CSC 447 - Concepts of Programming Languages

Statements and Expressions

Instructor: Eric J. Fredericks



@ Learning Objectives

@ What should be the basic building blocks of computations?

e Identify different ways of expressing computations

e Identify the difference between statement sequences and compound
expressions



@ Is this Accepted Syntax?

Is this Scala? Is this C?
1 def f (x: Int) : Int = 1 int £ (int x) {
2 var y: Int = 0 2 int vy;
3 if x!'=0 then y=1 else y=2 3 if (x!'=0) y=1; else y=2;
4 Yy 4 return y;
5 }

e Enter in REPL to find out
e Compile to find out



@ Is this Accepted Syntax?

Is this Scala? Is this C?
1 def f (x: Int) : Int = { 1 int £ (int x) {
2 var y: Int = 0 2 int y;
3 y = 1f x!=0 then 1 else 2 3 y = 1f (x!=0) 1 else 2;
4y 4 return y;
5 } 5 }
A Not acceptedinC, if ... else is

statement language, not expression
language



@ Is this Accepted Syntax?

Is this Scala? Is this C?
1 def f (x: Int) : Int = { 1 int £ (int x) {
2 var y: Int = 0 2 int vy,
3 y = (x!'=0 2 1 : 2) 3 y =x2?1: 2;
4 Yy 4 return y;
5 } 5}

A Ternary operator not in Scala
expression language

@ if ... inScalaexpression
language!



@ Is this Accepted Syntax?

Is this Scala? Is this C?
1 def f (x: Int) : Int = { 1 int £ (int x) {
2 var y: Int = 0 2 int y;
3y ={var xx =X 3 y={int z=0;
4 var z=0 4 while (x>0) {x--; z++;}
5 while (xx>0) do {xx=xx-1; z=z+1} . ! !
6 z 1 5 return z; }
7y 6 return vy,
8 } 7}

e A Loops and variable declarations are
not in the C expression language

e How can we make it C?



@ Is this Accepted Syntax?

Is this Scala? Is this C?
1 def g (x: Int) : Int = { 1 int g (int x) {
2 var xxX = X 2 int z=0;
3 var z = 0 3 while (x>0) { x--; z++; }
4 while xx>0 do { xx=xx-1; z=z+1 } 4 return z,
5 z 5 }
6 } 6 int f (int x) { return g(x); }
7 def f (x: Int) : Int = g(x)

e Functions are in the expression language of Scala and C



@ Statements and Expressions

o @ Assembly language consists of statements

1 mov eax, 5
2 add eax, 6
3 mov ebx, eax

e <[> Expressions are a more abstract way of expressing computations
1 5+6

e Many imperative PL distinguish statement language from expression
language

e Functional languages tend to emphasize expressions (Scala has only
expressions)



@ Pure vs Side-Effecting Expressions

e A mathematical function takes arguments and gives results

e An expression is pure if that is all it does

e Anything else is a side effect
o Assignment to a variable

o Change of control (goto)
o I/0 (console, network)

o efc.



@ Expressions

e Literals (boolean, character, integer, string)
e Operators (arithmetic, bitwise, logical)

e Function calls

1 f (1 + 2 * "hello".length)

@ Scala does not have statements, everything is an expression!

10



@ Statements in C

e Expression statements (including assignment)
1 printf("hello");

2 NNNNANANNNNNNANNNNN expression
3 AANANANNNNNNNNNNNN statement

e Return statements

1 return 1+x;
2 ANN expression
3 ANANNNNNNNN statement

11



@ Statements in C

e Selection statements (if-then-else; switch-case)

e [teration statements (while; do-while; for)

1 int count = 0;
2 while (1) {

3 int ch = getchar();

4 switch (ch) {

5 case -1: return count;

6 case 'a': count = count + 1;
7 default: continue;

8 }

9 }

A Cannot use statements verbatim as part of expressions
@ Use functions to turn statements into expressions

12



@ Side-Effecting Expressions in C

e @ Name some side-effecting expressions in C
o Post-increment x++

o Add and assign x += 2
o Assignment x = (y = 5)

o Combined x -= (y += 5)

13



@ Side-Effecting Expressions in C

wnN R

N =

N =

int x = 1;
printf ("%d\n", ++x);
//

int x = 1;
printf ("%d\n", x++);
//

int x = 1;
printf ("%d\n", (x =

//

//

X + 1) + X);

//

14



@ Side-Effecting Expressions in C

int x = 1;
printf ("%d\n", ++Xx); // pre 1increment, prints 2
// value of x 1s now 2

N =

w

int x = 1;
printf ("%d\n", x++); //
3 //

N =

int x = 1;
printf ("%d\n", (x = x + 1) + X); //

N =

15



@ Side-Effecting Expressions in C

int x = 1;
printf ("%d\n", ++Xx); // pre 1increment, prints 2
// value of x 1s now 2

N =

w

int x = 1;
printf ("%d\n", x++); // post increment, prints 1
3 // value of x is now 2

N =

int x = 1;
printf ("%d\n", (x = x + 1) + X); //

N =

16



@ Side-Effecting Expressions in C

wnN R

N =

N =

int x = 1;
printf ("%d\n", ++Xx); // pre 1increment, prints 2
// value of x 1s now 2

int x = 1;
printf ("%d\n", x++); // post increment, prints 1
// value of x 1s now 2

x =1+ (y =5); // assigns 5 to y and 6 to x

int x = 1;
printf ("%d\n", (x = x + 1) + X); //

17



@ Side-Effecting Expressions in C

1 int x = 1;

2 printf ("%d\n", ++x); // pre increment, prints 2
3 // value of x 1s now 2

1 int x = 1;

2 printf ("%d\n", x++); // post increment, prints 1

// value of x 1s now 2

w

1 x=1+ (y =5);, // assigns 5 to y and 6 to X

=

int x = 1;
printf ("%d\n", (x = x + 1) + X); // no "sequence point", undefined!

N

@ Sequence point: A point in the execution of a C program at which all previous side
effects are guaranteed to be complete.

18



e Seqguencing in Expressions

e Scala { e1; e2; ...; en} e C (e1, e2, ..., en)

~
@D D
N

OO0 WN R
o -
=)

(S

e el ... en-1 executed for side effect e @ Why have statement and expression
sequences?

e ACexample:

e Result is the value of en

1 string s;
2 while(read_string(s), s.len() > 5) {
3 // do something

4}

19


https://stackoverflow.com/questions/52550/what-does-the-comma-operator-do-in-c

e Sequencing in C Expressions

1
2
3
4
5

O~ wWDNERE

int main () {

}

int x = 5;
X *= 2;
printf ("%d\n", Xx);

int main () {

}

int x = 5;
printf ("%d\n", (x *= 2, X));
// behavior defined because comma operator introduces sequence point

20



Summary

N

N\ 4

Statements Expressions
e Change memory e Pure vs. side-effecting
e Are executed in e Sequencing by operator in expression language,
seguence eg., Ce1l, e2, ... en

e Conditional by operator in expression language,
e.g.,C e1 ? e2 : e3

J N

©@ Make variable declarations statements or expressions? What are they in C?

©@ Make loops statements or expressions? What are they in C?



