CSC 447 - Concepts of Programming Languages

Unit Tests and Contracts

Instructor: Eric J. Fredericks

@ Compute the Factorial of a Number

>— 4 Implement an iterative Scala 3 program © How do we use factorial ?

2 that computes the factorial of a number 9 Is the code correct?

-] 9 How can we convince ourselves

def factorial(n: Int) : Int = .
?
var result = 1 whether code is correct:

1

2

3 for 1 <- 1 to n do
4 result *= 1

5 result

@ Learning Objectives

@ How can we build trust in (auto-generated) code?

e Read and express unit tests

e Read and express contracts

0 Unit Tests

@ Unit tests provide sample inputs and test expected outputs of code in isolation

e Unit tests specify expected behavior

e Unit tests are documentation
o How to initialize and use some code

o What to expect as a result on legal inputs
o What to expect as an exception on illegal inputs

e Unit tests prevent quality regression

0 Unit Tests with ScalaTest

1 def factorial(n: Int) : Int = gclasi Fgctzriﬁrigts o <hould Mateh
2 var result = 1 : extends AnyFlatSpec with should.Matchers:
3 for 1 <- 1 to n do 4 "Factorial" should "compute 0! correctly" in {
4 result *= i 5 factorial(0) should be (1)

6 3
5 result -

8 it should "compute 1! correctly" in {

9 factorial(1l) should be (1)

10 }

11

12 it should "compute 3! correctly" in {

13 factorial(3) should be (6)

14 3}

e Matchers should be etc. express expected results

* A Can only test a finite number of examples

https://www.scalatest.org/

e Contracts

@ Contracts are formal and verifiable interface specifications

e Preconditions are expectations that must be met by a client
e Postconditions are guarantees made by the component

e Invariants are maintained (e.q., every loop iteration)

@ Formal Specification and Verification

Specification Verification

e Hoare triples: {P} C {Q} e Theorem proving shows correctness
mathematically for all possible inputs

e Modal logic: P -> [C
g [€]Q and all possible executions

e Code: e Model checking shows correctness
1 def C() = { for finite-length executions
g ;3CIU1VG (P) e Runtime verification checks contracts

while executing the software and

4 } ensuring (Q) . ,
throws exceptions when violated

0 Contracts in Scala

1 def factorial(n: Int) : Int = { A Useful?

2 require (n>=0) 1 def factorialContract(n: Int) : Int =

3 var result = 1 2 var result =1

4 for i <- 1 to n do 3 for i <- 1 to n do result *= 1

5 result *= i SIS

6 result

7 } ensuring { @ Alternative solution!

8 (result: Int) => _ _ . B

9 result == factorialContract(n) 1 def factorialContract(n: Int) : Int =
2 if n<=1 then 1

10 } 3 else n * factorialContract(n-1)

e Contract specifies input assumptions (require) and output guarantees

(ensuring)
e Contract can be an alternative implementation

e A Runtime checking adds computational overhead

@ Summary

Unit Tests

e Execute code with some inputs and
test for expected outputs
o @ documents known and
expected use and behavior

o @ finite number of tests
o Best for: regression testing

-

Contracts

e Express input assumptions and
output guarantees
o @ show correctness for all
possible inputs and executions

o @ computational overhead,
extra effort

o Best for: correctness-critical
applications

