CSC 447 - Concepts of Programming Languages

Pattern Matching

Instructor: Eric J. Fredericks

@ Learning Objectives

@ How to decompose and process complex nested data structures?

e Identify matched expression and cases in Scala pattern matching

e Express functions with pattern matching

@ Pattern Matching Example: Lists

> 1 In Scala, implement a method that takes a list of at least 3 numbers and returns it with the first 3 numbers sorted in ascending order

1 def f (numbers: List[Int]) : List[Int] = {

2 require(numbers.length >= 3, "The list must contain at least 3 elements")
3 val (firstThree, rest) = numbers.splitAt(3)

4 val sortedFirstThree = firstThree.sorted

5 sortedFirstThree ++ rest

6 } ensuring { (result: List[Int]) => 2?7?22 }

e Index access e Projections .
J e Pattern matching
1 ensuring { gen?urin%t{ ListrIne])
. result: List[In =>
2 (result: LlSt[Int]) => 3 val x1 = result.head 1 ensuring {
3 val x1 = result(0) 4 val x2 = result.tail.head 2 (result: List[Int]) =>
- 5 val x3 = result.tail.tail.head 3 1 x1 :: x2 :: X3 :: _ = 1t
4 Val X2 = resu-Lt(l) 6 X1 <= X2 && X2 <= X3 4 Xi <: X2 &2 X2 <: X3 rest
5 val x3 = result(2) 73 5 3
6 X1l <= X2 && X2 <= X3
7}
1 ensuring {
2 case x1 :: X2 :: X3 :: _ =>
3 X1l <= X2 && X2 <= X3
4}

Pattern Matching

@ Pattern matching branches and binds pattern variables

e Decomposition with index access

1 def sum (p: (Int,Int)) : Int =
2 if p==null then throw MatchError(p) 1 def sum (p: (Int,Int)) = p match

e Pattern matching

3 L x = p(o®

: le ;j - Bglg 2 case (X,y) => x+y
5 Xty

6 end sum e With types (optional)

1 def sum (p: (Int,Int)) : Int = p match
2 case (x: Int, y: Int) => x+y

e Every case args => body isa
function

Pattern Matching on Lists

e Pattern matching branches and binds pattern variables

e Decomposition with projections e Decomposition with pattern matching
1 def printHead(xs: List[Int]) : String = 1 def printHead(xs: List[Int]) : String = xs match
2 if xs == Nil then "List is empty" 2 case i .
3 else j CaS;l?;'liniTpFY ys =>
4 val y: Int = xs.head 5 s"List is nor'wlempty, head is $y"
5 val ys = xs.tail 6 end printHead
6 s"List is non-empty, head is $y"
7 end if
8 end printHead

Pattern Matching on Lists

e Omit unnecessary variables and types

e Decomposition with projections

1 def printHead(xs: List[Int]) =
if xs == Nil then "List is empty" 1 def printHead(xs: List[Int]) = xs match
else 2 case Nil => "List is empty"
val y = XS head 3 case y :: _ => s'"List is non-empty, head is $y"
) . 4 end printHead
// val ys = xs.tail
s"List is non-empty, head is $y"
end printHead e Wildcard operator _ means don't care

e Decomposition with pattern matching

~NO OTh WN

e Found in ML, Haskell, Rust, Swift, and
coming to Java

Pattern Matching

e Nested patterns: patterns can include other patterns

val zs = List ((11,"dog"), (21,"cat"), (31,"sloth"))
f(zs) // 21

1 def f (xs: List[(Int,String)]) = xs match

2 case Nil => "List 1is empty"

3 case X :: Nil => s'"List has one element: $x"
4 case _ :: (x,_) :: _ => s"The second int is $x"

5 end f

6

4

8

® Pattern Matching Exercise: List Operations

e Implement simple list operations by pattern matching

® 1isEmpty ® head ® tail
o 1 def isEmpty (xs: List[Int]) = ® 1 def head (xs: List[Int]) = ® 1 def tail (xs:List[Int]) =
2 Xs match 2 Xs match 2 Xs match
i1 — 3 case Nil => 3 case Nil =>
- case Nil :> Srue 4 throw NoSuchElementException() 4 throw NoSuchElementException()
4 case _ => false 5 case y :: _ =y 5 case _ :: ys =>ys
5 end isEmpty 6 end head 6 end tail

e Many list operations are builtin:
© List (1, 2, 3).head

© List (1, 2, 3).tail

© List (1, 2, 3).isEmpty

Summary

e Pattern matching to decompose lists, tuples, and objects into their
components

e Pattern matching branches and binds variables
e Every case args => body is a function

e First matching function is evaluated

