[NV R RS I S

[V R NECCRE S)

Concepts of Programming Languages
Lecture Notes: Option Types

Stefan Mitsch

School of Computing, DePaul University
smitsch@depaul.edu

Learning Goals

= Identify uses of option types

OrrtiON TYPES

Option types are a principled approach to missing data. Option[T] resembles List [T] with a
length of at most 1. Java, for a long time, emphasized programming with exceptions in order
to report anything that deviates from a successful result.

// the Java way
def getDirsr (dirName : String) : List[java.io.File] =

val dir = new java.io.File (dirName)
val xs = dir.listFiles
if xs == null then throw new java.io.FileNotFoundException

xs.nn.toList.map (_.nn). filter (_.isDirectory)

Exceptions, however, are best used to report exceptional circumstances (such as a broken
network connection); missing data is quite an expected result. Programming with option-
als allows us to document missing data and allows our users to appropriately react to it (as
opposed to the Java habit of just passing on exceptions).

def getDirs2 (dirName : String) : Option[List[java.io.File]] =

val dir = new java.io.File (dirName)
val xs = dir.listFiles
if xs == null then return None

Some(xs.nn.toList.map (_.nn).filter (_.isDirectory))

With optionals, clients no longer suffer from the convolutional way of providing a result
from multiple execution traces. An option is a type that may have some result or nothing.
Scala knows several option types:

— None is the empty option

— Nil is the empty list

— nullis a reference to nothing

Unit is not an option type, it only has a single value (always has nothing). Even though

Scala has null, we often pretend it does not exist. More recent languages, such as Swift and
Kotlin, identify None and null; these languages distinguish nullable and non-nullable types.
Java also includes an optional, but its intended use is narrowed to library methods whose
return types needed a clear way of communicating the absence of a result and null is over-
whelmingly likely to cause errors.

