
CSC 447 - Concepts of Programming Languages

Formal Semantics

Instructor: Eric J. Fredericks

1

 Learning Objectives

 How to unambiguously define the semantics of a programming language?

Identify the difference between syntactic and semantic expressions in
operational semantics
Identify judgments and reduction rules
Apply reduction rules to execute a program



2

 A Small Programming Language

Language Constructs
Integer expressions
Statements

Assignment
Statement lists
Conditional
Loop

Example Program: Factorial

1 n := -5;
2 if n>=0
3 then i := n
4 else i := 0-n
5 fi;
6 f := 1;
7 while i do
8 f := f * i;
9 i := i-1
10 od



3

 Operational Semantics

Operational semantics defines meaning of programs relative to an abstract
machine

Reduction machine: operates on a program and reduces it to its semantic
"value"

Uses a store (e.g., a map from variables to values)
State of the machine is a program or value and the store or

Judgments:
Executing program in state yields () value and new state

Reduction rules:
Conclusion follows from all premises satisfied



4

 Language of Integer Expressions

Syntax

1 Expr ::= Number
2 | Expr '+' Expr
3 | Expr '-' Expr
4 | Expr '*' Expr
5 | '(' Expr ')'

Example

1 2+3*4
2 (2+3) * 4

Semantics
Semantic domain: integer arithmetic
Value is the meaning of an expression

For example, means
Numbers evaluate to their value

Operations map to integer operations



5

 Reduction Example: Arithmetic Expression

Rules Reduce to its semantic value
 Deduction tree



6

 Reduction Exercises: Arithmetic Expression

Rules Define the rule for multiplication
Reduce to its semantic value



7

 Assignments and Sequential Composition

Syntax

1 Expr ::= Number
2 | Expr '+' Expr
3 | Expr '-' Expr
4 | Expr '*' Expr
5 | Ident
6 | PrgSeq
7 | '(' Expr ')'
8 Ident ::= 'a' | 'b' | ... | 'z'
9 PrgSeq ::= Prg | Prg ';' PrgSeq
10 Prg ::= Ident ':=' Expr

Example

1 a := 2+3;
2 b := (a:=a+1)*4;
3 a := b-5

Semantics

Look up variable value in store

Assignment: evaluate expression, then update state

Sequence: evaluate subexpressions, chain results



How do we store/look up values of variables?

8

 Conditionals and Loops

Syntax

1 Expr ::= Number
2 | Expr '+' Expr
3 | Expr '-' Expr
4 | Expr '*' Expr
5 | Ident
6 | Expr '>=' Expr
7 | PrgSeq
8 | '(' Expr ')'
9 Ident ::= 'a' | 'b' | ... | 'z'
10 PrgSeq ::= Prg | Prg ';' PrgSeq
11 Prg ::= Ident ':=' Expr
12 | 'if' Expr
13 'then' Expr
14 'else' Expr 'fi'
15 | 'while' Expr 'do'
16 Expr
17 'od'

Semantics
Conditional

True:

False:

Loop
End:

Recurse:



9

 Summary

Operational semantics: defines language in terms of operations of an
abstract machine

Alternative semantics definitions: denotational semantics, axiomatic
semantics

Judgments and reduction rules: describe steps of the abstract machine,
expressed as conclusions from premises
Deduction tree: makes conclusions about program from the meaning of the
program's components



10

 Program Reduction Example: Absolute
Value
1 i := -2;
2 if i>=0
3 then i := i
4 else i := 0-i
5 fi

Integer arithmetic Assignment

Sequential composition

Comparison Conditional



11

 Program Reduction Example: Absolute
Value

Lemma , where Lemma ,



12

 Program Reduction Example: Factorial

1 n := -5;
2 if n>=0
3 then i := n
4 else i := 0-n
5 fi;
6 f := 1;
7 while i do
8 f := f*i;
9 i := i-1
10 od

Integer arithmetic Assignment

Sequential composition

Conditional Loop



13

 Program Reduction Example: Factorial

Lemma , where

Lemma , where



14

 Program Reduction Example: Factorial

Lemma , where

Lemma
Lemma

Lemma , where



15

