
CSC 447 - Concepts of Programming Languages

Pattern Matching

Instructor: Eric J. Fredericks

1

 Learning Objectives

 How to decompose and process complex nested data structures?

Identify matched expression and cases in Scala pattern matching
Express functions with pattern matching



2

 Pattern Matching Example: Lists

Index access
1 ensuring {
2 (result: List[Int]) =>
3 val x1 = result(0)
4 val x2 = result(1)
5 val x3 = result(2)
6 x1 <= x2 && x2 <= x3
7 }

Projections
1 ensuring {
2 (result: List[Int]) =>
3 val x1 = result.head
4 val x2 = result.tail.head
5 val x3 = result.tail.tail.head
6 x1 <= x2 && x2 <= x3
7 }

Pattern matching
1 ensuring {
2 (result: List[Int]) =>
3 val x1 :: x2 :: x3 :: _ = result
4 x1 <= x2 && x2 <= x3
5 }

1 ensuring {
2 case x1 :: x2 :: x3 :: _ =>
3 x1 <= x2 && x2 <= x3
4 }


1 In Scala, implement a method that takes a list of at least 3 numbers and returns it with the first 3 numbers sorted in ascending order

1 def f (numbers: List[Int]) : List[Int] = {
2 require(numbers.length >= 3, "The list must contain at least 3 elements")
3 val (firstThree, rest) = numbers.splitAt(3)
4 val sortedFirstThree = firstThree.sorted
5 sortedFirstThree ++ rest
6 } ensuring { (result: List[Int]) => ??? }



3

 Pattern Matching

 Pattern matching branches and binds pattern variables

Decomposition with index access
1 def sum (p: (Int,Int)) : Int =
2 if p==null then throw MatchError(p)
3 val x = p(0)
4 val y = p(1)
5 x + y
6 end sum

Pattern matching

1 def sum (p: (Int,Int)) = p match
2 case (x,y) => x+y

With types (optional)

1 def sum (p: (Int,Int)) : Int = p match
2 case (x: Int, y: Int) => x+y

Every case args => body is a
function



4

 Pattern Matching on Lists

Pattern matching branches and binds pattern variables

Decomposition with projections
1 def printHead(xs: List[Int]) : String =
2 if xs == Nil then "List is empty"
3 else
4 val y: Int = xs.head
5 val ys = xs.tail
6 s"List is non-empty, head is $y"
7 end if
8 end printHead

Decomposition with pattern matching
1 def printHead(xs: List[Int]) : String = xs match
2 case Nil =>
3 "List is empty"
4 case (y: Int) :: ys =>
5 s"List is non-empty, head is $y"
6 end printHead



5

 Pattern Matching on Lists

Omit unnecessary variables and types

Decomposition with projections
1 def printHead(xs: List[Int]) =
2 if xs == Nil then "List is empty"
3 else
4 val y = xs.head
5 // val ys = xs.tail
6 s"List is non-empty, head is $y"
7 end printHead

Decomposition with pattern matching

1 def printHead(xs: List[Int]) = xs match
2 case Nil => "List is empty"
3 case y :: _ => s"List is non-empty, head is $y"
4 end printHead

Wildcard operator _ means don't care

Found in ML, Haskell, Rust, Swift, and
coming to Java



6

 Pattern Matching

Nested patterns: patterns can include other patterns

1 def f (xs: List[(Int,String)]) = xs match
2 case Nil => "List is empty"
3 case x :: Nil => s"List has one element: $x"
4 case _ :: (x,_) :: _ => s"The second int is $x"
5 end f
6
7 val zs = List ((11,"dog"), (21,"cat"), (31,"sloth"))
8 f(zs) // 21



7

 Pattern Matching Exercise: List Operations

Implement simple list operations by pattern matching

isEmpty

1 def isEmpty (xs: List[Int]) =
2 xs match
3 case Nil => true
4 case _ => false
5 end isEmpty

head

1 def head (xs: List[Int]) =
2 xs match
3 case Nil =>
4 throw NoSuchElementException()
5 case y :: _ => y
6 end head

tail

1 def tail (xs:List[Int]) =
2 xs match
3 case Nil =>
4 throw NoSuchElementException()
5 case _ :: ys => ys
6 end tail

Many list operations are builtin:
List (1, 2, 3).head

List (1, 2, 3).tail

List (1, 2, 3).isEmpty



8

 Summary

Pattern matching to decompose lists, tuples, and objects into their
components
Pattern matching branches and binds variables
Every case args => body is a function

First matching function is evaluated



9

