
CSC 447 - Concepts of Programming Languages

Unit Tests and Contracts

Instructor: Eric J. Fredericks

1

 Compute the Factorial of a Number
1 Implement an iterative Scala 3 program
2 that computes the factorial of a number



1 def factorial(n: Int) : Int =
2 var result = 1
3 for i <- 1 to n do
4 result *= i
5 result



How do we use factorial ?

Is the code correct?

How can we convince ourselves
whether code is correct?



2

 Learning Objectives

 How can we build trust in (auto-generated) code?

Read and express unit tests
Read and express contracts



3

 Unit Tests

 Unit tests provide sample inputs and test expected outputs of code in isolation

Unit tests specify expected behavior
Unit tests are documentation

How to initialize and use some code
What to expect as a result on legal inputs
What to expect as an exception on illegal inputs

Unit tests prevent quality regression



4

 Unit Tests with ScalaTest

1 def factorial(n: Int) : Int =
2 var result = 1
3 for i <- 1 to n do
4 result *= i
5 result

1 class FactorialTests
2 extends AnyFlatSpec with should.Matchers:
3
4 "Factorial" should "compute 0! correctly" in {
5 factorial(0) should be (1)
6 }
7
8 it should "compute 1! correctly" in {
9 factorial(1) should be (1)
10 }
11
12 it should "compute 3! correctly" in {
13 factorial(3) should be (6)
14 }

Matchers should be etc. express expected results

 Can only test a finite number of examples



5

https://www.scalatest.org/

 Contracts

 Contracts are formal and verifiable interface specifications

Preconditions are expectations that must be met by a client
Postconditions are guarantees made by the component
Invariants are maintained (e.g., every loop iteration)



6

 Formal Specification and Verification

Specification
Hoare triples: {P} C {Q}
Modal logic: P -> [C]Q

Code:
1 def C() = {
2 require (P)
3 // ...
4 } ensuring (Q)

Verification
Theorem proving shows correctness
mathematically for all possible inputs
and all possible executions
Model checking shows correctness
for finite-length executions
Runtime verification checks contracts
while executing the software and
throws exceptions when violated



7

 Contracts in Scala

1 def factorial(n: Int) : Int = {
2 require (n>=0)
3 var result = 1
4 for i <- 1 to n do
5 result *= i
6 result
7 } ensuring {
8 (result: Int) =>
9 result == factorialContract(n)
10 }

Contract specifies input assumptions (require) and output guarantees
(ensuring)

Contract can be an alternative implementation
 Runtime checking adds computational overhead


Useful?
1 def factorialContract(n: Int) : Int =
2 var result = 1
3 for i <- 1 to n do result *= i
4 result



Alternative solution!
1 def factorialContract(n: Int) : Int =
2 if n<=1 then 1
3 else n * factorialContract(n-1)



8

 Summary

Unit Tests

Execute code with some inputs and
test for expected outputs

 documents known and
expected use and behavior
 finite number of tests
Best for: regression testing

Contracts

Express input assumptions and
output guarantees

 show correctness for all
possible inputs and executions
 computational overhead,
extra effort
Best for: correctness-critical
applications



9

