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Tail Recursion

We well discuss tail recursion in terms of the details of the implementation of function calls.
Remember that function calls store local data on the stack in the form of activation records (or
stack frames). When we call a function, a new activation record is pushed onto the stack, on
return we pop the topmost activation record and return to the caller, whose activation record
becomes then active (new topmost on the stack). Since function calls and returns cannot be
arbitrarily nested (a callee is called after its caller, and returns before it), a stack is the most
natural data structure for storing activation records. Since memory in a computer is finite,
however, there are limits to the size of the call stack, which can cause problems with deep
recursion.

Let’s consider a recursive definition of a count-down in C below:

1 i n t count_down ( i n t x ) {
2 i f ( x == 0 ) {
3 r e t u r n 0 ;
4 } e l s e {
5 r e t u r n 1 + count_down ( x − 1 ) ;
6 }
7 }
8
9 i n t main ( i n t a r g c , char * * a r g v ) {

10 long num = s t r t o l ( a r g v [ 1 ] , NULL, 1 0 ) ;
11 count_down ( num ) ;
12 r e t u r n 0 ;
13 }

For some arguments this code will succeed, for others it produces a segmentation fault
when the computer runs out of stack size. Note that, in C, this behavior depends on the
operating system and on the execution context: we won’t necessarily find a limit, but will see
behavior that some calls fail and then some with larger numbers succeed. The tendency is that
the higher the argument the more often we will see the program fail. In Linux, we can modify
some of those limits with shell arguments. In interpreted languages, such as Scheme, the same
behavior occurs, but just like in C, it depends on the runtime environment. In Java, you may
also have encountered a runtime exception of type StackOverflowError ; this usually happens
when we make a programming mistake in a recursive algorithm, but it can also happen in
perfectly sensible code (for some definition of sensible) that just happens to exhaust the stack
limits (e.g., code that has lots of backtracking options).
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Intuitively, in the recursive definition of countDown in Scala below, each (1+...) repre-
sents a new activation record, because we must store the intermediate 1+ that still need to be
summed up.

1 def countDown ( x : I n t ) : I n t = i f x == 0 t h e n 0 e l s e 1 +
countDown ( x − 1 )

2
3 / / c ountDown ( 4 )
4 / / −−> 1 + countDown ( 3 )
5 / / −−> 1 + ( 1 + countDown ( 2 ) )
6 / / −−> 1 + ( 1 + ( 1 + countDown ( 1 ) ) )
7 / / −−> 1 + ( 1 + ( 1 + ( 1 + countDown ( 0 ) ) ) )
8 / / −−> 1 + ( 1 + ( 1 + ( 1 + 0 ) ) )

Let’s take a more detailed look under the hood to find out why we have a call stack.
Tail-recursive calls have a special structure that has all recursive calls in tail position, which

means that all recursive calls happen as the final step on the call stack. In assembly language,
that corresponds to jumps at the very end of each recursive call, rather than a jump and then
another operation after. This opens up the possibility for an optimization called tail call op-
timization that performs the work in a loop without creating new activation records on the
stack. Such an optimization is vital when algorithms have potentially exponential work to per-
form, which can exhaust stack limits quickly. The optimization includes mutually recursive
calls (f calls g, which calls f).

Tail-Recursive Implementations

The C code below computes the sum over a list of integers in a tail-recursive method.

1 t y p e d e f s t r u c t node node ;
2 s t r u c t node { i n t i t e m ; node * n e x t ; } ;
3
4 i n t sum_aux ( node * d a t a , i n t r e s u l t ) {
5 i f ( ! d a t a ) {
6 r e t u r n r e s u l t ;
7 } e l s e {
8 r e t u r n sum_aux ( d a t a −> n e x t , r e s u l t + d a t a −> i t e m ) ;
9 }

10 }
11
12 i n t sum ( node * d a t a ) {
13 r e t u r n sum_aux ( d a t a , 0 ) ;
14 }

When inspecting the assembly language of that code, we can clearly see the loop behavior:

1 sum_aux :
2 t e s t q % r d i , % r d i
3 movl % e s i , %eax

4 j e . L 7
5 . L 9 :
6 a d d l (% r d i ) , %eax
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7 movq 8(% r d i ) , % r d i
8 t e s t q % r d i , % r d i
9 j n e . L 9

10 . L 7 :
11 rep

12 r e t

Lines 5–9 advance dereference the pointer, then advance it, then test for being null and jump
back to Line 5 if not null. If null, the program continues into .L7 and returns the result.

Let us now inspect some behavior of non-tail-recursive functions and to practice rewrit-
ing of functions that are not tail-recursive into functions that are.

1 def l o n g L i s t ( n : I n t ) =

2 i f n==0 t h e n L i s t ( 1 )
3 e l s e

4 v a l s u b l i s t = l o n g L i s t ( n − 1 )
5 s u b l i s t : : : s u b l i s t
6 end l o n g L i s t

First, let’s make sense of the code: the function longList takes an argument n to pro-
duce a result list of length2n. It does so by doubling the length of the list on everyn-decrement
step using :::.

Exercise 1 (Tail-recursive or not?). Why is this function not tail-recursive?
� Think for yourself before you read on. The recursive call to longList is not the very
last step in the else-branch of longList.

Exercise 2 (Space complexity?). What is the space complexity of the function?
� Think for yourself before you read on. Exponential in n

Exercise 3 (Runtime complexity?). How many recursive calls are made?
� Think for yourself before you read on. Linear in n

Exercise 4 (Bad or ugly?). Is it necessary to store the created sublist in a variable or could we
just directly make recursive calls as part of the last statement?
� Think for yourself before you read on. If we’re not reusing the result we end up with
the Fibonacci disaster of exponential in n calls to longList instead of linear in n.

In order to make it tail-recursive, we follow an approach resembling forward vs. backward
processing of folds, as seen in Lecture “Folds”.

First, a non-tail-recursive function computing the sum of the elements in a list.
1 def sum ( x s : L i s t [ I n t ] ) = x s match

2 c a s e N i l => 0
3 c a s e x : : t a i l => x + sum ( t a i l )
4 end sum

Exercise 5 (Make it tail-recursive). How do we need to change the code above to implement
sum in a tail-recursive way?
� Think for yourself before you read on. To make it tail-recursive, we need to first com-
pute a partial result from the current element and the previous partial result. For this, we need
to introduce an additional argument to pass in partial results.
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1 def sum ( x s : L i s t [ I n t ] , r e s u l t : I n t = 0 ) = x s match

2 c a s e N i l => r e s u l t
3 c a s e x : : t a i l => sum ( t a i l , r e s u l t +x )
4 end sum


