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Scala is a multi-paradigm language that combines functional and object-oriented pro-
gramming. In this lecture, we discuss pattern matching, list processing functions, and com-
pare the difference between methods and functions in Scala in more depth.

Pattern Matching

When expressing contracts, we often want to describe properties about the resulting data.
These can be as simple as comparing values (e.g., x ≥ 0), but usually require us to describe
the expected shape of the result in more detail.

For example, when faced with the following description of how to process a list, a large
language model may generate code that we want to safeguard with a contract.
_ In Scala, implement a method that takes a list of at least three
numbers and returns it with the first three sorted in ascending order.
Ú Large language model response:

1 def f ( nu m be r s : L i s t [ I n t ] ) : L i s t [ I n t ] = {
2 r e q u i r e ( nu m be r s . l e n g t h >= 3 , " The l i s t must c o n t a i n a t l e a s t 3

e l e m e n t s " )
3 v a l ( f i r s t T h r e e , r e s t ) = nu m be r s . s p l i t A t ( 3 )
4 v a l s o r t e d F i r s t T h r e e = f i r s t T h r e e . s o r t e d
5 s o r t e d F i r s t T h r e e ++ r e s t
6 } e n s u r i n g { c a s e x s => ? ? ? }

The ??? operator throws a NotImplementException and it is our task to describe
our requirements more formally with a suitable contract. In this example, we are interested
in testing the shape of the list and that the first three elements are in ascending order.

In a traditional imperative programming language style we often access the elements of
the list by index like below, or using projections:

1 e n s u r i n g { c a s e x s =>
2 v a l x 1 = x s ( 0 ) / / x s . h e a d
3 v a l x 2 = x s ( 1 ) / / x s . t a i l . h e a d
4 v a l x 3 = x s ( 2 ) / / x s . t a i l . t a i l . h e a d
5 x 1 <= x 2 && x 2 <= x 3
6 }

This style results in lengthy contracts that do not clearly express the intended shape of the
result. Pattern matching is an alternative way of decomposing a complex data structure into
its elements: it emphasizes the shape of the result and simultaneously branches on shapes and
binds variables.
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1 e n s u r i n g {
2 c a s e x s =>
3 v a l x 1 : : x 2 : : x 3 : : N i l = x s
4 x 1 <= x 2 && x 2 <= x 3
5 }

Even more concisely, we can express the pattern immediately in the signature of the func-
tion that we pass to ensuring as follows:

1 e n s u r i n g {
2 c a s e x 1 : : x 2 : : x 3 : : N i l =>
3 x 1 <= x 2 && x 2 <= x 3
4 }

Pattern matching binds variables to the components of a data structure according to the
specified shape. For example, when computing the sum of two numbers in a tuple of type
(Int, Int), a traditional approach may use a conditional expression to check for the tuple
being non-null, and then accesses the tuple elements by their index as below:

1 def sum ( p : ( I n t , I n t ) ) : I n t =
2 i f p== n u l l t h e n t h r o w M a t c h E r r o r ( p )
3 v a l x = p ( 0 )
4 v a l y = p ( 1 )
5 x + y

Using pattern matching, we can express the same behavior by listing cases for the expected
shapes, and in each case, listing the variables that stand for the components of the complex
data structure.

1 def sum ( p : ( I n t , I n t ) ) = p match
2 c a s e ( x , y ) => x+y

Types are optional:

1 def sum ( p : ( I n t , I n t ) ) = p match
2 c a s e ( x : I n t , y : I n t ) => x+y

Pattern matching branches between multiple cases. This is useful when a data structure
can take one of multiple shapes (e.g., an empty list vs. a list with at least one element) and
we want to produce different results for those shapes. In the following example, we print the
first element of a non-empty list; otherwise we print that the list is empty. In an imperative
programming approach, we typically use a conditional expression to distinguish the cases.
Each branch of the conditional expression then performs a different computation, as below:

1 def p r i n t H e a d ( x s : L i s t [ I n t ] ) : S t r i n g =
2 i f x s == N i l t h e n " L i s t i s empty "
3 e l s e
4 v a l y : I n t = x s . h e a d
5 v a l y s = x s . t a i l
6 s " L i s t i s non−empty , h e a d i s $ y "

The same functionality can be achieved with pattern matching:
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1 def p r i n t H e a d ( x s : L i s t [ I n t ] ) : S t r i n g = x s match
2 c a s e N i l => " L i s t i s empty "
3 c a s e ( y : I n t ) : : y s => s " L i s t i s non−empty , h e a d i s $ y "

The code matches on the shape of list xs. If xs is the empty list (case Nil), then we
return the string "List is empty"; else (case (y: Int) :: ys), we have a list with
head y and tail ys and we print the head. Unused variables (tail ys above) can be omitted
from the pattern shape using the wildcard operator _ as below:

1 def p r i n t H e a d ( x s : L i s t [ I n t ] ) = x s match
2 c a s e N i l => " L i s t i s empty "
3 c a s e y : : _ => s " L i s t i s non−empty , h e a d i s $ y "

Patterns can be nested to take any arbitrarily complicated shape:

1 def f ( x s : L i s t [ ( I n t , S t r i n g ) ] ) = x s match
2 c a s e N i l => " L i s t i s empty "
3 c a s e _ : : N i l => " L i s t h a s one e l e m e n t "
4 c a s e _ : : ( x , _ ) : : _ => s " The s e c o n d i n t i s $ x "

The code above lists three cases:

– case Nil matches the empty list to return string "List is empty"
– case _ :: Nil matches a list with exactly one element
– case _ :: (x, _) :: _ matches any list of at least two elements, and it binds the

Int of the second element to variable x

Functions over Lists

We start by inspecting an example to print the elements of a list.

1 def p r i n t L i s t ( x s : L i s t [ I n t ] ) : U n i t = x s match
2 c a s e N i l => ( )
3 c a s e y : : y s =>
4 p r i n t l n ( y ) / / c a n f o r m a t : p r i n t l n ( " 0 x % 0 2 x " . f o r m a t ( y ) )
5 p r i n t L i s t ( y s )
6
7 v a l x s = L i s t ( 1 1 , 2 1 , 3 1 )
8 p r i n t L i s t ( x s )
9 / / 1 1 2 1 3 1

In the example above, we see two ways of printing the elements of the list (unformatted
vs. formatted).

What if we now want to apply some other function to every element of the list? The basic
setup of the recursive algorithm wouldn’t change, only the specific operation that we apply
at each element does. We can describe that abstract idea of processing every element with a
recursive algorithm that, in addition to the list being processed, takes a function to be applied
to each element as an argument.

1 def f o r e a c h ( x s : L i s t [ I n t ] , f : I n t => U n i t ) : U n i t = x s match
2 c a s e N i l => ( )
3 c a s e y : : y s =>
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4 f ( y )
5 f o r e a c h ( y s , f )
6
7 v a l x s = L i s t ( 1 1 , 2 1 , 3 1 )
8 f o r e a c h ( x s , p r i n t l n )

Now it becomes easy to make variations.

1 def p r i n t H e x ( x : I n t ) = p r i n t l n ( " 0 x %02 x " . f o r m a t ( x ) )
2 f o r e a c h ( x s , p r i n t H e x )

But do we really care about the elements in the list? An additional improvement makes
the element type a type parameter of the method.

1 def f o r e a c h [X] ( x s : L i s t [X ] , f :X=> U n i t ) : U n i t = x s match
2 c a s e N i l => ( )
3 c a s e y : : y s =>
4 f ( y )
5 f o r e a c h ( y s , f )

Finally, we may not even always want to define the functions that we apply to each ele-
ment. For this, Scala supports Lambda expressions (anonymous functions):

1 f o r e a c h ( x s , ( x : I n t ) => p r i n t l n ( " 0 x %02 x " . f o r m a t ( x ) ) )
2 f o r e a c h ( x s , p r i n t l n ( " 0 x %02 x " . f o r m a t ( _ ) ) )
3
4 / / a l s o p o s s i b l e
5 v a l p r i n t H e x = ( x : I n t ) => p r i n t l n ( " 0 x %02 x " . f o r m a t ( x ) )
6 f o r e a c h ( x s s , p r i n t L e n g t h )

We do not need to implement foreach ourselves, Scala collections provide it!
The examples above use both type and value parameters: type parameters are in square

brackets, whereas value parameters are in round brackets. All type parameters must be de-
clared before value parameters. Functions themselves are of function type: for example, X=
>Int is the type of a function taking an argument of type X and returns a result of type Int.
In Lambda expression, types are often unnecessary if Scala can infer them (type inference is
smarter on methods than functions).

List comprehensions. From mathematics, we might be familiar with set comprehensions
of the form

{(m,n) | m ∈ {0, . . . , 10} ∧ n ∈ {0, . . . , 10} ∧m ≤ n} .

List comprehensions of a similar form are included in many programming languages, such as
SETL, Haskell, Scala, and JavaScript.

Scala provides another builtin special syntax to express foreach using list comprehensions
(named for-expressions in Scala).

1 f o r x <− x s do p r i n t l n ( " 0 x %02 x " . f o r m a t ( x ) )

We are now inspecting a (less-than-optimal) way of expressing imperative loops with our
foreach implementation, by using a variable in scope:
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1 def sum ( x s : L i s t [ I n t ] ) : I n t =
2 var r e s u l t = 0
3 x s . f o r e a c h ( ( x : I n t ) => r e s u l t = r e s u l t + x )
4 r e s u l t

Later, we’ll see how folds provide a better way of expressing such ideas.
A note on equality: Java uses builtin operators for reference equality, and a method for

value equality; Scala has methods for both, the operator symbol method == for value equality
and method eq for reference equality.

Transformers. A frequent operation on collections is the modification of elements in the
collection. To this end, transformers are functions to build a list of modified elements while
traversing a collection recursively (unlike above where we only print elements but do not ma-
nipulate them).

1 def t r a n s f o r m ( x s : L i s t [ I n t ] ) : L i s t [ S t r i n g ] = x s match
2 c a s e N i l => N i l
3 c a s e y : : y s => ( " 0 x %02 x " . f o r m a t ( y ) ) : : t r a n s f o r m ( y s )

A transformer is expected to take one cons cell as input and produce another cons cell as
output. Just like foreach , there is a builtin way of applying transformers to collections: map.

Scala again provides special notation to apply transformers in a for-expression:
1 f o r x <− x s do p r i n t l n ( " 0 x %02 x " . f o r m a t ( x ) )
2 / / i s c o m p i l e d t o x s . f o r e a c h ( x => p r i n t l n ( " 0 x % 0 2 x " . f o r m a t ( x ) ) )
3
4 f o r x <− x s y i e l d " 0 x %02 x " . f o r m a t ( x )
5 / / i s c o m p i l e d t o x s . map ( x => " 0 x % 0 2 x " . f o r m a t ( x ) )

Filtering. Often, we want to apply a function only to elements satisfying a certain condi-
tion, omitting the remaining elements in the output collection.

1 def f i l t e r [X] ( x s : L i s t [X ] , f :X=> B o o l e a n ) : L i s t [X] = x s match
2 c a s e N i l => N i l
3 c a s e y : : y s i f f ( y ) => y : : f i l t e r ( y s , f )
4 c a s e _ : : y s => f i l t e r ( y s , f )
5
6 v a l z s = ( 0 t o 7 ) . t o L i s t
7 f i l t e r ( z s , ( ( _ : I n t ) % 3 ! = 0 ) )

Again in special for-expression notation:
1 f o r z <− z s ; i f z % 3 ! = 0 y i e l d z
2 / / c o m p i l e s t o z s . f i l t e r ( z => z % 3 ! = 0 )
3
4 f o r z <− z s ; i f z % 3 ! = 0 y i e l d " 0 x %02 x " . f o r m a t ( z )
5 / / c o m p i l e s t o z s . f i l t e r ( z => z % 3 ! = 0 ) . map ( z => " 0 x % 0 2 x " .

f o r m a t ( z ) )
6
7 f o r z <− z s ; i f z % 3 ! = 0 do p r i n t l n ( " 0 x %02 x " . f o r m a t ( z ) )
8 / / c o m p i l e s t o z s . f i l t e r ( z => z % 3 ! = 0 ) . f o r e a c h ( z => p r i n t l n

( " 0 x % 0 2 x " . f o r m a t ( z ) ) )
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1 def f l a t t e n [X] ( x s : L i s t [ L i s t [X ] ] ) : L i s t [X] = x s match
2 c a s e N i l => N i l
3 c a s e y : : y s => y : : : f l a t t e n ( y s )
4
5 v a l x s s = L i s t ( L i s t ( 1 1 , 2 1 , 3 1 ) , L i s t ( ) , L i s t ( 4 1 , 5 1 ) )

In the above implementation of flatten, we use operator : : : .

Multiple iterators. For-expressions are quite general and can combine nested iterators in
a single pass.

1 v a l x s s = L i s t ( L i s t ( 1 1 , 2 1 , 3 1 ) , L i s t ( ) , L i s t ( 4 1 , 5 1 ) )
2 f o r x s <− x s s ;
3 x <− x s y i e l d ( x , x s . l e n g t h )
4 / / r e s u l t : L i s t [ ( I n t , I n t ) ] = L i s t ( ( 1 1 , 3 ) , ( 2 1 , 3 ) , ( 3 1 , 3 ) ,

( 4 1 , 2 ) , ( 5 1 , 2 ) )

We can also compute the cross product of independent iterators.

1 v a l x s = L i s t ( 1 1 , 2 1 , 3 1 )
2 v a l y s = L i s t ( " a " , " b " )
3 f o r x <− x s ;
4 y <− y s y i e l d ( x , y )
5 / / r e s u l t : L i s t [ ( I n t , S t r i n g ) ] = L i s t ( ( 1 1 , a ) , ( 1 1 , b ) , ( 2 1 , a ) ,

( 2 1 , b ) , ( 3 1 , a ) , ( 3 1 , b ) )

Currying

We say that functions are first-class if they can be

– declared within any scope
– passed as arguments to other functions, and
– returned as results of functions.

Higher-order functions are functions that can take other functions as arguments (e.g.,
map etc.). Methods that take multiple arguments can be defined in the “usual” way with mul-
tiple formal arguments, or in a curried way as higher-order definitions that take one argument
at a time and produce methods that take the remaining arguments.

1 / / p a i r e d m e t h o d
2 def a d d 1 ( x : I n t , y : I n t ) = x+y
3 a d d 1 ( 1 1 , 2 1 )
4
5 / / c u r r i e d m e t h o d
6 def a d d 2 ( x : I n t ) ( y : I n t ) = x+y / / t a k e s an I n t , r e t u r n s m e t h o d o f

t y p e ( y : I n t ) : I n t
7 a d d 2 ( 1 1 ) ( 2 1 )
8
9 / / p a i r e d f u n c t i o n
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10 v a l a d d 3 = ( x : I n t , y : I n t ) => x+y
11
12 / / c u r r i e d f u n c t i o n
13 v a l add4 = ( x : I n t ) => ( y : I n t ) => x+y / / t a k e s an I n t , r e t u r n s a

f u n c t i o n o f t y p e I n t => I n t
14
15 / / c a n mix n o t a t i o n s : m e t h o d r e t u r n s a f u n c t i o n
16 def a d d 5 ( x : I n t ) = ( y : I n t ) => x+y

Both paired and curried notation support partial function application:

1 / / p a i r e d
2 v a l a d d 1 p = a d d 1 ( 4 , _ )
3 a d d 1 p ( 1 ) / / r e s u l t 5
4
5 / / c u r r i e d
6 v a l add4p = add4 ( 4 )
7 add4p ( 1 ) / / r e s u l t 5
8 add4p ( 2 ) / / r e s u l t 6

Functions and methods in Scala can also be created explicitly by instantiating the appro-
priate classes:

1 def a ( x : I n t ) = x + 1 ;
2 v a l b = ( x : I n t ) => x + 1 ;
3 v a l c = new F u n c t i o n [ I n t , I n t ] { def a p p l y ( x : I n t ) = x + 1 }
4 v a l d : P a r t i a l F u n c t i o n [ Any , I n t ] = { c a s e i : I n t => i + 1 }
5
6 v a l f s = L i s t ( a , b , c , d )
7 f o r f <− f s y i e l d f ( 4 )

In summary:

– def defines a method, parameter types explicit
– => defines a function, parameter types inferable
– Functions are objects with method apply (e( args ) ===e . apply ( args ))

Folds

MapReduce is a programming model for processing and generating data sets with a parallel,
distributed algorithm. It requires a main process that performs filtering and sorting (the map
step) and a summary operation that collects and combines results (the reduce step). Below is
an example of counting the number of occurrences of each word in a set of documents using
MapReduce in Scala.

1 def map ( name : S t r i n g , c o n t e n t s : S t r i n g ) =
2 / / name : d o c u m e n t name ( i r r e l e v a n t h e r e )
3 / / c o n t e n t s : d o c u m e n t c o n t e n t
4 f o r w <− c o n t e n t s do
5 e m i t ( w , 1 )
6
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7 def r e d u c e ( word : S t r i n g , p a r t i a l C o u n t s : I t e r a t o r ) =
8 var sum = 0
9 f o r pc <− p a r t i a l C o u n t s do

10 sum = sum + pc
11 e m i t ( word , sum )

The MapReduce framework is a distributed implementation of a recursive algorithm. For
example, we can sum up the elements of a list of integers as below.

1 def sum ( x s : L i s t [ I n t ] , z : I n t = 0 ) : I n t = x s match
2 c a s e N i l => z
3 c a s e y : : y s => sum ( y s , z + y )
4
5 v a l x s = L i s t ( 1 1 , 2 1 , 3 1 )
6 sum ( x s )

The algorithm takes a list of (remaining) elements and a partial result, and aggregates the
partial result with the result of processing a single element, until no more elements are left
to process. It computes the sum in a forward fashion, passing the aggregated result to the
next step. In a backwards fashion as below, the aggregation is postponed until all elements are
processed.

1 def sum ( x s : L i s t [ I n t ] , z : I n t = 0 ) : I n t = x s match
2 c a s e N i l => z
3 c a s e y : : y s => y + sum ( y s , z )
4
5 v a l x s = L i s t ( 1 1 , 2 1 , 3 1 )
6 sum ( x s )

Both have in common that they are using an accumulator. Scala has builtin fold oper-
ations that allow us to traverse collections while accumulating results. Operation foldLeft
performs accumulation in a forward fashion, foldRight in backwards fashion. foldLeft is tail
recursive, which means that the base case is the first element, the recursive call is on the tail,
and the accumulator is applied to the head and the accumulated result. foldRight is recursive
into an argument, which means that the base case is the last element, the recursive call is on
the tail, and the accumulator is applied to the head and the result of the recursion. Folds are
a universal concept that can be used to compute many different functions on lists, such as
summing up elements, appending a list to another list, flattening, or reversing.


