CSC 447 - Concepts of Programming Languages

Course Overview

Instructor: Eric J. Fredericks

Autonomous and Intelligent Systems

e 08 Want a computer to perform a task (transfer money, order goods)
e ¥ Interact with the physical world (drive a car, fly an airplane)

e Requires clear instructions: a programming language
94 move left, right, up, down

:= do one step and then another step

— repeat steps

e PL Syntax, Semantics, Pragmatics

A% Syntax: structure of a programming language and rules for writing valid
instructions (grammar)

s Semantics: meaning of valid instructions

<[> Pragmatics: how to use the language, best practices for writing code

@ PL Syntax and Semantics

Different Syntax, Same Semantics

Java Scala

1 final int x = y>0 ? 1 : -1; 1 val x = if y>0 then 1 else -1

Same Syntax, Different Semantics

Java JavaScript

for (var 1 =0; 1 < 10; 1i++) {
var x = 1i;

1 1 for (var 1 = 0; 1 < 10; 1i++) {
2 2 var x = 1i;

3} 3 }

4 // Here 1 and x are both undefined 4 // Here 1 1s 10 and x is 9

® PL Concepts by Example

Java Concepts
1 class Intro { e Statements and expressions
2 private static int isEven(int n) { . . .
3 returnn%2==02?1:0 e Strict and nonstrict evaluation
4)
5 . .
6 public static int countEven(List<Integer> xs) { ® CO”ECtIOn prOCGSSIng
7 int result = 0; .
8 if (!'xs.isEmpty()) {
: [(1xs ds e Recursion
10 isEven(xs.getFirst()) +
11 countEven(xs.subList(1, xs.size())); ® L'Values
12 } .
12) return resutt; ® Argument passing
15 . .
16 public static void main(String[] args) { ® ParamEt”C p0|ym0rph|sm
17 List<Integer> numbers =
18 Arrays.stream(args).
19 map(str -> Integer.parseInt(str)).
20 toList();
21 System.out.println("You entered " + countEven(numbers) +
22 " even numbers");
23}

24 }

@ PL Concepts by Example

C

1 int iskEven(int n) { return n % 2 == 0 ? 1 : 0; }

2

3 int countEven(int argc, const int* const xs) {

0o~ Ob

11 }

int result = 0;
if (argc > 0) {
result =
isEven(xs[0]) +
countEven(argc-1, &xs[1]);

}

return result;

13 int main(int argc, char **args) {

25 }

int *vals = malloc((argc-1)*sizeof(int));
for (int 1 = 1; 1 < argc; ++i) {
char* end;
vals[i-1] = strtol(args[i], &end, 10);
// forgot to check whether all characters
// are consumed (i.e., end == '\0')
3
int numEven = countEven(argc-1, vals);
printf("You entered %d even numbers\r\n'", numEven);
// forgot to free the dynamically allocated memory
return 0,

More Concepts

e Safety and undefined behavior
e Static and dynamic memory allocation
e Scope and lifetime

@ PL Concepts by Example

Scala More Concepts
1 enum List: e Algebraic datatypes
2 case Empty . .
3 case Cons (head:Int, tail:List)) FunCt|Ona| programm|ng
4
def length lt:Int = 0): = thi h ;
T e e L e Pattern matching
7 case List.Cons(a,as) => length(as, result+1l) . .
8 e Tail recursion
9 object List:
11 “etens folaright (List Empty)((e, 1) = List.cons(e, 1y ® 1YP€ inference

e Currying

@ PL Pragmatics and Large Language Models

>— 1 Implement a Java program that counts >— 1 Implement a Scala program that counts
2 how many even even numbers are 1in 2 how many even even numbers are in
3 the command line inputs 3 the command line inputs
Q 1 public static void main(String[] args) { ” 1 def main(args: Array[String]): Unit = {

2 1int evenCount = 0; 2 val evenCount = args.foldLeft(0) {

3 3 (count, arg) =>

4 for (String arg : args) { 4 try {

S try { 5 val number = arg.toInt

6 int number = Integer.parseInt(arg); 6 if number % 2 == 0 then count + 1
7 if (number % 2 == 0) { 7 else count

8 evenCount++; 8 } catch {

9 } 9 case e: NumberFormatException =>
10 } catch (NumberFormatException e) { 10 printin(o
11 System.out.println(11 s"$arg is not a valid integer.")
12 arg + " is not a valid integer."); 12 count
13 } 13 3
14} 14}
15 System.out.println(e e L)
16 "Count of even numbers: " + evenCount): 16 . s"Count of even numbers: $evenCount")

' 17

17 }

@ What are you doing to convince yourself that the code is correct?

Q Why is it Important to Understand PL Well?

e Write high-quality code

e Assess the correctness of (auto-generated) code
e Assess the quality of (auto-generated) code

e Assess the performance of (auto-generated) code
e Generalize (auto-generated) code

e Instruct tools to refactor and improve code

e Read, maintain, and extend existing code

@ Programming Languages

1970: assembly, FORTRAN, COBOL, Lisp

1980: C, Pascal, BASIC, ML, Smalltalk

1990: C++, Perl, Objective C, Erlang

2000: Java, JavaScript, Python, Ruby, Lua

2005: C#

2010: Scala, F#, Clojure, Go

2015: Rust, Swift, Kotlin, EIm, Elixir, TypeScript, PureScript
2020: ReasonML, Crystal, Pony, Zig

Many more!

10

@ Programming Languages

In just a couple of minutes, we explored different implementations of the same
feature in different languages!

e Programming languages keep popping up

e You will have to keep learning new languages

e And keep up with changes to current languages
o Java 8 and C++ 11 added Lambda expressions (nested, anonymous

functions)
e @ |ots of common concepts!

11

@ Learning Objectives

Learn PLs more easily by recognizing concepts

"it has conditionals, recursion, loops"
"it has closures”
"it has list comprehensions"

"it has dynamic dispatch”

Deeper understanding of PL concepts / paradigms

Impact of PL on program development, modularity, correctness, runtime
efficiency, etc.

Alternative way of thinking to double-check generated code

12

@ Non-Goals

© Learn a PL similar to one you already know

@ Instead, learn concepts to facilitate quick assimilation of new PLs as they
appear

© Learn an IDE

@ Instead, become familiar with a range of tools and build systems

13

@ Course Overview

@ This is a challenging course

e deepen your understanding about programming while also learning a new
language
e study guides and extra credit will help you succeed!

e take advantage of office hours!

@ What are different ways of expressing computations?

e Programming paradigms and styles: e Concepts: lexical and dynamic scope;
o functional vs object-oriented stack layout; inheritance and dynamic
o mutability vs immutability dispatch; nested structures (functions
or objects); dynamic vs static type
checking; subtyping; parametric
polymorphism

o jteration vs recursion

o pattern matching vs visitor
pattern

14

@ Course Approach

e Hands on: write many programs and experiments

e Use Al coding support responsibly: write contracts and tests, develop
language extensions to help analyze auto-generated code

e Scala as main language:
o carefully designed multi-paradigm language
o textbook explains PL concepts in context

e Also bits of: C, C++, C#, Java, JavaScript, ... chosen as exemplars of concepts

15

https://scala-lang.org/

Q Discord

e On Discord

e Use appropriate language

Asking Questions

e For non-personal messages use Discord
o "I think there is a mistake with grading of Question 3 of Homework 2." -
direct message/email to instructor

o "I cannot run program foo . I have tried running it from the command
line on OS X. See below for a transcript of what I typed and the error

message I received. Could you please help?" - ask in Discord #general
channel

16

https://discord.gg/WSAx8KtEPU
https://discord.gg/WSAx8KtEPU
https://discord.gg/WSAx8KtEPU

e Asking Questions

e Include your actual (IRL) name in messages directly to the instructor

e Include enough context to answer your question:
o "program foo doesn't work." - starts discussion

o "program foo fails with output pasted below" - good
o "program foo fails with input and output pasted below" - better

o "program foo fails with input and output pasted below; using OS X; I
have run extra commands to show current working directory, the version
of foo in use, and other relevant information" - best

17

Course Syllabus

e Review the Syllabus linked from the course homepage
e Programming in Scala, First Edition is available for free online
e Get Programming in Scala 5th edition

e Earlier editions use a different version of Scala than class; you can use them
but may need to look up new syntax

18

https://reed.cs.depaul.edu/efredericks/csc447/index.html
http://www.artima.com/pins1ed/index.html

Program a Robot in a Grid World

-

Robot Grid World

N

Move Robot according to Instructions

e Mark the robot's initial position on the grid
e Mark a goal on the grid
e Create instructions to express how the robot moves

e Move the robot according to your instructions: fill in
the sequential blue arrow instruction list

19

Program a Robot in a Grid World

-

Robot Grid World

N

Move Robot along the Perimeter

e Place the robotin a corner

e Use your instructions to express your program
o The loop C' has 4 slots for instructions that
repeat forever

o Place your elementary instructions into the slots
e Move the robot according to your instructions

20

Computers that Program

8.l Teach a programming language to an LLM (ChatGPT)

A8, Syntax (grammar) of the language

1 step ::=down n | up n | left n | right n | seq step then step (then step)* | repeat(step)

@ Semantics of the language

>_ Ask LLM to write a program

1 Use this language to move the robot in a 5 by 5 grid along the perimeter, starting in the top-left corner.

<[> Our programming language has
B Parserto turn text into instructions

€9 Interpreter to execute the instructions

21

