Running time

“As soon as an Analytic Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question
will arise—By what course of calculation can these results be arrived at by
the machine in the shortest time? ° — Charles Babbage (1564)

how many times do you
have to turn the crank?

o
°
B
o

b, [3

Analytic Engine

Cast of characters

Programmer needs to develop
a working solution. <

Student might play

_ / any or all of these
Client wants to solve

roles someday.
problem efficiently. v

Theoretician wants
to understand.

Reasons to analyze algorithms

Predict performance. \

: < this course (COS 226
Compare algorithms. s course { !

Provide guarantees. \

Understand theoretical basis. < theory of algorithms (COS 423)

Primary practical reason: avoid performance bugs.

client gets poor performance because programmer

did not understand performance characteristics

Some algorithmic successes

Discrete Fourier transform.
 Break down waveform of N samples into periodic components.
« Applications: DVD, JPEG, MRI, astrophysics,

e Brute force: N?Z steps. Friedrich Gauss
1805

« FFT algorithm: Nlog N steps, enables new technology.

time
} quadratic
64T

32T —

16T —)))
linearithmic

8T —

linear

1 | |
size — 1K 2K 4K 8K

Some algorithmic successes

N-body simulation.
« Simulate gravitational interactions among N bodies.
e Brute force: NZ steps.

e Barnes-Hut algorithm: Nlog N steps, enables new research.
PU '81

time

} quadratic
64T -
32T —
16T —)))
2 linearithmic
8T — -
linear

[[[[
size — 1K 2K 4K 8K

The challenge

Q. Will my program be able to solve a large practical input?

Why is my program so slow ? Why does it run out @

Insight. [Knuth 1970s] Use scientific method to understand performance.

Scientific method applied to analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.
« Observe some feature of the natural world.
Hypothesize a model that is consistent with the observations.

Predict events using the hypothesis.
Verify the predictions by making further observations.
Validate by repeating until the hypothesis and observations agree.

Principles.
« Experiments must be reproducible.
« Hypotheses must be falsifiable.

Feature of the natural world. Computer itself.

3-SUM: brute-force algorithm

public class ThreeSum

{

public static int count(int[] a)
{

int N = a.length;

int count = 0;

for (int 1 = 0; 1 < N; i++)

for (int j = 1+1; J < N; Jj++)
for (int k = j+1; k < N; k++)
1f (a[1] + a[j] + al[k] == 0)
count++;
return count;

public static void main(String[] args)

{
In in = new In(args[0]);
int[] a = in.readAl1Ints();
StdOut.printin(count(a));

check each triple

for simplicity, ignore
integer overflow

12

Measuring the running time

Q. How to time a program?
A. Manual.

% java ThreeSum 1Kints.txt

70

tick tick tick

% java ThreeSum 2Kints.txt

528

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

% java ThreeSum 4Kints.txt

4039

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

13

Measuring the running time

Q. How to time a program?
A. Automatic.

public class Stopwatch (partofstdlib.jar)

Stopwatc h() create a new stopwatch

double elapsedTime() time since creation (in seconds)

public static void main(String[] args)

{
In in = new In(args[0]);
int[] a = in.readAll1Ints(Q);
Stopwatch stopwatch = new Stopwatch();
StdOut.println(ThreeSum.count(a));
double time = stopwatch.elapsedTime();
StdOut.printin("elapsed time " + time);

14

Empirical analysis

Run the program for various input sizes and measure running time.

250 0.0
500 0.0
1,000 0.1
2,000 0.8
4,000 6.4
8,000 51.1

16,000 ?

Data analysis

Standard plot. Plot running time T'(N) vs. input size N.

standard plot 5

running time T(N)
w IN
) o

N
o

10

1K 2K 4K 8K
problem size N

Data analysis

Log-log plot. Plot running time T (N) vs. input size N using log-log scale.

log-logplot 5712 —

stmz%ht line
=6 of slope 3 \
i lg(T(N))= blgN +c
iz 3 b=12.999
3.2 ¢ =-33.2103

Ig(T(N))

1.6 -
T(N)= aN?b wherea=2¢

o0
|

3 orders
of magnitude

IK 2K 4K 8K
IlgN

power law

Regression. Fit straight line through data points: aN®. _ slope
Hypothesis. The running time is about 1.006 x 10 10 x N 299 secondSs.

18

Prediction and validation

Hypothesis. The running time is about 1.006 x 10 10 x N 299 secondSs.

N\

"order of growth" of running
time is about N3 [stay tuned]

Predictions.
e 51.0 seconds for N = 8,000.
e 408.1 seconds for N =16,000.

oo

8,000 51.1
8,000 51.0
8,000 51.1
16,000 410.8

validates hypothesis!

19

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Run program, doubling the size of the input.

250 0.0 -

T(N) alN®
— 9b
500 0.0 4.8 2.3
1,000 0.1 6.9 2.8
2,000 0.8 7.7 2.9
4,000 6.4 8.0 3.0 «— 19(6.4/0.8)=3.0
8,000 51.1 8.0 3.0

T

seems to converge to a constant b=3

Hypothesis. Running time is about a N? with b =1g ratio.
Caveat. Cannot identify logarithmic factors with doubling hypothesis.

20

Experimental algorithmics

System independent effects.
* Algorithm. } determines exponent)

in power law

e |Input data.

determines constant
in power law

System dependent effects.
« Hardware: CPU, memory, cache, ...
o Software: compiler, interpreter, garbage collector, ...

« System: operating system, network, other apps, ...)

Bad news. Difficult to get precise measurements.
Good news. Much easier and cheaper than other sciences.

AN

e.g., can run huge number of experiments

22

Cost of basic operations

Challenge. How to estimate constants.

operation example nanoseconds f

integer add a+b 2.1
integer multiply a*b 2.4
integer divide a/ b 5.4

floating-point add a+b 4.6
floating-point multiply a*b 4.2
floating-point divide a/ b 13.5

sine Math.sin(theta) 91.3
arctangent Math.atan2(y, x) 129.0

1 Running OS X on Macbook Pro 2.2GHz with 2GB RAM

Cost of basic operations

Observation. Most primitive operations take constant time.

operation example nanoseconds f

variable declaration int a C1
assignment statement a=>b o
integer compare ab C3
array element access ali] Ca
array length a.length Cs
1D array allocation new 1nt[N] ce N
2D array allocation new 1nt[N][N] c7 N2

Caveat. Non-primitive operations often take more than constant time.

\

novice mistake: abusive string concatenation

Simplifying the calculations

“ It is convenient to have a measure of the amount of work involved
in a computing process, even though it be a very crude one. We may
count up the number of times that various elementary operations are
applied in the whole process and then given them various weights.
We might, for instance, count the number of additions, subtractions,
multiplications, divisions, recording of numbers, and extractions
of figures from tables. In the case of computing with matrices most
of the work consists of multiplications and writing down numbers,
and we shall therefore only attempt to count the number of

multiplications and recordings. © — Alan Turing

ROUNDING-OFF ERRORS IN MATRIX PROCESSES
By A. M. TURING

(National Physical Laboratory, Teddington, Middlesex)
[Received 4 November 1947]

SUMMARY

A number of methods of solving sets of linear equations and inverting matrices
are discussed. The theory of the rounding-off errors involved is investigated for
some of the methods. In all cases examined, including the well-known °‘Gauss
elimination process’, it is found that the errors are normally quite moderate: no
exponential build-up need occur.

31

Common order-of-growth classifications

Definition. If f(N) ~c g(N) for some constant ¢ >0, then the order of growth
of f(N) is g(V).

« Ignores leading coefficient.
e Ignores lower-order terms.

Ex. The order of growth of the running time of this code is N 3.

int count = 0;
for (int i = 0; 1 < N; i++)
for (int j = 1+1; j < N; Jj++)
for (int k = j+1; k < N; k++)
1if (a[i1] + a[j] + alk] == 0)
count++;

Typical usage. With running times.

\ where leading coefficient
depends on machine, compiler, JVM, ...

42

Common order-of-growth classifications

Good news. The set of functions
1, logN, N, NlogN, N2, N3, and 2¥
suffices to describe the order of growth of most common algorithms.

log-log plot
512T 4 —~ O e ¢
= N &&\N Q“@N $
4 S S S & 8
S \\S‘ '(\QJ@ \N'{\
I \¥ AN
4 =
L
64T -
QU
S -
8T —
4T -
2T ' '
logarithmic
- constant
| | | | | | | | | |
1K 2K 4K 8K 512K

size

Typical orders of growth

Common order-of-growth classifications

order of

growth

typical code framework

description example

T(2N) | T(N)

log N

Nlog N

2N

constant

logarithmic

linear

linearithmic

quadratic

cubic

exponential

while (N > 1)
{ N=N/2; ... }

for (int i = 0; i < N; i++)

{ ... }

[see mergesort lecture]

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
{ ... }

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
{ ... }

[see combinatorial search lecture]

add two

statement
numbers

divide in half binary search

find the
loop .
maximum
divide
mergesort
and conquer
check all
double loop _
pairs
. check all
triple loop _
triples
exhaustive check all
search subsets

T(N)

44

Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.
« Too small, go left.

. Too big, go right. @
e Equal, found.

successful search for 33

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

lo hi

45

keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/14DemoBinarySearch.key

Comparing programs

Hypothesis. The sorting-based N?log N algorithm for 3-SuMm is significantly
faster in practice than the brute-force N3 algorithm.

- time (seconds) - time (seconds)

1,000 1,000
2,000 0.8 2,000 0.18
4,000 6.4 4,000 0.34
8,000 51.1 8,000 0.96
ThreeSum.java 16,000 3.67
32,000 14.88
64,000 59.16

ThreeSumDeluxe.java

Guiding principle. Typically, better order of growth = faster in practice.

Types of analyses

Best case. Lower bound on cost.
« Determined by “easiest” input.
e Provides a goal for all inputs.

Worst case. Upper bound on cost. \
« Determined by “most difficult” input.
« Provides a guarantee for all inputs.

> this course

Average case. Expected cost for random input.
« Need a model for “random” input.

e Provides a way to predict performance.)

Ex 1. Array accesses for brute-force 3-Sum. Ex 2. Compares for binary search.
Best: ~ Y% N3 Best: ~ 1

Average: ~% N3 Average: ~ IgN

Worst: ~ Y% N3 Worst: ~ IgN

Theory of algorithms

Goals.
o Establish “difficulty” of a problem.
« Develop “optimal” algorithms.

Approach.
o Suppress details in analysis: analyze “to within a constant factor.”
« Eliminate variability in input model: focus on the worst case.

Upper bound. Performance guarantee of algorithm for any input.
Lower bound. Proof that no algorithm can do better.
Optimal algorithm. Lower bound = upper bound (to within a constant factor).

52

Commonly-used notations in the theory of algorithms

YA N2
_ asymptotic I0N?2 classify
Big Theta order of growth oW 5N2+22Nlog N+ 3N algorithms
I0N?2
Big Oh O(N?) and I O(NV? 1O develop
i and smaller
g (N?) 22 Nlog N+3 N upper bounds
Y2 N2
_ N> develop
Big Omega O(N?) and larger CQ(N?)

N3+22NlogN+3N lower bounds

Basics

Bit. Oor 1. NIST most computer scientists
Byte. 8 bits. | |

Megabyte (MB). 1 million or 220 bytes.
Gigabyte (GB). 1 billion or 230 bytes.

64-bit machine. We assume a 64-bit machine with 8-byte pointers.
e Can address more memory. N

e Pointers use more space. some JVMs "compress” ordinary. object
pointers to 4 bytes to avoid this cost

60

Typical memory usage for primitive types and arrays

boolean char[] 2N+ 24
byte 1 int[] 4N + 24
char 2 double[] 8N + 24
int 4 one-dimensional arrays
float 4
Tong 8

double 8

char[][] ~2MN

primitive types
int[][] ~4MN
double[][] ~8MN

two-dimensional arrays

6l

Typical memory usage for objects in Java

Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Each object uses a multiple of 8 bytes.

Ex 1.

A Date object uses 32 bytes of memory.

public class Date

{
private int day;
private int month;
private int year;

object
overhead

day

month

year

padding

=

int
alues

16 bytes (object overhead)

4 bytes (int)
4 bytes (int)
4 bytes (int)
4 bytes (padding)

32 bytes

62

Typical memory usage summary

Total memory usage for a data type value:
e Primitive type: 4 bytes for int, 8 bytes for double, ...

Object reference: 8 bytes.

Array: 24 bytes + memory for each array entry.

Object: 16 bytes + memory for each instance variable.
Padding: round up to multiple of 8 bytes. N

+ 8 extra bytes per inner class object
(for reference to enclosing class)

Shallow memory usage: Don't count referenced objects.

Deep memory usage: If array entry or instance variable is a reference,
count memory (recursively) for referenced object.

63

Example

Q. How much memory does WeightedQuickUnionUF use as a function of N?
Use tilde notation to simplify your answer.

. . . . 16 bytes
?ub11c class WeightedQuickUnionUF T (e ovariesd)
private int[] 1d; «— 8+ (4N + 24) bytes each

<€«— (reference + int[] array)
4 bytes (int)

private 1nt[] sz;

private int count; D
<«——— 4 bytes (padding)

public WeightedQuickUnionUF(int N)
{ 8N + 88 bytes
1d = new 1nt[N];
sz = new 1nt[N];
for (int 1 = 0; 1 < N; 1++) 1d[1] =
for (int i = 0; 1 < N; i++) sz[i] = 1;

=
A |

A. 8 N+ 88 ~ 8 N bytes.

Turning the crank: summary

Empirical analysis.
o Execute program to perform experiments.

« Assume power law and formulate a hypothesis for running time.
« Model enables us to make predictions.

Mathematical analysis.

« Analyze algorithm to count frequency of operations.
o Use tilde notation to simplify analysis.
« Model enables us to explain behavior.

Scientific method.
« Mathematical model is independent of a particular system;
applies to machines not yet built.

« Empirical analysis is necessary to validate mathematical models
and to make predictions.

65

