Concepts of Programming Languages
Lecture Notes: Week s—Algebraic Data Types

Stefan Mitsch

School of Computing, DePaul University
smitsch@depaul.edu

ALGEBRAIC DaTA TYPES (8OMIN)

Algebraic data types combine product types and sum types into sums of products. Let’s now
take a closer look at these two concepts.

In previous lectures, we have discussed tuples as an example of product types. Product types
combine a fixed number of heterogeneous elements and draw their name from the Cartesian
product of sets:

XY ={(z,y) [re XAyeY}.

Another example for product types are Scala case classes, for example a product of a number
and a string is below:

case class C (x: Int, y: String)

val ¢ = C(s, "hello") // "new” optional when creating
instances of case classes
val n = ¢ match
case C(a, _) => a

Case classes enjoy special compiler treatment in Scala. The constructor arguments are turned
into visible immutable fields, we get a sensible toString , ==, and hashCode implementation.
We also get a companion object with factory methods for constructing instances, and as we have
seen in the example above, convenient pattern matching support through generated unapply
extractor methods. Pairs and tuples are builtin syntactic sugar for case classes in Scala.

Sum types, in contrast, combine alternatives, such as in a discriminated or tagged union
or variants. An example of a sum type is the Scala Either type. Mathematically, sum types
correspond to the union of sets:

XUY={z|zeXVzeY} .

When we want to keep track of the source of an element in the resulting union, we can also
think of sum types as a coproduct or disjoint union of sets:

XoY ={0,0)]ceX}U{ly) |yeY}.

In a coproduct, the elements are tagged to indicate their source. In Scala, we can create sum
types by creating a type hierarchy; Scala 2 explicitly asks for a type hierarchy, which might be
familiar from Java, Scala 3 provides nice syntactic support in the form of enum.



-

O ©ON &N bW B

-

— S N

O N N b ow P

N N Nk A D

S
e a9 aafssas

2, Stefan Mitsch

// Scala 3

enum Color:
case Blue
case White

// Scala 2

final trait Color

case object Blue extends Color
case object White extends Color

More useful are enum constructs that define case classes:

enum Expr:
case Number(x: Int)
case Plus(l: Expr, r: Expr)
//

Again, we use pattern matching to decompose a sum type into its elements.

// create instances
val three = Number(3)
val e¢ = Plus(three, Number(s))

// decompose with pattern matching
def eval(e: Expr) : Int = ¢ match

case Number(n) => n
case Plus(l, r) => eval(l) + eval(r)
//

Other programming languages also support sum types, but often in a less convenient way.
For example, in C union types must be tagged manually.

struct s_absolute t {
int year;
int mon;
int day;

}s

struct s_relative t {
int days_offset;

}s

union u_ds_t {
struct s_absolute_t u_absolute;
struct s_relative t u_relative;

}s

// create instances, must supply tags!
struct ds_t ds[2];

ds[o].tag = e_absolute;
ds[o].content.u_absolute.year = 2030;
ds[o].content.u_absolute.mon = o;



21
22
23
24
25
26
27
28
29

30

31

32

33
34

N 0N N AW N

-
= o

N Nwn A w N

Concepts of Programming Languages 3

ds[o].content.u_absolute.day = 1;
ds[1].tag = e_relative;
ds[1].content.u_relative.days_offset = —s;

// examine tag to decompose
void print_ds (struct ds_t *dsp) {
switch (dsp—>tag) {
case e_absolute:
printf ("absolute (%d, %d, %d)\n", dsp—>content.u_absolute.

year ,
dsp->content.u_absolute.
mon,
dsp—>content.u_absolute.
day);
break;

case e_relative:
printf ("relative (%d)\n", dsp—>content.u_relative.
days_offset);
break;
default:
fprintf (stderr, "Unknown tag\n");
exit (1);

Algebraic data types can be recursive. For example, an implementation of Peano arith-
metic (natural numbers that are defined as successors of 0) is given below.

enum PeanoNat:
case Zero
case Succ(n: PeanoNat)

def peanozint(p: PeanoNat) : Int = p match
case PeanoNat.Zero => o
case PeanoNat.Succ(n) => 1 + peanozint (n)

import PeanoNat.*
val q = Succ(Succ(Succ(Zero))) // val gq: Peano =
peanoz2int(q) // : Int = 3

Algebraic Data Type for Lists In a similar fashion, we can reconstruct the Scheme way
of building lists with empty lists and cons cells.

enum MyList[+X] :
case Empty
case Cons (head:X, rtail:MyList[X])

def length [X] (xs:MyList[X]): Int = xs match
case MyList.Empty => o
case MyList.Cons(a,as) => 1 + length(as)



1I
I2

N 0N N R W N

—
o]

4 Stefan Mitsch

import MyList.*
val xs = Cons (11, Cons(21, Cons(31, Empty))) // : MyList[Int] =

length (xs) // v Int = 3
val ys = Empty // : MyList[Nothing] = ...

Algebraic Data Type for Trees With algebraic data types, we also can define trees. Below
is an example of a tree that uses leafs as delimiters but stores all data in inner nodes.

enum Tree[+X]:

case Leaf
case Node (1l:Tree[X], c:X, r:Tree[X])

Now let’s extend that tree to a red-black tree and implement the rotate-left function.

enum Color { case Red, Black }
enum RBTree[+K,+V]:
case Leaf
case Node (k:K, v:V, c:Color, 1:RBTree[K,V], r:RBTree[K,V])

import RBTree.*;
def rotateLeft [K,V] (t:Node[K,V]) : Node[K,V] =
t match
case Node (kr, vi, c, 1, Node (k2, v2, Color.Red, m, r)) =>
Node (k2, v2, ¢, Node (ki, vi, Color.Red, I, m), r)



