
CSC 447 - Concepts of Programming Languages

Scope and Lifetime

Instructor: Eric J. Fredericks

1

 Learning Objectives

 How should identifiers relate to memory locations?

Interpret global, static, and dynamic scope
Identify when shadowing occurs
Identify bugs related to the difference between the scope of an identifier and
the lifetime of a memory location



2

 Scope

Scope of an identifier: region of text in which it may be used

1 def f (x: Int) =
2 val y = x+1
3 if x>y then
4 val z = y+1
5 println(s"z = $x")
6 end if
7 end f

x and y are in scope after their declaration until end of method f

z is in scope after its declaration until end of if -block



3

 Occurrences of Identifiers

Free occurrence has no matching binding
1 y = 5*x; // Free occurrences of x and y

Binding occurrence declares the identifier
1 val y : Int; // binding occurrence of y

Bound occurrence follows matching declaration
1 var y : Int; // Binding occurrence of y
2 var x : Int; // Binding occurrence of x
3
4 x = 6; // Bound occurrence of x
5 y = 5*x; // Bound occurrences of x and y



4

 Binding and Circular Dependencies

 What to do with circular dependencies?

1 char f (int x) { return x>0 ? g (x-1) : 1; } 1 char g (int x) { return f (x) + f (x); }

Most modern languages allow any order
C, C++ require forward declarations
1 char f (int x);
2 char g (int x);
3 // f and g definitions can now be in any order



5

 Naive Formal Semantics for Functions

Simplest form of functions: no parameters

1 Expr ::= ...
2 | 'def' Ident '=' Expr
3 | Ident '
()'
4

1 def f = 1+2
2 f()

For variables, have store
 Where to store functions?

Another store : maps function names to function bodies



6

 Naive Formal Semantics for Functions

For variables: store maps variable names to values
For functions: store maps function names to function
bodies

Function definition Function application

 Global scope



7

 Naive Formal Semantics for Functions

Grammar

1 Expr ::= ...
2 | 'def' Ident '=' Expr
3 | Ident '
()'
4

Function definition Function application


Extend interpreter from last week

8

 Global Scope: Python

Python global accesses the global scope

1 def useX():
2 print (x)
3
4 def defX():
5 global x
6 x = 1

1 >>> useX()
2 Traceback (most recent call last):
3 File "<stdin>", line 1, in <module>
4 File "<stdin>", line 2, in useX
5 NameError: name 'x' is not defined
6 >>> defX()
7 >>> useX()
8 1



Clearly not ideal; what other scoping rules could we define?

9

 Example: Scope

 What does this program do?

Using Scala syntax, but various different semantics

1 var x:Int = 10
2
3 def f () =
4 x = 20
5
6 def g () =
7 var x:Int = 30
8 f ()
9
10 g ()
11 println (x)



10

 Static and Dynamic Scope

Static Scope
Compile time scoping, also known
as lexical scope
Identifiers are bound to the closest
binding occurrence in an
enclosing block of the program
code
Renaming any identifier to a fresh
name consistent throughout its
scope does not change program
behavior

Dynamic Scope
Runtime scoping
Identifiers are bound to the
binding occurrence in the closest
activation record
Consistent renaming may break a
working program!



11

 Static and Dynamic Scope

Where could z come from?
1 ...
2 def g (x:Int) : Int =
3 var y:Int = x * 2
4 z * x * y // x and y are bound; z is free

Static scope
Free variables are resolved
(bound) at compile time
Look at outer blocks in source
code

Dynamic scope
Free variables are resolved
(bound) at runtime
Look at the caller activation
records on the stack



12

 Static Scope: Scala

Scala uses static scope
Most languages do use static scope: Java, C, C++, Python (unless global) etc.

1 var x:Int = 10
2
3 def f () : Unit =
4 x = 20
5
6 def g () : Unit =
7 var x:Int = 30
8 f ()
9
10 g ()
11 println (x) // prints 20



13

 Dynamic Scope: Bash

Bash uses dynamic scope

1 x=10
2
3 function f() {
4 x=20
5 }
6
7 function g() {
8 local x=30
9 f
10 }
11
12 g
13 echo $x # prints 10



14

 Dynamic Scope to Static Scope

Dynamic Scope in Emacs Lisp

1 (let ((x 10))
2 (defun f ()
3 (setq x 20))
4 (defun g ()
5 (let ((x 30))
6 (f)))
7 (g)
8 x ; x is now 10
9)

Static Scope in Common Lisp

1 (let ((x 10))
2 (defun f ()
3 (setq x 20))
4 (defun g ()
5 (let ((x 30))
6 (f)))
7 (g)
8 x ; x is now 20
9)



15

 Static vs. Dynamic Scope: Perl

Dynamic Scope in Perl: local

1 local $x = 10;
2 sub f {
3 $x = 20;
4 }
5 sub g {
6 local $x = 30;
7 f ();
8 }
9 g ();
10 print ($x); # prints 10

Static Scope in Perl: my

1 my $x = 10;
2 sub f {
3 $x = 20;
4 }
5 sub g {
6 my $x = 30;
7 f ();
8 }
9 g ();
10 print ($x); # prints 20



16

 Shadowing in Statically Scoped Languages

Static scope at the level of blocks
 Should reusing names be allowed?

1 static void f () {
2 int x = 1;
3 {
4 int y = x + 1;
5 {
6 int x = y + 1;
7 System.out.println ("x = " + x);
8 }
9 }
10 }

In Java, shadowing of local variables
is not allowed, see Java Language
Specification

1 $ javac C.java
2 C.java:7: error: variable x is already defined in method f()
3 int x = y + 1;
4 ^
5 1 error



17

https://docs.oracle.com/javase/specs/jls/se8/html/index.html
https://docs.oracle.com/javase/specs/jls/se8/html/index.html

 Shadowing

In Java, local variables are allowed to shadow fields

1 public class C {
2 static int x = 1;
3
4 static void f () {
5 int y = x + 1;
6 {
7 int x = y + 1;
8 System.out.println ("x = " + x);
9 }
10 }
11
12 public static void main (String[] args) {
13 f ();
14 }
15 }

1 $ javac C.java
2 $ java C
3 x = 3



18

 Shadowing

C allows shadowing of variables

1 int main () {
2 int x = 1;
3 {
4 int y = x + 1;
5 {
6 int x = y + 1;
7 printf ("x = %d\n", x);
8 }
9 }
10 }

1 $ gcc -o scope scope.c
2 $./scope
3 x = 3

Scala allows shadowing of variables

1 def main (args:Array[String]) =
2 var x = 1
3 var y = x + 1
4 var x = y + 1
5 println ("x = " + x)
6 end main

Indentation creates blocks!
1 $ scalac C.scala
2 $ scala C
3 x = 3



19

 Shadowing and Pattern Matching

1 def sum(x: List[Int]) = x match
2 case Nil => 0
3 case x :: tail => x + sum(tail)

What can be problematic about shadowing?

Shadowing can make programs more difficult to read and maintain



20

 Shadowing and Recursion

 Is x in scope?

C warns about uninitialized variables

1 int main (void) {
2 int x = 10;
3 {
4 int x = x + 1;
5 printf ("x = %08x\n", x);
6 }
7 return 0;
8 }

1 $ gcc -o scope scope.c
2
3 $ gcc -Wall -o scope scope.c
4 scope.c: In function ‘main’:
5 scope.c:5:7: warning: unused variable ‘x’ [-Wunused-variable]
6 scope.c:7:9: warning: ‘x’ is used uninitialized in this function [-Wuninitialized]
7
8 $./scope
9 x = 00000001

Java requires initialized variables

1 public static void main (String[] args) {
2 int x = x + 1;
3 System.out.printf ("x = %08x\n", x);
4 }

1 x.java:3: error: variable x might not have been initialized
2 int x = x + 1;
3 ^



21

 Shadowing and Recursion

Scala variables and fields are set to default values (e.g., 0) before the
initialization code is run
Recursion is allowed when initializing fields

Scala

1 scala> val x:Int = 1 + x
2 x: Int = 1

Expressed in Java

1 public class C {
2 private final int x; // default-initialized to 0
3 public int x() { return x; }
4 public C() { x = 1 + x; }
5 }



22

 Shadowing and Recursion

 Does that work with complex datatypes?

1 val xs:List[Int] = 1 :: xs
2 // java.lang.NullPointerException

xs default-initialized to null

null != Nil : exception occurs because 1 :: null is null.::(1)



23

 Scala Lazy Lists

Lazy lists #:: are non-strict

1 val ones:LazyList[Int] = 1 #:: ones
2 // ones: LazyList[Int] = LazyList(<not computed>)

1 scala> ones.take (5)
2 res0: scala.collection.immutable.LazyList[Int] = LazyList(<not computed>)
3
4 scala> ones.take (5).toList
5 res1: List[Int] = List(1, 1, 1, 1, 1)



24

 Scala Lazy Lists

Lazy evaluation of list elements

1 def f (x:Int) : LazyList[Int] =
2 println (s"Called f($x)")
3 x #:: f(x+1)
4 end f
5 // f: (x: Int): LazyList[Int]

Create a lazy list
1 scala> val xs:LazyList[Int] = f(10)
2 Called f(10)
3 xs: LazyList[Int] = LazyList(<not computed>)

Access elements of lazy list

1 scala> xs.take(4).toList
2 Called f(11)
3 Called f(12)
4 Called f(13)
5 res12: List[Int] = List(10, 11, 12, 13)

Access same elements and more

1 scala> xs.take(4).toList
2 res13: List[Int] = List(10, 11, 12, 13)

1 scala> xs.take(6).toList
2 Called f(14)
3 Called f(15)
4 res14: List[Int] = List(10, 11, 12, 13, 14, 15)



25

 Recursion and Corecursion

Recursion
Works analytically: breaks
computation into smaller pieces
until it reaches a base case
Operates on arbitrarily complex
data as long as they can be
reduced to simple base cases

Corecursion
Works synthetically: builds up
data from a base case
Generates arbitrarily complex data
as long as it can be produced from
simple base cases
Often implemented with lazy
evaluation



26

 Scope and Lifetime

Scope
Of an identifier in source code
Where it is bound

Lifetime
Of an area of memory
Duration during which it is
allocated



27

 Storage Options

Global
Static storage
Available for lifetime
of program

Call Stack
In activation records
in call stack (stack-
allocated, recall
Systems 1)
Available while
function active
(called but not
returned)

Heap
In heap (heap-
allocated)
Available until
deallocated
(manually or via
garbage collection)



28

 Lifetime Issues

 Lifetime too short: common with explicit memory de-allocation
reads return other value
writes overwrite other value
resource state incorrect, e.g., file handle closed
can cause security problems

 Lifetime too long: common with garbage collection
uses too much memory (memory leak)
too late in freeing other resources / finalization
can cause vulnerability to denial of service attacks



29

 Dangling Pointers: Stack

 What is wrong with this program?

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int *f (int x) {
5 int y = x;
6 return &y;
7 }
8
9 int main (void) {
10 int *p = f (1);
11 printf ("*p = %d\n", *p);
12 return 0;
13 }

Compile warning
1 $ gcc -o ar ar.c
2 ar.c: In function ‘f’:
3 ar.c:6:3: warning: function returns address of local variable
4 [enabled by default]
5
6 $./ar
7 *p = 1



30

 Dangling Pointers

Static analysis tools can help

1 $ valgrind ./ar
2 ==5505== Memcheck, a memory error detector
3 ==5505== Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al.
4 ==5505== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
5 ==5505== Command: ./ar
6 ==5505==
7 ==5505== Conditional jump or move depends on uninitialised value(s)
8 ==5505== at 0x4E7C1A1: vfprintf (vfprintf.c:1596)
9 ==5505== by 0x4E85298: printf (printf.c:35)
10 ==5505== by 0x400536: main (in /tmp/ar)
11 ==5505==
12 ==5505== Use of uninitialised value of size 8
13 ==5505== at 0x4E7A49B: _itoa_word (_itoa.c:195)
14 ==5505== by 0x4E7C4E7: vfprintf (vfprintf.c:1596)
15 ==5505== by 0x4E85298: printf (printf.c:35)
16 ==5505== by 0x400536: main (in /tmp/ar)
17 ==5505==
18 ==5505== Conditional jump or move depends on uninitialised value(s)
19 ==5505== at 0x4E7A4A5: _itoa_word (_itoa.c:195)
20 ==5505== by 0x4E7C4E7: vfprintf (vfprintf.c:1596)
21 ==5505== by 0x4E85298: printf (printf.c:35)
22 ==5505== by 0x400536: main (in /tmp/ar)
23 ==5505==
24

1 *p = 1
2 ==5505==
3 ==5505== HEAP SUMMARY:
4 ==5505== in use at exit: 0 bytes in 0 blocks
5 ==5505== total heap usage: 0 allocs, 0 frees, 0 bytes allocated
6 ==5505==
7 ==5505== All heap blocks were freed -- no leaks are possible
8 ==5505==
9 ==5505== For counts of detected and suppressed errors, rerun with: -v
10 ==5505== Use --track-origins=yes to see where uninitialised values come from
11 ==5505== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 2 from 2)



31

 Dangling Pointers: Heap

 What is wrong with this program?

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int *f (int x) {
5 int *result = (int *) malloc (sizeof (int));
6 *result = x;
7 return result;
8 }
9
10 int main (void) {
11 int *p = f (1);
12 printf ("*p = %d\n", *p);
13 return 0;
14 }

Program compiles
1 $ gcc -Wall -o ar ar.c && ./ar
2 *p = 1

but...



32

 Dangling Pointers: Heap

1 $ valgrind ./ar
2 ==10962== Memcheck, a memory error detector
3 ==10962== Copyright (C) 2002-2011, and GNU GPL, by Julian Seward et al.
4 ==10962== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
5 ==10962== Command: ./ar
6 ==10962==
7 *p = 1
8 ==10962==
9 ==10962== HEAP SUMMARY:
10 ==10962== in use at exit: 4 bytes in 1 blocks
11 ==10962== total heap usage: 1 allocs, 0 frees, 4 bytes allocated
12 ==10962==
13 ==10962== LEAK SUMMARY:
14 ==10962== definitely lost: 4 bytes in 1 blocks
15 ==10962== indirectly lost: 0 bytes in 0 blocks
16 ==10962== possibly lost: 0 bytes in 0 blocks
17 ==10962== still reachable: 0 bytes in 0 blocks
18 ==10962== suppressed: 0 bytes in 0 blocks
19 ==10962== Rerun with --leak-check=full to see details of leaked memory
20 ==10962==
21 ==10962== For counts of detected and suppressed errors, rerun with: -v
22 ==10962== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 2 from 2)



33

 Dangling Pointers: Heap

 What is wrong with this program?

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int *f (int x) {
5 int *result = (int *) malloc (sizeof (int));
6 *result = x;
7 return result;
8 }
9
10 int main (void) {
11 int *p = f (1);
12 free (p);
13 printf ("*p = %d\n", *p);
14 return 0;
15 }

Program compiles
1 $ gcc -Wall -o ar ar.c && ./ar
2 *p = 0

but...



34

 Dangling Pointers: Heap

1 $ valgrind ./ar
2 ==13594== Memcheck, a memory error detector
3 ==13594== Copyright (C) 2002-2011, and GNU GPLd, by Julian Seward et al.
4 ==13594== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
5 ==13594== Command: ./ar
6 ==13594==
7 ==13594== Invalid read of size 4
8 ==13594== at 0x4005D2: main (in /tmp/ar)
9 ==13594== Address 0x51f0040 is 0 bytes inside a block of size 4 freed
10 ==13594== at 0x4C2A82E: free (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
11 ==13594== by 0x4005CD: main (in /tmp/ar)
12 ==13594==
13 *p = 1
14 ==13594==
15 ==13594== HEAP SUMMARY:
16 ==13594== in use at exit: 0 bytes in 0 blocks
17 ==13594== total heap usage: 1 allocs, 1 frees, 4 bytes allocated
18 ==13594==
19 ==13594== All heap blocks were freed -- no leaks are possible
20 ==13594==
21 ==13594== For counts of detected and suppressed errors, rerun with: -v
22 ==13594== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 2 from 2)



35

 Summary

Scope
Where an identifier is visible
Global scope: variables are
accessible from anywhere
Static scope: closest lexical
appearance in source code
Dynamic scope: closest activation
record

Lifetime
How long a memory location is
available
 Dangling pointers: point to
freed memory
 Memory leaks: allocated
memory that does not get freed



36

