
Concepts of Programming Languages

Lecture Notes: Week 6—L-Values and Argument Passing

Stefan Mitsch

School of Computing, DePaul University
smitsch@depaul.edu

Midterm Exam (90min)

L-Values (20min)

The terms l-value and r-value refer to the location in an assignment. Considering a declara-
tion var x : Int = 0, what is the meaning of x in x=x+1? First, we notice that x occurs in two
different positions: left of the assignment operator (as an l-value—a storage location) and to
the right of the assignment operator (as an r-value—a read from a storage location). On the
right-hand side, x denotes a value that is read from a storage location, whereas on the left-
hand side x denotes that storage location itself that gets modified. The essential feature of a
location (a l-value) is that it has some content (an r-value).

In C, this distinction is quite obvious (and also not) because we can take the address of
an l-value to obtain a pointer to that location, and we can dereference the pointer to modify
the contents (the r-value) of the location, and we can take addresses of pointers.

1 i n t x = 5 ;
2 i n t y = 6 ;
3 i n t * p = &x ;
4 i n t * q = &y ;
5 i n t * * r = &p ;
6 r = &q ;
7 q = p ;
8 * * r = 7 ;

Some language constructs are restricted to being r-values and cannot be evaluated as lo-
cations, even though their values might be stored temporarily during evaluation.

1 i n t * p = &(x + y) ; / * n o t a l l o w e d * /
2 (x + y) = 7 ; / * n o t a l l o w e d * /

Some l-values may require r-mode evaluation when computing the locations. For exam-
ple, array access, like arr [n+2] = 7, pointer arithmetic, field access obj . field = 7, and combi-
nations of field and array accesses, may first perform some computation in order to determine
a location.

Argument Passing (60)

So far, we defined methods in the form def f (x : String , y : Int) = x + y; in this form x
and y are formal parameters (or just parameters) that, on function execution, hold actual

2 Stefan Mitsch

parameters (or arguments). In this section, we take a deeper look at alternative designs for
passing arguments to functions.

Call-by-value. Ô As a starting example, let’s determine what the C code below prints
as value of x. Try to find out for yourself before you read on. ⊓⊔

1 void g (i n t y) {
2 y = y + 1 ;
3 }
4
5 void f () {
6 i n t x = 1 ;
7 g (x) ;
8 p r i n t f (" %d \ n " , x) ;
9 }

The code above will print x=1, because C, like most programming languages, uses call-
by-value by default, so that we pass a copy of the value of x to function g, which then locally
modifies this value without modifying the outer location x. The steps in executing function
g(x) are

1. evaluate x to a value v
2. pass a copy of v (a new location!) to function g

3. the changes to that copy are not visible to the caller

It becomes more obvious when considering a call g(x + 1), where we pass the incremented
value of x+1 to function g (this incremented value will be in a temporary anonymous loca-
tion).

Call-by-reference. The complementary approach to call-by-value is call-by-reference, as
for instance used in Perl. The steps for passing arguments by reference on execution of g(x)
are:

1. evaluate x to an l-value l
2. pass l to function g (g now has an alias of x)
3. the changes to the content of the location l are visible to the caller

1 sub g {
2 $_ [0] = $_ [0] + 1 ;
3 }
4
5 sub f {
6 my $ x = 1 ;
7 g ($ x) ;
8 p r i n t (" x = $ x \ n ") ;
9 }

Concepts of Programming Languages 3

Simulating call-by-value and call-by-reference. In a call-by-value language we can simu-
late call-by-reference. For instance, in C we can use pointers to give functions access to shared
memory locations.

1 void g (i n t * p) { / / p a s s p o i n t e r by v a l u e
2 * p = * p + 1 ; / / mod i f y p o i n t e d − t o l o c a t i o n
3 }
4
5 i n t main () {
6 i n t x = 1 ;
7 i n t * q = &x ;
8 g (q) ;
9 p r i n t f (" x = %d \ n " , x) ; / / p r i n t s 2

10 r e t u r n 0 ;
11 }

In a call-by-reference language that supports deep-copying of values we can simulate call-
by-value. For example, in Perl it is good coding practice to create local copies of the function
arguments before operating on their values.

1 sub g {
2 my ($ y) = @_ ; / / c r e a t e e x p l i c i t c o p y
3 $ y = $ y + 1 ;
4 }
5
6 sub f {
7 my $ x = 1 ;
8 g ($ x) ;
9 p r i n t (" x = $ x \ n ") ; / / p r i n t s 1

10 }

C++ adds reference types that keep call-by-reference explicit in the function declaration
(like C with pointers), but implicit when calling functions.

1 # i n c l u d e < i o s t r e a m >
2 u s i n g n a m e s p a c e s t d ;
3
4 void g (i n t& y) {
5 y = y + 1 ;
6 }
7
8 i n t main () {
9 i n t x = 1 ;

10 g (x) ;
11 c o u t << " x = " << x << e n d l ;
12 r e t u r n 0 ;
13 }

Worksheets and Assignments (15min)

Assignment steps

4 Stefan Mitsch

1. Complete Worksheet X - Y and the accompanying quizzes on D2L
2. Complete the instructions in todo.scala

We use the remainder of the class to start working on the worksheets and assignments.

