
CSC 447 - Concepts of Programming Languages

Static and Dynamic Types

Instructor: Eric J. Fredericks

1

 Learning Objectives

 How should we support programmers in interpreting memory content
correctly?
 How should we support programmers in applying operations correctly?

Describe the role of types
Identify and describe the effects of static and dynamic type checking



2

 Programming Without Types

 What is difficult about the code below?
 How can we improve the language to better support programmers?

1 void* getNext(void* x) {
2 return *(x+4);
3 }
4 void* n = malloc(12);
5 *n = 42;
6 *(n+4) = NULL;
7 void* nn = getNext(n);

Types!
1 typedef struct Node {
2 int value;
3 Node* next;
4 } Node;
5
6 Node* getNext (Node* x) {
7 return x->next;
8 }
9
10 Node* n = malloc(sizeof(Node));
11 n->value = 42;
12 n->next = NULL;
13 Node* nn = getNext(n);



3

 Programming Without Types

 How does Python overcome missing static types?

1 functools.reduce(function, iterable, [initial,]/)

Documentation: Python Library
Examples
Unit tests



4

https://docs.python.org/3/library/functools.html#functools.reduce

 Types

Types define offsets
1 typedef struct Node {
2 int value;
3 Node* next;
4 } Node;
5
6 Node* getNext (Node* x) {
7 return x->next;
8 }

Types determine valid operations
1 println(1 - 2)
2 println("dog" - "cat")

Types are documentation



5

 Type Enforcement

Statically, track types with compiler
Compile time
Early

Dynamically, store type with object
Run time
Late



6

 Dynamic Type Checking

Dynamic type checking resolves types or detects a failure at runtime
Scheme is dynamic:

Accepted
1 #;> (define (f) (- 5 "hello"))

Fails at runtime
1 #;> (f)
2 Error in -: expected type number, got '"hello"'.

Javascript is dynamic:
Accepted, but type resolves in surprising ways
1 var x = 5 - "hello"; // x === NaN



7

 Static Type Checking in Java and Scala

Java

1 int a = 5;
2 String b = "hello";
3 System.out.println ("Result = " + (a - b));

Scala

1 val a = 5
2 val b = "hello"
3 println(s"Result = ${a-b}")

Compiler rejects code with (5 - "hello")
1 error: bad operand types for binary operator '-'
2 System.out.println ("Result = " + (a - b));
3 ^
4 first type: int
5 second type: String



8

 Dynamic Type Checking in Java and Scala

We can make the error dynamic by casting

Java

1 int a = 5;
2 String b = "hello";
3 System.out.println ("Result = " + (a - (int)(Object)b));

Scala

1 val a = 5
2 val b = "hello"
3 println(s"Result = ${a-b.asInstanceOf[Int]}")

Compiler accepts code, but dynamic type checking at runtime catches the
invalid cast
1 ClassCastException: class String cannot be cast to class Integer



9

 Variables in Static Languages

In static languages, variables have types

Java

1 int a = 5;
2 a = "hello";

Scala

1 var a = 5
2 a = "hello"

Compiler error
1 incompatible types: String cannot be converted to int
2 a = "hello";
3 ^



10

 Casting

We can convert any static error into a dynamic one: casting turns compile-
time errors into runtime errors

Java

1 int a = 5;
2 a = (int)(Object)"hello";

Scala

1 var a = 5
2 a = "hello".asInstanceOf[Int]

Compiler accepts code, but invalid cast is detected at runtime
1 ClassCastException: class String cannot be cast to class Integer



11

 Type Inference

Type inference infers the most precise type possible

Java

1 var a = 5;
2 a = "hello";

Scala

1 var a = 5
2 a = "hello"

1 error: incompatible types: String cannot be converted to int
2 a = "hello";
3 ^



12

 Variables in Dynamic Languages

Variables do not have types in dynamic languages
Only values have types

Scheme

1 #;> (define (main)
2 (define a 5)
3 (set! a "hello")
4 (display a)
5)
6 #;> (main)
7 "hello"

Javascript

1 > function f() {
2 var a = 5;
3 a = "hello";
4 console.log(a);
5 }
6 > f()
7 "hello"



13

 Static Type Checking

Static types are conservative
1 def f(i: Int, s: String) = if true then i else s

Static types may use type inference
1 val x = 1



14

 Summary

Static type checking
At compile time
Variables have types (often
inferred)
Benefits

compile-time detection of
errors
no unit tests for type checking
automatic documentation
faster runtime (optimization)
less memory consumption

Dynamic type checking
At runtime
Variables do not have types
Benefits

more flexible
usually conceptually simpler
faster compilation
easier runtime code
generation/modification



15

