
CSC 447 - Concepts of Programming Languages

Methods and Functions: Currying

Instructor: Eric J. Fredericks

1

 Learning Objectives

 How are methods in object-oriented programming and functions in functional
programming related?

Identify and describe the difference between methods and functions in Scala
Identify and describe the difference between tupled and curried definitions
Identify and use partial function application



2

 Functional Programming

We say that functions are first-class if they can be
declared within any scope,
passed as arguments to other functions, and
returned as results of functions.

Functions foreach , map , filter are higher-order functions
they take a function as argument
Also common: return a function as the result



3

 Paired Methods

1 def add(x:Int, y:Int) = x+y
2 add(11, 21)

1 add: (x: Int, y: Int)Int
2 res: Int = 32

This is the usual style of methods that take multiple arguments
It is a method that

Takes a pair of Int s

Returns an Int



4

 Curried Methods

1 def add(x:Int)(y:Int) = x+y
2 add(11)(21)

1 add: (x: Int)(y: Int)Int
2 res: Int = 32

This is a curried definition
It is a method that

Takes an Int
Returns a method of type (y:Int)Int

So together the type of the method is add2: (x:Int)(y:Int)Int



5

https://en.wikipedia.org/wiki/Currying

 Functions

Scala has first-class support for both functions and methods

Method

1 def add(x:Int, y:Int) = x+y
2 add(1,2)

Part of a class structure
Can be overridden
Has access to fields

Function

1 val add = (x:Int, y:Int) => x+y
2 add(1,2)

Can be passed as arguments,
returned, assigned to variables



6

 Functions

1 val add = (x:Int, y:Int) => x+y
2 add(11, 21)

1 add: (Int, Int) => Int = $$Lambda$4576/0x00000008018d1840@6ae4d2ad
2 res: Int = 32

This is a function that
Takes a pair of Int s

Returns an Int



7

 Function Notation

Using lambda notation
1 val add = (x:Int, y:Int) => x+y
2 add(11,21)

Use underscore when parameters used exactly once
1 val add = (_:Int) + (_:Int)
2 add(11,21)

Types may be inferred in some contexts
1 var add : (Int,Int)=>Int = _ + _
2 add(11,21)



8

 Curried Functions

1 val add = (x:Int) => (y:Int) => x+y
2 add(11)(21)

1 add: Int => (Int => Int) = $$Lambda$...
2 res: Int = 32

This is a curried definition
It is a function that

Takes an Int

Returns a function of type Int=>Int



9

https://en.wikipedia.org/wiki/Currying

 Curried Methods

1 def add(x:Int) = (y:Int) => x+y
2 add(11)(21)

1 add: (x: Int)Int => Int
2 res: Int = 32

You can mix the notations
This is a method that

Takes an Int

Returns a function of type Int=>Int



10

 Functions vs. Methods

1 def add1(x:Int, y:Int) = x+y
2 def add2(x:Int)(y:Int) = x+y
3 val add1f = add1 _
4 val add2f = add2 _

1 add1: (x: Int, y: Int)Int
2 add2: (x: Int)(y: Int)Int
3 add1f: (Int, Int) => Int = $$Lambda$...
4 add2f: Int => (Int => Int) = $$Lambda$...

Another use of wildcard operator _
don't care pattern
anonymous function expression



11

 Partial Application

1 val add4 = (x:Int) => (y:Int) => x+y
2 def add5(x:Int) = (y:Int) => x+y
3
4 val add4p = add4(11)
5 val add5p = add5(11)
6
7 val r4 = add4p(21)
8 val r5 = add5p(21)

1 add4: Int => (Int => Int) = $$Lambda$
2 add5: (x: Int)Int => Int
3
4 add4p: Int => Int = $$Lambda$
5 add5p: Int => Int = $$Lambda$
6
7 r4: Int = 32
8 r5: Int = 32



12

 Functions and Methods

1 def a (x:Int) = x + 1
2
3 val b = (x:Int) => x + 1
4
5 val c = new Function[Int,Int] {
6 def apply(x:Int) = x + 1
7 }
8
9 val d : PartialFunction[Matchable, Int] = {
10 case i: Int => i + 1
11 }
12
13 for f <- List(a,b,c,d) yield f(4)

1 fs: List[Int => Int] = List($$Lambda$, $$Lambda$, <function1>, <function1>)
2 res1: List[Int] = List(5, 5, 5, 5)

What's going on here?

Functions vs Methods



13

https://jim-mcbeath.blogspot.com/2009/05/scala-functions-vs-methods.html

 Functions and Methods

def defines a method with explicit parameter types

=> defines a function with inferable parameter types

Functions are objects with method apply
Function e:X=>Y gets compiled to an object
1 object e:
2 def apply(x:X) : Y = ...

Function application e(args) is method invocation e.apply(args)



14

 Summary

Tupled definitions: functions with multiple arguments
Curried definitions: a family of single-argument functions
In Scala, functions are objects with an apply method

Partial application creates new functions



15

 Partial Application

1 def add1(x:Int, y:Int) = x+y
2 def add2(x:Int)(y:Int) = x+y
3 val add3 = (x:Int, y:Int) => x+y
4 val add4 = (x:Int) => (y:Int) => x+y
5 def add5(x:Int) = (y:Int) => x+y
6
7 val add1p = add1(11, _) /* x=>add1(11, x) */
8 val add2p = add2(11)(_) /* x=>add2(11)(x) */
9 val add3p = add3(11, _) /* x=>add3(11, x) */
10 val add4p = add4(11)
11 val add5p = add5(11)
12 for f <- List(add1p, add2p, add3p, add4p, add5p)
13 yield f(21)

1 fs: List[Int => Int] = List($$Lambda$,$$Lambda$,$$Lambda$,$$Lambda$,$$Lambda$)
2 res1: List[Int] = List(32, 32, 32, 32, 32)



16

