CSC 447 - Concepts of Programming Languages

Scope and Lifetime

Instructor: Eric J. Fredericks

@ Learning Objectives

@ How should identifiers relate to memory locations?

e Interpret global, static, and dynamic scope
e Identify when shadowing occurs

e Identify bugs related to the difference between the scope of an identifier and
the lifetime of a memory location

e Scope

e Scope of an identifier: region of text in which it may be used

1 def f (x: Int) =

2 val y = x+1

3 if x>y then

4 val z = y+1

5 println(s"z = $x")
6 end 1if

7 end f

e x and y arein scope after their declaration until end of method f

e z isin scope after its declaration until end of if -block

e Occurrences of Identifiers

e free occurrence has no matching binding

1y = 5*x; // Free occurrences of x and vy

e Binding occurrence declares the identifier

1 val y : Int; // binding occurrence of vy

e Bound occurrence follows matching declaration

1 var y : Int; // Binding occurrence of y
2 var x : Int; // Binding occurrence of x
3

4 X = 6; // Bound occurrence of X

5y = 5*x; // Bound occurrences of x and vy

e Binding and Circular Dependencies

@ What to do with circular dependencies?

1 char f (int x) { return x>0 ? g (x-1) : 1; } 1 char g (int x) { return f (x) + f (x); }

e Most modern languages allow any order
e C, C++require forward declarations

1 char f (int Xx);
2 char g (int x);
3 // f and g definitions can now be in any order

e Naive Formal Semantics for Functions

e Simplest form of functions: no parameters

1 EXpr ::= ... 1 def f = 1+2
2 | 'def' Ident '=' Expr 2 ()

3 | Ident '

()

4

e For variables, have store £ : Ident — Int

e ©® Where to store functions?

e Another store ¢ : Ident — Expr: maps function names to function bodies

e Naive Formal Semantics for Functions

e For variables: store £ : Ident — Int maps variable names to values

e For functions: store ¢ : Ident — Expr maps function names to function
bodies

Function definition Function application

def f = e,&, 0,& pif e (FunDef) ¢(f) — € <67§7 ¢> U <’U, €,7 ¢,>
| 0L G et el £0.69) U (0,8,

(FunApp)

O Global scope

@ Naive Formal Semantics for Functions

*= Extend interpreter from last week

Grammar Function definition Function application

XOr :i= ... def f=e,&) | (0,6, d{f — e wve) - B(f) =e (e, &) | (v,£,9")
P | 'def' Ident '=' Expr | > < { '_> }> <f(),§,¢>u<v,§/,¢/>

1
2
3 | Ident '
(
4

(FunApp)

) 1

e Global Scope: Python

e Python global accesses the global scope

1 def useX(): 1 >>> useX()
2 print (x) 2 Traceback (most recent call last):
3 3 File '"<stdin>", 1line 1, in <module>
4 def defX(): 4 File '"<stdin>", 1line 2, in useX
5 global x 5 NameError: name 'x' is not defined
6 X =1 6 >>> defX()
7 >>> useX()
8 1

@ Clearly not ideal; what other scoping rules could we define?

e Example: Scope

@ What does this program do?

e Using Scala syntax, but various different semantics

var x:Int = 10

def £ () =
X = 20

def g () =
var x:Int = 30

£ 0

9 ()
println (Xx)

PO OWOO~NOOOTPA,WNE

[t

e Static and Dynamic Scope

Static Scope

e Compile time scoping, also known
as lexical scope

e Identifiers are bound to the closest
binding occurrence in an
enclosing block of the program
code

e Renaming any identifier to a fresh
name consistent throughout its
scope does not change program
behavior

~

-

Dynamic Scope

e Runtime scoping

e Identifiers are bound to the
binding occurrence in the closest
activation record

e Consistent renaming may break a
working program!

11

e Static and Dynamic Scope

e Where could z come from?

1 ...

2 def g (x:Int) : Int =
3 var y:Int = x * 2
4

Z * X *y // x and y are bound; z is free
e Static scope e Dynamic scope
o Free variables are resolved o Free variables are resolved
(bound) at compile time (bound) at runtime
o Look at outer blocks in source o Look at the caller activation
code records on the stack

12

e Static Scope: Scala

e Scala uses static scope

e Most languages do use static scope: Java, C, C++, Python (unless global) etc.

1 var x:Int = 10
2
3 def £ () : Unit =
4 X = 20
5
6 def g () : Unit =
7 var x:Int = 30
8 f ()
9
10 g ()
11 println (x) // prints 20

e Dynamic Scope: Bash

e Bash uses dynamic scope

1 x=10

2

3 function f() {
4 X=20

5}

6

7 function g() {
8 local x=30
9 f

10 }

11

12 ¢

13 echo $x # prints 10

14

@ Dynamic Scope to Static Scope

Dynamic Scope in Emacs Lisp

(9)

X ; X 1s now 10

1 (let ((x 10))

2 (defun f ()

3 (setq x 20))
4 (defun g ()

5 (let ((x 30))
6 (t)))

.

8

9

N’

Static Scope in Common Lisp

(9)

X ; X 1s now 20

1 (let ((x 10))

2 (defun f ()

3 (setq x 20))
4 (defun g ()

5 (let ((x 30))
6 (t)))

.

8

9

N’

15

e Static vs. Dynamic Scope: Perl

e Dynamic Scope in Perl: local e Static Scope in Perl: my
1 local $x = 10; 1 my $x = 10;

2 sub f { 2 sub f {

3 $x = 20; 3 $x = 20;

4 } 4 }

5 sub g { 5 sub g {

6 local $x = 30; 6 my $x = 30;

7 £ (); 7 £ ();

8 } 8 }

99 (); 99 ();

10 print ($x); # prints 10 10 print ($x),; # prints 20

16

e Shadowing in Statically Scoped Languages

1

e Static scope at the level of blocks
@ Should reusing names be allowed?

1 static void f () { e In Java, shadowing of local variables
2 int x = 1; .

3 is not allowed, see Java Language

. %”t y = x+ 1 Specification

6 int x = y + 1, 1 $ javac C.java

7 System. out. println ("X =S X), 5 C.java:7inir%02:yviri?ble x 1is already defined in method f()
g } } gl error

0 }

17

https://docs.oracle.com/javase/specs/jls/se8/html/index.html
https://docs.oracle.com/javase/specs/jls/se8/html/index.html

e Shadowing

e In Java, local variables are allowed to shadow fields

1 public class C { 1 $ javac C.java
2 static int x = 1; 2 $ java C
3

4 static void f () { 3 X =3

5 int y = x + 1;

6 {

7 int x =y + 1;

8 System.out.println ("x =" + Xx);

9 b

10 }

11

12 public static void main (String[] args) {

13 £ ()

14 }

15 }

18

e Shadowing

e C allows shadowing of variables

1 int main () {

2 int x = 1;

3 A

4 int y = x + 1;

5 {

6 int x =y + 1;

7 printf ("x = %d\n", Xx);
8 ¥

9 }

10 }

$ gcc -0 scope scope.c
$./scope
X =3

WN =

e Scala allows shadowing of variables

1 def main (args:Array[String]) =
2 var x = 1
3 var y = X
4 var X =
)
6

e Indentation creates blocks!

1 $ scalac C.scala
2 $ scala C
3 xXx =3

19

e Shadowing and Pattern Matching

1 def sum(x: List[Int]) = X match
2 case Nil => 0
3 case X :: tail => x + sum(tail)

e What can be problematic about shadowing?

e Shadowing can make programs more difficult to read and maintain

20

e Shadowing and Recursion

@ Is x inscope?

e Cwarns about uninitialized variables

1 int main (void) {

2 int x = 10;

3 {

4 int x = x + 1;

5 printf ("x = %08x\n", Xx);
6 }

4 return 0;

8 }

1 $ gcc -0 scope scope.c

2

3 $ gcc -Wall -o scope scope.c

4 scope.c: In function ‘main’:

5 scope.c:5:7: warning: unused variable ‘x’ [-Wunused-variable]

6 scope.c:7:9: warning: ‘x’ is used uninitialized in this function [-Wuninitialized]
7

8 $./scope

9 X = 00000001

e Java requires initialized variables

1 public static void main (String[] args) {
2 int x = x + 1;

3 System.out.printf ("x = %08x\n", Xx);
4}

1 X.java:3: error: variable x might not have been initialized
2 int x = x + 1;
3 AN

21

e Shadowing and Recursion

e Scala variables and fields are set to default values (e.g., o) before the
initialization code is run

e Recursion is allowed when initializing fields

Scala Expressed in Java
1 scala> val x:Int = 1 + X 1 public class C {
. _ 2 private final int x; // default-initialized to O
2 Xy Int =1 3 public int x() { return x; }
4 public C() { x =1 + x; }
5}

22

e Shadowing and Recursion

@ Does that work with complex datatypes?

1 val xs:List[Int] =1 :: XS
2 // java.lang.NullPointerException

e xs default-initialized to null

e null != Nil:exception occurs because 1 ::

null iS null.:: (1)

23

e Scala Lazy Lists

e Lazylists #:: are non-strict

1 #:. ones
LazyList(<not computed>)

1 val ones:LazylList[Int]
2 // ones: LazyList[Int]

scala> ones.take (5)
res@: scala.collection.immutable.LazylList[Int] = LazyList(<not computed>)

scala> ones.take (5).tolList
resl: List[Int] = List(1, 1, 1, 1, 1)

g wnNE

e Scala Lazy Lists

e Lazy evaluation of list elements

1 def f (x:Int) : LazyList[Int] =
2 println (s"Called f($x)")
3 X #:: F(x+1)

4 end f

5 // f: (x: Int): LazyList[Int]

e Create a lazy list

1 scala> val xs:LazylList[Int] = f(10)
2 Called f(10)
3 Xs: LazylList[Int] = LazyList(<not computed>)

e Access elements of lazy list

scala> xs.take(4).toList

Called f(11)

Called f(12)

Called f(13)

resl2: List[Int] = List(210, 11, 12, 13)

Ok~ WNPRE

e Access same elements and more

1 scala> xs.take(4).tolList
2 resl1l3: List[Int] = List(10, 11, 12, 13)

1 scala> xs.take(6).toList

2 Called f(14)

3 Called f(15)

4 resl4: List[Int] = List(10, 11, 12, 13, 14, 15)

25

e Recursion and Corecursion

-

Recursion

e Works analytically: breaks
computation into smaller pieces
until it reaches a base case

e Operates on arbitrarily complex
data as long as they can be
reduced to simple base cases

Corecursion

e Works synthetically: builds up
data from a base case

e Generates arbitrarily complex data
as long as it can be produced from
simple base cases

e Often implemented with lazy
evaluation

) 4)

26

e Scope and Lifetime

-

Scope

e Of an identifier in source code
e Where itis bound

~

-

Lifetime

e Of an area of memory

e Duration during which it is
allocated

27

e Storage

Options

Global

e Static storage

of program

e Available for lifetime

N

Call Stack

e In activation records
in call stack (stack-
allocated, recall
Systems 1)

e Available while
function active
(called but not
returned)

Heap

e In heap (heap-
allocated)

e Available until
deallocated
(manually or via
garbage collection)

28

e Lifetime Issues

e JK Lifetime too short: common with explicit memory de-allocation
o reads return other value

o writes overwrite other value
o resource state incorrect, e.q., file handle closed
© can cause security problems

Yk Lifetime too long: common with garbage collection
o uses too much memory (memory leak)

o too late in freeing other resources / finalization

o can cause vulnerability to denial of service attacks

29

e Dangling Pointers: Stack

3 What is wrong with this program?

. . ° . .
1 #include <stdio.h> Compile warning
2 #include <stdlib.h> 1§ gec -0 ar ar.c
2 ar.c: In function ‘f’:
3 3 ar.c:6:3: warning: function returns address of local variable
c c 4 [bled by default]
4 int *f (int x) { s e
. 6 $./ar
) int y = X; 7 *p = 1
6 return &y,
7}
8

9 int main (void) {

10 int *p = f (1);

11 printf ("*p = %d\n", *p),
12 return 0;

13 }

e Dangling Pointers

e Static analysis tools can help

1 $ valgrind ./ar 1*p =1

2 ==5505== Memcheck, a memory error detector 2 ==5505==

3 ==5505== Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al. 3 ==5505== HEAP SUMMARY:

4 ==5505== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info 4 ==5505== in use at exit: @ bytes in O blocks

5 ==5505== Command: ./ar SEE==5505="= total heap usage: 0 allocs, 0 frees, 0 bytes allocated

6 ==5505== 6 ==5505==

7 ==5505== Conditional jump or move depends on uninitialised value(s) 7 ==5505== All heap blocks were freed -- no leaks are possible

8 ==5505== at Ox4E7C1A1: vfprintf (vfprintf.c:1596) 8 ==5505==

9 ==55@5== by 0x4E85298: printf (printf.c:35) 9 ==5505== For counts of detected and suppressed errors, rerun with: -v
10 ==55@5== by 0x400536: main (in /tmp/ar) 10 ==5505== Use --track-origins=yes to see where uninitialised values come from
11 ==5505== 11 ==5505== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 2 from 2)
12 ==5505== Use of uninitialised value of size 8

13 ==5505== at Ox4E7A49B: _itoa_word (_itoa.c:195)

14 ==5505== by OX4E7C4E7: vfprintf (vfprintf.c:1596)

15 ==5505== by Ox4E85298: printf (printf.c:35)

16 ==5505== by 0x400536: main (in /tmp/ar)

17 ==5505==

18 ==5505== Conditional jump or move depends on uninitialised value(s)

19 ==5505== at Ox4E7A4A5: _itoa_word (_itoa.c:195)

20 ==5505== by OX4E7C4E7: vfprintf (vfprintf.c:1596)

21 ==5505== by 0x4E85298: printf (printf.c:35)

22 ==5505== by 0x400536: main (in /tmp/ar)

23 ==5505==

24

e Dangling Pointers: Heap

3 What is wrong with this program?

#include <stdio.h> e Program compiles

1

2 #include <stdlib.h>

3 1 $ gcc -wall -o ar ar.c && ./ar
4 int *f (int x) { 2*p:1

5 int *result = (int *) malloc (sizeof (int));

6 *result = x;

7 return result;

. e but...

9

10 int main (void) {

11 int *p = f (1);

12 printf ("*p = %d\n", *p);
13 return 0,

14 }

e Dangling Pointers: Heap

0 ==
10 ==
11 ==
12 ==
13 ==
14 ==
15 ==
16 ==
17 ==
18 ==
19 ==
20 ==
21 ==
22 ==

1
2
3
4 ==
S
6
7
8

*p:1

==10962==
10962==
10962==
10962==
10962==
10962==
10962==
10962==
10962==
10962==
10962==

10962==

10962==

10962==
10962==

$ valgrind ./ar
==10962==
==10962==
10962==
==10962==
==10962==

Memcheck, a memory error detector

Copyright (C) 2002-2011, and GNU GPL, by Julian Seward et al.
Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
Command: ./ar

HEAP SUMMARY :
in use at exit:
total heap usage:

bytes in 1 blocks
allocs, 0 frees, 4 bytes allocated

EUNN

LEAK SUMMARY :

definitely lost: 4 bytes in 1 blocks
indirectly lost: 0 bytes in 0 blocks
possibly lost: O bytes in 0 blocks
still reachable: 0 bytes in 0 blocks
suppressed: 0 bytes in 0 blocks

Rerun with --leak-check=full to see details of leaked memory

For counts of detected and suppressed errors, rerun with: -v
ERROR SUMMARY: 0 errors from 0@ contexts (suppressed: 2 from 2) 33

e Dangling Pointers: Heap

M What is wrong with this program?

1 #include <stdio.h> e Program compiles

2 #include <stdlib.h>

3 1 $ gcc -wall -o ar ar.c && ./ar
4 int *f (int x) { 2 *p =0

5 int *result = (int *) malloc (sizeof (int));

6 *result = x;

7 return result;

33 e but...

9

10 int main (void) {

11 int *p = f (1);

12 free (p);

13 printf ("*p = %d\n", *p),
14 return 0,

15 }

e Dangling Pointers: Heap

1 $ valgrind ./ar

2
3
4
5

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20

21
22

==13594==
==13594==
==13594==
==13594==
==13594==
==13594==
==13594==
==13594==
==13594==
==13594==
==13594==
*p = 1

==13594==
==13594==
==13594==
==13594==
==13594==
==13594==
==13594==
==13594==
==13594==

Memcheck, a memory error detector

Copyright (C) 2002-2011, and GNU GPLd, by Julian Seward et al.
Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
Command: ./ar

Invalid read of size 4
at 0x4005D2: main (in /tmp/ar)

Address 0x51f0040 is 0 bytes inside a block of size 4 freed
at Ox4C2A82E: free (in /usr/lib/valgrind/vgpreload_memcheck-amd64-1inux.so)
by 0x4005CD: main (in /tmp/ar)

HEAP SUMMARY :
in use at exit: O bytes in 0 blocks
total heap usage: 1 allocs, 1 frees, 4 bytes allocated

All heap blocks were freed -- no leaks are possible

For counts of detected and suppressed errors, rerun with: -v
ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 2 from 2)

35

Summary

-

Scope

Where an identifier is visible

Global scope: variables are
accessible from anywhere

Static scope: closest lexical
appearance in source code

Dynamic scope: closest activation
record

Lifetime
e How long a memory location is
available
e Yk Dangling pointers: point to
freed memory

e J¥ Memory leaks: allocated
memory that does not get freed

36

