2.4 Priority Queues

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation

Robert Sedgewick I Kevin Wayne

http://algs4.cs.princeton.edu

2.4 Priority Queues

- API and elementary implementations
- binary heaps

Algorithms

- heapsort

- event-driven simulatión

Robert Sedgewick \mid Kevin Wayne
http://algs4.cs.princeton.edu

Collections

A collection is a data type that stores a group of items.

data type	core operations	data structure
stack	PUSH, Pop	linked list, resizing array
queue	ENQUEUE, DEQUEUE	linked list, resizing array
priority queue	INSERT, DELETE-MAX	binary heap
symbol table	PUT, GET, DELETE	binary search tree, hash table
set	ADD, CONTAINS, DELETE	binary search tree, hash table

"Show me your code and conceal your data structures, and I shall continue to be mystified. Show me your data structures, and I won't usually need your code; it'll be obvious." - Fred Brooks

Priority queve

Collections. Insert and delete items. Which item to delete?

Stack. Remove the item most recently added.
Queue. Remove the item least recently added.
Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.
Generalizes: stack, queue, randomized queue.

operation	argument	return value
insert	P	
insert	Q	
insert	E	
remove max		Q
insert	X	
insert	A	
insert	M	
remove max		X
insert insert insert	P	
remove max	E	
		P

Priority queve API

Requirement. Items are generic; they must also be Comparable.

Note. Duplicate keys allowed; de7Max() picks any maximum key.

Priority queve: applications

- Event-driven simulation.
- Numerical computation.
- Discrete optimization.
- Artificial intelligence.
- Computer networks.
- Operating systems.
- Data compression.
- Graph searching.
- Number theory.
- Spam filtering.
- Statistics.

[customers in a line, colliding particles]
[reducing roundoff error]
[bin packing, scheduling]
[A* search]
[web cache]
[load balancing, interrupt handling]
[Huffman codes]
[Dijkstra's algorithm, Prim's algorithm]
[sum of powers]
[Bayesian spam filter]
[online median in data stream]

8	4	7
1	5	6
3	2	

Priority queve: client example

Challenge. Find the largest m items in a stream of n items.

- Fraud detection: isolate \$\$ transactions.
- NSA monitoring: flag most suspicious documents.
n huge, m large

Constraint. Not enough memory to store n items.

Priority queve: client example

Challenge. Find the largest m items in a stream of n items.

implementation	time	space
sort	$n \log n$	n
elementary PQ	$m n$	m
binary heap	$n \log m$	m
best in theory	n	m

order of growth of finding the largest \mathbf{m} in a stream of \mathbf{n} items

Priority queue: unordered and ordered array implementation

Priority queue: implementations cost summary

Challenge. Implement all operations efficiently.

Solution. Partially-ordered array.

2.4 Priority Queues

- APr and elementary implementations
- binary heaps

Algorithms

Theapsorf

- event-driven simulation

Robert Sedgewick \mid Kevin Wayne
http://algs4.cs.princeton.edu

Complete binary tree

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

Property. Height of complete binary tree with n nodes is $\lfloor\lg n\rfloor$.
Pf. Height increases only when n is a power of 2 .

A complete binary tree in nature

Binary heap: representation

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.

- Keys in nodes.
- Parent's key no smaller than children's keys.

Array representation.

- Indices start at 1 .
- Take nodes in level order.
- No explicit links needed!

Heap representations

Binary heap: properties

Proposition. Largest key is a[1], which is root of binary tree.

Proposition. Can use array indices to move through tree.

- Parent of node at k is at $k / 2$.
- Children of node at k are at 2 k and $2 \mathrm{k}+1$.

Heap representations

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
heap ordered


```
T P
```


Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
heap ordered

$$
\begin{array}{l|l|l|l|l|l|lll}
\text { S } & \text { R } & \mathrm{O} & \mathrm{~N} & \mathrm{P} & \mathrm{G} & \mathrm{~A} & \mathrm{E} & \mathrm{I} \\
\hline
\end{array}
$$

Binary heap: promotion

Scenario. A key becomes larger than its parent's key.

To eliminate the violation:

- Exchange key in child with key in parent.
- Repeat until heap order restored.

```
private void swim(int k)
{
        while (k > 1 && less(k/2, k))
    {
        exch(k, k/2);
        k = k/2;
    }
        parent of node at k is at k/2
}
```


Peter principle. Node promoted to level of incompetence.

Binary heap: insertion

Insert. Add node at end, then swim it up.
Cost. At most $1+\lg n$ compares.

```
public void insert(Key x)
{
    pq[++n] = x;
    swim(n);
}
```


Binary heap: demotion

Scenario. A key becomes smaller than one (or both) of its children's.

To eliminate the violation:

- Exchange key in parent with key in larger child.
- Repeat until heap order restored.

```
private void sink(int k)
{
    while (2*k <= n)
    {
        int j = 2*k;
        if (j < n && less(j, j+1)) j++;
        if (!less(k, j)) break;
        exch(k, j);
    k = j;
    }
}
```


Top-down reheapify (sink)

Power struggle. Better subordinate promoted.

Binary heap: delete the maximum

Delete max. Exchange root with node at end, then sink it down.
Cost. At most $2 \lg n$ compares.

```
```

public Key de\Max()

```
```

public Key de\Max()
{
{
Key max = pq[1];
Key max = pq[1];
exch(1, n--);
exch(1, n--);
sink(1);
sink(1);
pq[n+1] = nu11; \longleftarrow prevent loitering
pq[n+1] = nu11; \longleftarrow prevent loitering
return max;
return max;
}

```
```

}

```
```


Binary heap: Java implementation

```
pub1ic class MaxPQ<Key extends Comparable<Key>>
{
    private Key[] pq;
    private int n;
    public MaxPQ(int capacity)
    { pq = (Key[]) new Comparable[capacity+1]; }
    public boolean isEmpty()
    { return n == 0; }
    public void insert(Key key) // see previous code
    public Key delMax() // see previous code
    private void swim(int k) // see previous code
    private void sink(int k) // see previous code
    private boolean less(int i, int j)
    { return pq[i].compareTo(pq[j]) < 0; }
    private void exch(int i, int j)
    { Key t = pq[i]; pq[i] = pq[j]; pq[j] = t; }
}
```


Priority queue: implementations cost summary

implementation	insert	del \max	\max
unordered array	1	n	n
ordered array	n	1	1
binary heap	$\log n$	$\log n$	1

order-of-growth of running time for priority queue with \mathbf{n} items

Delete-Random From a Binary Heap

Goal. Delete a random key from a binary heap in logarithmic time.

Delete-Random From a Binary Heap

Goal. Delete a random key from a binary heap in logarithmic time.

Solution.

- Pick a random index r between 1 and n.
- Perform exch(r, $n--)$.
- Perform either $\operatorname{sink}(r)$ or $\operatorname{swim}(r)$.

Delete-Random From a Binary Heap

Goal. Delete a random key from a binary heap in logarithmic time.

Solution.

- Pick a random index r between 1 and n.
- Perform exch(r, $n--)$.
- Perform either $\operatorname{sink}(r)$ or $\operatorname{swim}(r)$.

Binary heap: practical improvements

Do "half-exchanges" in sink and swim.

- Reduces number of array accesses.
- Worth doing.

Binary heap: practical improvements

Floyd's "bounce" heuristic.

- Sink key at root all the way to bottom.
- Swim key back up.
some extra compares and exchanges
- Overall, fewer compares; more exchanges.

R. W. Floyd

1978 Turing award

Binary heap: practical improvements

Multiway heaps.

- Complete d-way tree.
- Parent's key no smaller than its children's keys.

Fact. Height of complete d-way tree on n nodes is $\sim \log _{d} n$.

Priority queves: quiz 1

How many compares (in the worst case) to insert in a d-way heap?
A. $\sim \log _{2} n$
B. $\sim \log _{d} n$
C. $\sim d \log _{2} n$
D. $\sim d \log _{d} n$
E. I don't know.

Priority queues: quiz 2

How many compares (in the worst case) to delete-max in a d-way heap?
A. $\sim \log _{2} n$
B. $\sim \log _{d} n$
C. $\sim d \log _{2} n$
D. $\sim d \log _{d} n$
E. I don't know.

Priority queue: implementation cost summary

implementation	insert	del max	max	
unordered array	1	n	n	
ordered array	n	1	1	
binary heap	$\log n$	$\log n$	1	
d-ary heap	$\log _{d} n$	$d \log _{d} n$	1	sweet spot: $d=4$
Fibonacci	1	$\log n^{\dagger}$	1	
Brodal queue	1	$\log n$	1	
impossible	1	1	1	why impossible?

order-of-growth of running time for priority queue with \mathbf{n} items

Binary heap: considerations

Underflow and overflow.

- Underflow: throw exception if deleting from empty PQ.
- Overflow: add no-arg constructor and use resizing array.

Minimum-oriented priority queue.
leads to $\log n$
amortized time per op
(how to make worst case?)

- Replace less() with greater().
- Implement greater().

Other operations.

- Remove an arbitrary item.
- Change the priority of an item.

Immutability of keys.

- Assumption: client does not change keys while they're on the PQ.
- Best practice: use immutable keys.

Immutability: implementing in Java

Data type. Set of values and operations on those values.
Immutable data type. Can't change the data type value once created.

```
public class Vector {
    private final int n;
    private final double[] data;
    public Vector(doub7e[] data) {
        this.n = data.length;
        this.data = new double[n];
        for (int i = 0; i < n; i++)
            this.data[i] = data[i];
    }
         instance methods don't
            change instance variables
}
```

Immutable. String, Integer, Double, Color, Vector, Transaction, Point2D.
Mutable. StringBuilder, Stack, Counter, Java array.

Immutability: properties

Data type. Set of values and operations on those values.
Immutable data type. Can't change the data type value once created.

Advantages.

- Simplifies debugging.
- Simplifies concurrent programming.
- More secure in presence of hostile code.

- Safe to use as key in priority queue or symbol table.

Disadvantage. Must create new object for each data type value.
" Classes should be immutable unless there's a very good reason to make them mutable.... If a class cannot be made immutable, you should still limit its mutability as much as possible. "

- Joshua Bloch (Java architect)

2.4 Priority Queues

- APP and elementary implementations.
- binary heaps
- heapsort

Algorithms

- event-driven simulatión

Robert Sedgewick \| Kevin Wayne

Priority queves: quiz 3

What is the name of this sorting algorithm?

```
public void sort(String[] a)
{
    int n = a.length;
    MaxPQ<String> pq = new MaxPQ<String>();
    for (int i = 0; i < n; i++)
        pq.insert(a[i]);
    for (int i = n-1; i >= 0; i--)
        a[i] = pq.de7Max();
}
```

A. Insertion sort.
B. Mergesort.
C. Quicksort.
D. None of the above.
E. I don't know.

Priority queues: quiz 4

What are its properties?

```
public void sort(String[] a)
{
    int n = a.length;
    MaxPQ<String> pq = new MaxPQ<String>();
    for (int i = 0; i < n; i++)
        pq.insert(a[i]);
    for (int i = n-1; i >= 0; i--)
        a[i] = pq.delMax();
}
```

A. $n \log n$ compares in the worst case.
B. In-place.
C. Stable.
D. All of the above.
E. I don't know.

Heapsort

Basic plan for in-place sort.

- View input array as a complete binary tree.
- Heap construction: build a max-heap with all n keys.
- Sortdown: repeatedly remove the maximum key.
keys in arbitrary order

$\mathbf{1}$	2	3	4	5	6	7	8	9	10
\mathbf{S}	\mathbf{O}	\mathbf{R}	T	E	X	A	\mathbf{M}	\mathbf{P}	\mathbf{L}
E									

build max heap (in place)

sorted result (in place)

Heapsort demo

Heap construction. Build max heap using bottom-up method.
we assume array entries are indexed 1 to n
array in arbitrary order

| S | O | R | T | E | X | A | M | P | L | E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

array in sorted order

Heapsort: heap construction

First pass. Build heap using bottom-up method.

```
for (int k = n/2; k >= 1; k--)
    sink(a, k, n);
```


Heapsort: sortdown

Second pass.

- Remove the maximum, one at a time.
- Leave in array, instead of nulling out.

```
while (n > 1)
{
    exch(a, 1, n--);
    sink(a, 1, n);
}
```


Heapsort: Java implementation

```
public class Heap
{
    pub1ic static void sort(Comparable[] a)
    {
        int n = a.length;
        for (int k = n/2; k >= 1; k--)
            sink(a, k, n);
        while (n > 1)
        {
            exch(a, 1, n);
            sink(a, 1, --n);
        }
    }
        but make static (and pass arguments)
    private static foid sink(Comparable[] a, int k, int n)
    { /* as before */ }
    private static boolean less(Comparable[] a, int i, int j)
    { /* as before */ }
    private static void exch(Object[] a, int i, int j)
    { /* as before */

Heapsort: trace
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{a[i]} \\
\hline N & k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline initial & alues & & S & 0 & R & T & E & X & A & M & P & L & E \\
\hline 11 & 5 & & S & 0 & R & T & L & X & A & M & P & E & E \\
\hline 11 & 4 & & S & 0 & R & T & L & X & A & M & P & E & E \\
\hline 11 & 3 & & S & 0 & X & T & L & R & A & M & P & E & E \\
\hline 11 & 2 & & S & T & X & P & L & R & A & M & 0 & E & E \\
\hline 11 & 1 & & X & T & S & P & L & R & A & M & 0 & E & E \\
\hline \multicolumn{2}{|l|}{heap-ordered} & & X & T & S & P & L & R & A & M & 0 & E & E \\
\hline 10 & 1 & & T & P & S & 0 & L & R & A & M & E & E & X \\
\hline 9 & 1 & & S & P & R & 0 & L & E & A & M & E & T & X \\
\hline 8 & 1 & & R & P & E & 0 & L & E & A & M & S & T & X \\
\hline 7 & 1 & & P & 0 & E & M & L & E & A & R & S & T & X \\
\hline 6 & 1 & & 0 & M & E & A & L & E & P & R & 5 & T & X \\
\hline 5 & 1 & & M & L & E & A & E & 0 & P & R & S & T & X \\
\hline 4 & 1 & & L & E & E & A & M & 0 & P & R & S & T & X \\
\hline 3 & 1 & & E & A & E & L & M & 0 & P & R & S & T & X \\
\hline 2 & 1 & & E & A & E & L & M & 0 & P & R & S & T & X \\
\hline 1 & 1 & & A & E & E & L & M & 0 & P & R & S & T & X \\
\hline sorte & esult & & A & E & E & L & M & 0 & P & R & S & T & X \\
\hline
\end{tabular}

Heapsort trace (array contents just after each sink)

\section*{Heapsort: mathematical analysis}

Proposition. Heap construction makes \(\leq n\) exchanges and \(\leq 2 n\) compares. Pf sketch. [assume \(n=2^{h+1}-1\) ]

a tricky sum
(see COS 340)
\(h+2(h-1)+4(h-2)+8(h-3)+\ldots+2^{h}(0)=2^{h+1}-h-2\)
\[
=N-(h-1)
\]
\[
\leq N
\]

\section*{Heapsort: mathematical analysis}

Proposition. Heap construction uses \(\leq 2 n\) compares and \(\leq n\) exchanges.
Proposition. Heapsort uses \(\leq 2 n \lg n\) compares and exchanges.

Significance. In-place sorting algorithm with \(n \log n\) worst-case.
- Mergesort: no, linear extra space.
\(\longleftarrow\) in-place merge possible, not practical
- Quicksort: no, quadratic time in worst case. \(\longleftarrow n \log n\) worst-case quicksort possible,
- Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, but:
- Inner loop longer than quicksort's.
- Makes poor use of cache.
- Not stable.

\section*{Introsort}

Goal. As fast as quicksort in practice; \(n \log n\) worst case, in place.

Introsort.
- Run quicksort.
- Cutoff to heapsort if stack depth exceeds \(2 \lg n\).
- Cutoff to insertion sort for \(n=16\).


\title{
Compute
}

Rensselaer Polytechnic Institute, Troy, NY 12180 musser@cs.rpi.edu

\section*{Abstract}

Quicksort is the preferred in-place sorting algorithm in many contexts, since its average Quicksort is the preferred in-place sorting algorithm in many contexts, since its average
computing time on uniformly distributed inputs is \(\Theta(N \log N)\) and it is in fact faster than most other sorting algorithms on most inputs. Its drawback is that its worst-case time bound is \(\Theta\left(N^{2}\right)\). Previous attempts to protect against the worst case by improving the
way quicksort chooses pivet elements for partitioning have increased the everage computing way quicksort chooses pivot elements for partitioning have increased the average computin
time too much-one might as well use heapsort, which has a \(\Theta(N \log N)\) worst-case tim bound but is on the average 2 to 5 times slower than quicksort. A similar dilemma exists with selection algorithms (for finding the \(i\)-th largest element) based on partitioning. This paper describes a simple solution to this dilemma: limit the depth of partitioning, and fo subproblems that exceed the limit switch to another algorithm with a better worst-cas
bound. Using heapsort as the "stopper" yields a sorting algorithm that is just as fast as quicksort in the average case but also has an \(\Theta(N \log N)\) worst case time bound. Fo selection, a hybrid of Hoare's FIND algorithm, which is linear on average but quadratic in the worst case, and the Blum-Floyd-Pratt-Rivest-Tarjan algorithm is as fast as Hoare's of implementing the new algorithms as goneric algorithms and accurately measuring their performance in the framework of the C++ Standard Template Library.

In the wild. C++ STL, Microsoft .NET Framework.

\section*{Sorting algorithms: summary}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & inplace? & stable? & best & average & worst & remarks \\
\hline selection & \(\checkmark\) & & \(1 / 2 n^{2}\) & \(1 / 2 n^{2}\) & \(1 / 2 n^{2}\) & \(n\) exchanges \\
\hline insertion & \(\checkmark\) & \(\checkmark\) & \(n\) & \(1 / 4 n^{2}\) & \(1 / 2 n^{2}\) & use for small \(n\) or partially ordered \\
\hline shell & \(\checkmark\) & & \(n \log _{3} n\) & ? & \(c n^{3 / 2}\) & tight code; subquadratic \\
\hline merge & & \(\checkmark\) & \(1 / 2 n \lg n\) & \(n \lg n\) & \(n \lg n\) & \(n \log n\) guarantee; stable \\
\hline timsort & & \(\checkmark\) & \(n\) & \(n \lg n\) & \(n \lg n\) & improves mergesort when preexisting order \\
\hline quick & \(\checkmark\) & & \(n \lg n\) & \(2 n \ln n\) & \(1 / 2 n^{2}\) & \(n \log n\) probabilistic guarantee; fastest in practice \\
\hline 3-way quick & \(\checkmark\) & & \(n\) & \(2 n \ln n\) & \(1 / 2 n^{2}\) & improves quicksort when duplicate keys \\
\hline heap & \(\checkmark\) & & \(3 n\) & \(2 n \lg n\) & \(2 n \lg n\) & \(n \log n\) guarantee; in-place \\
\hline ? & \(\checkmark\) & \(\checkmark\) & \(n\) & \(n \lg n\) & \(n \lg n\) & holy sorting grail \\
\hline
\end{tabular}

\subsection*{2.4 Priority Queues}

\section*{- API and efementary implementations}
- binary heaps

\section*{Algorithms}
- heapsorf
- event-driven simulation

\author{
Robert Sedgewick | Kevin Wayne
}

Molecular dynamics simulation of hard discs
Goal. Simulate the motion of \(n\) moving particles that behave according to the laws of elastic collision.


\section*{Molecular dynamics simulation of hard discs}

Goal. Simulate the motion of \(n\) moving particles that behave according to the laws of elastic collision.

\section*{Hard disc model.}
- Moving particles interact via elastic collisions with each other and walls.
- Each particle is a disc with known position, velocity, mass, and radius.
- No other forces.


Significance. Relates macroscopic observables to microscopic dynamics.
- Maxwell-Boltzmann: distribution of speeds as a function of temperature.
- Einstein: explain Brownian motion of pollen grains.

\section*{Warmup: bouncing balls}

Time-driven simulation. \(n\) bouncing balls in the unit square.
```

public class BouncingBal1s
{
public static void main(String[] args)
{
int n = Integer.parseInt(args[0]);
Ba11[] balls = new Bal1[n];
for (int i = 0; i < n; i++)
ba11s[i] = new Bal1();
while(true)
{
StdDraw.clear();
for (int i = 0; i < n; i++)
{
bal1s[i].move(0.5);
ba11s[i].draw();
}
StdDraw.show(50);
}
} main simulation loop
}

```
\% java BouncingBalls 100


\section*{Warmup: bouncing balls}
```

public class Bal1
{
private double rx, ry; // position
private double vx, vy; // velocity
private final double radius; // radius
public Bal1(...)
{ /* initialize position and velocity */ } check for collision with walls
public void move(double dt)
{
if ((rx + vx*dt < radius) || (rx + vx*dt > 1.0 - radius)) { vx = -vx; }
if ((ry + vy*dt < radius) || (ry + vy*dt > 1.0 - radius)) { vy = -vy; }
rx = rx + vx*dt;
ry = ry + vy*dt;
}
pub1ic void draw()
{ StdDraw.filledCircle(rx, ry, radius); }
}

```

Missing. Check for balls colliding with each other.
- Physics problems: when? what effect?
- CS problems: which object does the check? too many checks?

\section*{Time-driven simulation}
- Discretize time in quanta of size \(d t\).
- Update the position of each particle after every \(d t\) units of time, and check for overlaps.
- If overlap, roll back the clock to the time of the collision, update the velocities of the colliding particles, and continue the simulation.

t

\(\mathbf{t}+\mathbf{d t}\)

\(t+2 d t\)
(collision detected)


\section*{Time-driven simulation}

Main drawbacks.
- \(\sim n^{2} / 2\) overlap checks per time quantum.
- Simulation is too slow if \(d t\) is very small.
- May miss collisions if \(d t\) is too large. (if colliding particles fail to overlap when we are looking)
dt too small: excessive computation

dt too large: may miss collisions


\section*{Event-driven simulation}

Change state only when something interesting happens.
- Between collisions, particles move in straight-line trajectories.
- Focus only on times when collisions occur.
- Maintain PQ of collision events, prioritized by time.
- Delete \(\min =\) get next collision.

Collision prediction. Given position, velocity, and radius of a particle, when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s) according to laws of elastic collisions.


\section*{Particle-wall collision}

Collision prediction and resolution.
- Particle of radius \(s\) at position ( \(r x, r y\) ).
- Particle moving in unit box with velocity ( \(v x, v y\) ).
- Will it collide with a vertical wall? If so, when?


Predicting and resolving a particle-wall collision

\section*{Particle-particle collision prediction}

Collision prediction.
- Particle \(i\) : radius \(s_{i}\), position ( \(r x_{i}, r y_{i}\) ), velocity \(\left(v x_{i}, v y_{i}\right)\).
- Particle \(j\) : radius \(s_{j}\), position ( \(r x_{j}, r y_{j}\) ), velocity \(\left(v x_{j}, v y_{j}\right)\).
- Will particles \(i\) and \(j\) collide? If so, when?


\section*{Particle-particle collision prediction}

Collision prediction.
- Particle \(i\) : radius \(s_{i}\), position ( \(r x_{i}, r y_{i}\) ), velocity ( \(v x_{i}, v y_{i}\) ).
- Particle \(j\) : radius \(s_{j}\), position ( \(r x_{j}, r y_{j}\) ), velocity ( \(v x_{j}, v y_{j}\) ).
- Will particles \(i\) and \(j\) collide? If so, when?
\[
\begin{aligned}
& \Delta t= \begin{cases}\infty & \text { if } \Delta v \cdot \Delta r \geq 0, \\
\infty & \text { if } d<0, \\
-\frac{\Delta v \cdot \Delta r+\sqrt{d}}{\Delta v \cdot \Delta v} & \text { otherwise }\end{cases} \\
& d=(\Delta v \cdot \Delta r)^{2}-(\Delta v \cdot \Delta v)\left(\Delta r \cdot \Delta r-s^{2}\right), \quad s=s_{i}+s_{j}
\end{aligned}
\]
\[
\begin{array}{ll}
\Delta v=(\Delta v x, \Delta v y)=\left(v x_{i}-v x_{j}, v y_{i}-v y_{j}\right) & \Delta v \cdot \Delta v=(\Delta v x)^{2}+(\Delta v y)^{2} \\
\Delta r=(\Delta r x, \Delta r y)=\left(r x_{i}-r x_{j}, r y_{i}-r y_{j}\right) & \Delta r \cdot \Delta r=(\Delta r x)^{2}+(\Delta r y)^{2} \\
& \Delta v \cdot \Delta r=(\Delta v x)(\Delta r x)+(\Delta v y)(\Delta r y)
\end{array}
\]

\section*{Particle-particle collision resolution}

Collision resolution. When two particles collide, how does velocity change?
\[
\begin{array}{ll}
v x_{i}^{\prime} & =v x_{i}+J x / m_{i} \\
v y_{i}^{\prime} & =v y_{i}+J y / m_{i} \\
v x_{j}^{\prime} & =v x_{j}-J x / m_{j} \\
v y_{j}^{\prime} & =v y_{j}-J y / m_{j}
\end{array} \quad \begin{gathered}
\text { Newton's second law } \\
\text { (momentum form) }
\end{gathered}
\]
\[
J x=\frac{J \Delta r x}{s}, \quad J y=\frac{J \Delta r y}{s}, \quad J=\frac{2 m_{i} m_{j}(\Delta v \cdot \Delta r)}{s\left(m_{i}+m_{j}\right)}
\]
impulse due to normal force
(conservation of energy, conservation of momentum)

\section*{Particle data type skeleton}
```

public class Particle
{
private double rx, ry; // position
private double vx, vy; // velocity
private final double radius; // radius
private final double mass; // mass
private int count; // number of collisions
public Particle(...) { ... }
public void move(double dt) { ... }
public void draw() { ... }

```
    public double timeToHit(Particle that) \{ \}
    public double timeToHitVerticalWall() \{ \}
    public double timeToHitHorizontalWal1() \{ \}
    public void bounceOff(Particle that) \{ \}
    public void bounceOffVerticalWall() \{ \}
    public void bounceOffHorizontalWall() \{ \}
with particle or wall
\}

\section*{Collision system: event-driven simulation main loop}

\section*{Initialization.}
- Fill PQ with all potential particle-wall collisions.
- Fill PQ with all potential particle-particle collisions.

An invalidated event

Main loop.
- Delete the impending event from PQ (min priority \(=t\) ).
- If the event has been invalidated, ignore it.
- Advance all particles to time \(t\), on a straight-line trajectory.
- Update the velocities of the colliding particle(s).
- Predict future particle-wall and particle-particle collisions involving the colliding particle(s) and insert events onto PQ.

\section*{Event data type}

\section*{Conventions.}
- Neither particle nu11 \(\Rightarrow\) particle-particle collision.
- One particle nu11 \(\Rightarrow\) particle-wall collision.
- Both particles nul1 \(\Rightarrow\) redraw event.
```

private static class Event implements Comparable<Event>
{
private final double time;
private final Particle a, b; // particles involved in event
private final int countA, countB; // collision counts of a and b
public Event(double t, Particle a, Particle b)
{ ... }
public int compareTo(Event that)
{ return this.time - that.time; }
public boolean isValid()
{ ... }
valid if no intervening collisions
(compare collision counts)
}

```

Particle collision simulation: example 1
\% java CollisionSystem 100


\section*{Particle collision simulation: example 2}
```

% java Col1isionSystem < bil1iards.txt

```


Particle collision simulation: example 3
\% java CollisionSystem < brownian.txt


Particle collision simulation: example 4
```

\% java CollisionSystem < diffusion.txt

```
```

