
Concepts of Programming Languages

Lecture Notes: Option Types

Stefan Mitsch

School of Computing, DePaul University
smitsch@depaul.edu

Learning Goals

� Identify uses of option types

Option Types

Option types are a principled approach to missing data. Option[T] resembles List [T] with a
length of at most 1. Java, for a long time, emphasized programming with exceptions in order
to report anything that deviates from a successful result.

1 / / t h e J a v a way
2 def g e t D i r s 1 (dirName : S t r i n g) : L i s t [j a v a . i o . F i l e] =

3 v a l d i r = new j a v a . i o . F i l e (dirName)
4 v a l x s = d i r . l i s t F i l e s
5 i f x s == n u l l t h e n t h r o w new j a v a . i o . F i l e N o t F o u n d E x c e p t i o n
6 x s . nn . t o L i s t . map (_ . nn) . f i l t e r (_ . i s D i r e c t o r y)

Exceptions, however, are best used to report exceptional circumstances (such as a broken
network connection); missing data is quite an expected result. Programming with option-
als allows us to document missing data and allows our users to appropriately react to it (as
opposed to the Java habit of just passing on exceptions).

1 def g e t D i r s 2 (dirName : S t r i n g) : O p t i o n [L i s t [j a v a . i o . F i l e]] =

2 v a l d i r = new j a v a . i o . F i l e (dirName)
3 v a l x s = d i r . l i s t F i l e s
4 i f x s == n u l l t h e n r e t u r n None
5 Some (x s . nn . t o L i s t . map (_ . nn) . f i l t e r (_ . i s D i r e c t o r y))

With optionals, clients no longer suffer from the convolutional way of providing a result
from multiple execution traces. An option is a type that may have some result or nothing.
Scala knows several option types:

– None is the empty option
– Nil is the empty list
– null is a reference to nothing

Unit is not an option type, it only has a single value (always has nothing). Even though
Scala has null, we often pretend it does not exist. More recent languages, such as Swift and
Kotlin, identify None and null; these languages distinguish nullable and non-nullable types.
Java also includes an optional, but its intended use is narrowed to library methods whose
return types needed a clear way of communicating the absence of a result and null is over-
whelmingly likely to cause errors.

