-

[~IN B Y R

Concepts of Programming Languages
Lecture Notes: Week 6—L-Values and Argument Passing

Stefan Mitsch

School of Computing, DePaul University
smitsch@depaul.edu

MipTERM EXAM (9OMIN)

L-VALUES (20MIN)

The terms [-value and r-value refer to the location in an assignment. Considering a declara-
tion var x:Int = o, what is the meaning of in x=x+1? First, we notice that = occurs in two
different positions: left of the assignment operator (as an I-value—a storage Jocation) and to
the right of the assignment operator (as an r-value—a read from a storage location). On the
right-hand side, = denotes a value that is read from a storage location, whereas on the left-
hand side = denotes that storage location itself that gets modified. The essential feature of a
location (a I-value) is that it has some content (an r-value).

In C, this distinction is quite obvious (and also not) because we can take the address of
an I-value to obtain a pointer to that location, and we can dereference the pointer to modify
the contents (the r-value) of the location, and we can take addresses of pointers.

int x = g5;
int y = 6;
int *p X
int *q = &y;
int **r = &p;
r = &q;

q = ps

rro= 75

>

&
&

Some language constructs are restricted to being r-values and cannot be evaluated as lo-
cations, even though their values might be stored temporarily during evaluation.

int *p = &(x + y); /* not allowed */
(x +y) = 7; /* not allowed */

Some l-values may require r-mode evaluation when computing the locations. For exam-
ple, array access, like arr [n+2] = 7, pointer arithmetic, field access obj. field =7, and combi-
nations of field and array accesses, may first perform some computation in order to determine
a location.

ARGUMENT PASSING (60)

So far, we defined methods in the form def f (x: String, y: Int) =x +y; in this form
and y are formal parameters (or just parameters) that, on function execution, hold actual

N O N Nk A D

O N AN R W P

2, Stefan Mitsch

parameters (or arguments). In this section, we take a deeper look at alternative designs for
passing arguments to functions.

Call-by-value. o8 Asa starting example, let’s determine what the C code below prints
as value of . Try to find out for yourself before you read on. a

void g (int y) {

y =y t 1
}
void f () {
int x = 1;
g (x);

printf("%d\n", x);
}

The code above will print x=1, because C, like most programming languages, uses ca/l-
by-value by default, so that we pass a copy of the value of x to function g, which then locally
modifies this value without modifying the outer location . The steps in executing function

g(z) are

1. evaluate x to a value v
2. pass a copy of v (a new location!) to function g
3. the changes to that copy are not visible to the caller

It becomes more obvious when considering a call g(« + 1), where we pass the incremented
value of z 4 1 to function g (this incremented value will be in a temporary anonymous loca-
tion).

Call-by-reference. The complementary approach to call-by-value is call-by-reference, as
for instance used in Perl. The steps for passing arguments by reference on execution of g(x)
are:

1. evaluate x to an l-value [
2. pass [to function g (g now has an a/ias of x)
3. the changes to the content of the location [are visible to the caller

sub g {

$ [o] = $_[o] + 13
}
sub f {

my $x = 1;

g ($x);

print ("x = $x\n");

N N Nk AN

—
= o

N 0N N A W N

—
o

o N Nk AN

—
B =2 0

—
W

Concepts of Programming Languages 3

Simulating call-by-value and call-by-reference. In a call-by-value language we can simu-
late call-by-reference. For instance, in C we can use pointers to give functions access to shared
memory locations.

void g (int *p) { // pass pointer by valuc

P=otp o+ 15 // modify pointed—to location
}
int main () {

int x = 13

int *q = &x;

g (q);

printf ("x = %d\n", x); // prints 2

return o;

In a call-by-reference language that supports deep-copying of values we can simulate call-
by-value. For example, in Perl it is good coding practice to create local copies of the function
arguments before operating on their values.

sub g {
my ($y) = @_; // create explicit copy
$y = $y + I
}
sub f {
my $x = 13
g ($x);

print ("x = $x\n"); // prints 1

C++ adds reference types that keep call-by-reference explicit in the function declaration
(like C with pointers), but implicit when calling functions.

#include <iostream >
using namespace std;

void g (int& y) {
y =yt 1
}

int main () {
int x = 13
g (x);
cout << "x = " << x << endl;
return o;

WORKSHEETS AND ASSIGNMENTS (ISMIN)

Assignment steps

4

Stefan Mitsch

1. Complete Worksheet X - Y and the accompanying quizzes on D2L
2. Complete the instructions in todo.scala

We use the remainder of the class to start working on the worksheets and assignments.

