:Int) = x + 15

val b = (x:Int) => x + 13

val ¢ = new Function[Int,Int] { def apply(x:Int) = x + 1 }
val d : PartialFunction[Any, Int] = { case i: Int => i + 1 }

val fs = List(a,b,c,d)
for f <— fs yield f(4)

In summary:

— def defines a method, parameter types explicit
— => defines a function, parameter types inferable
— Functions are objects with method apply (e(args) ===e.apply(args))

FoLps

MapReduce is a programming model for processing and generating data sets with a parallel,
distributed algorithm. It requires a main process that performs filtering and sorting (the map
step) and a summary operation that collects and combines results (the reduce step). Below is
an example of counting the number of occurrences of each word in a set of documents using
MapReduce in Scala.

def map(name: String, contents: String) =
// name: document name (irrelevant here)
// contents: document content
for w <— contents do
emit (w, 1)

[S I

-

[R S I S

8 Stefan Mitsch

def reduce(word: String, partialCounts: Iterator) =

var sum = o
for pc <— partialCounts do
sum = sum + pc

emit (word, sum)

The MapReduce framework is a distributed implementation of a recursive algorithm. For
example, we can sum up the elements of a list of integers as below.

def sum (xs:List[Int], z:Int = o) : Int = xs match
case Nil = z
case y::ys => sum (ys, z + y)

val xs = List(r1,21,31)
sum (xs)

The algorithm takes a list of (remaining) elements and a partial result, and aggregates the
partial result with the result of processing a single element, until no more elements are left
to process. It computes the sum in a forward fashion, passing the aggregated result to the
next step. In a backwards fashion as below, the aggregation is postponed until all elements are
processed.

def sum (xs:List[Int], z:Int = o) : Int = xs match
case Nil => z
case y::ys =>y + sum (ys, z)

val xs = List(r1,21,31)
sum (xs)

Both have in common that they are using an accumulator. Scala has builtin fold oper-
ations that allow us to traverse collections while accumulating results. Operation foldLeft
performs accumulation in a forward fashion, foldRight in backwards fashion. foldLeft is ta/
recursive, which means that the base case is the first element, the recursive call is on the tail,
and the accumulator is applied to the head and the accumulated result. foldRight is recursive
into an argument, which means that the base case is the last element, the recursive call is on
the tail, and the accumulator is applied to the head and the result of the recursion. Folds are
a universal concept that can be used to compute many different functions on lists, such as
summing up elements, appending a list to another list, flattening, or reversing.

