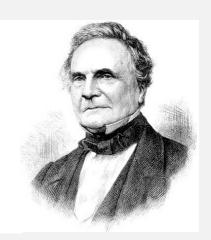
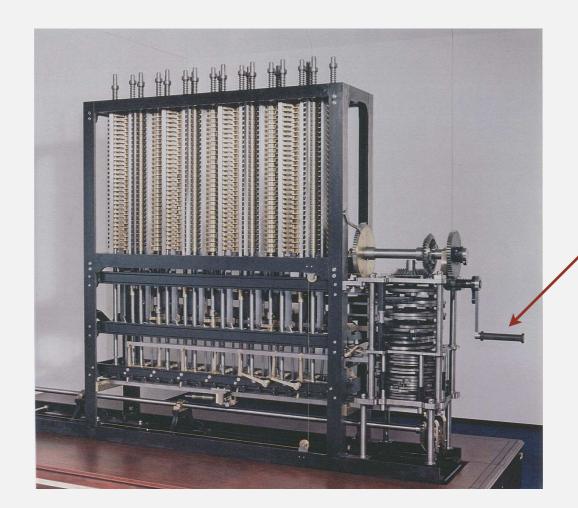
Running time

"As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise—By what course of calculation can these results be arrived at by the machine in the shortest time?" — Charles Babbage (1864)





how many times do you have to turn the crank?

Analytic Engine

Cast of characters

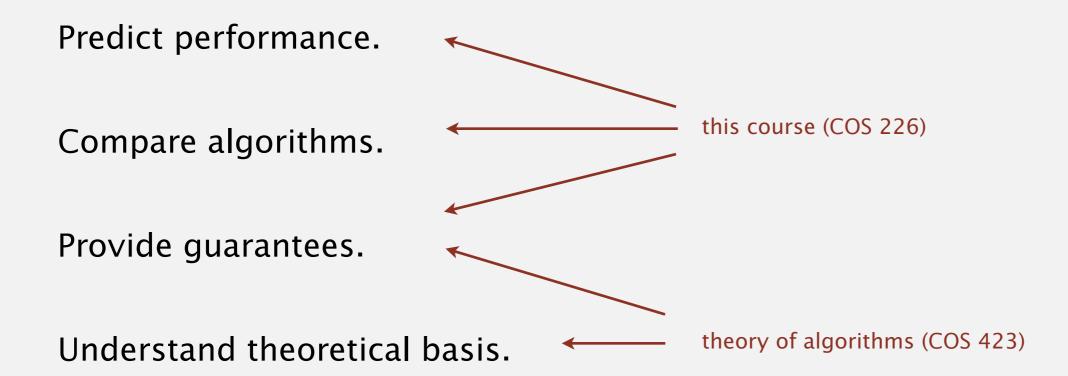
Programmer needs to develop a working solution.

Client wants to solve problem efficiently.

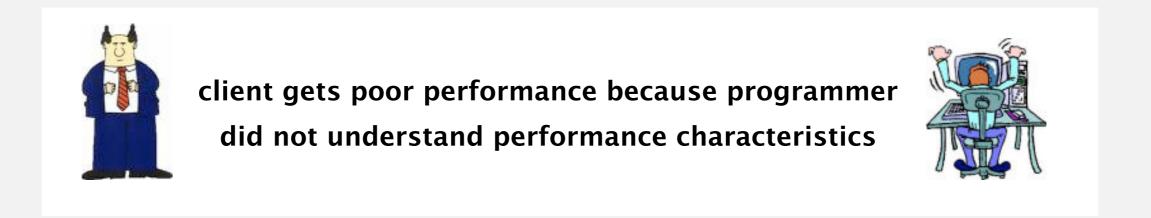
Student might play any or all of these roles someday.

Theoretician wants to understand.

Reasons to analyze algorithms



Primary practical reason: avoid performance bugs.

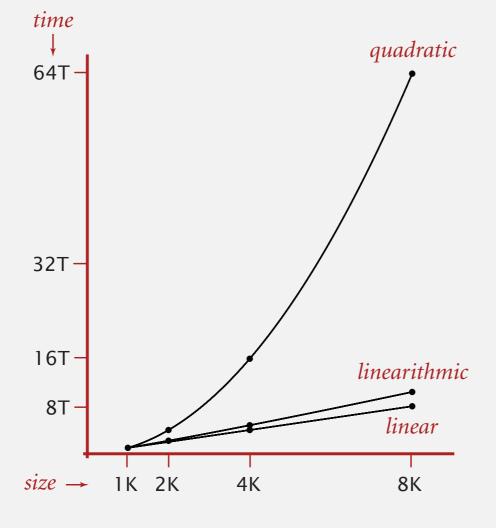


Some algorithmic successes

Discrete Fourier transform.

- Break down waveform of N samples into periodic components.
- Applications: DVD, JPEG, MRI, astrophysics,
- Brute force: N^2 steps.
- FFT algorithm: $N \log N$ steps, enables new technology.

Friedrich Gauss 1805

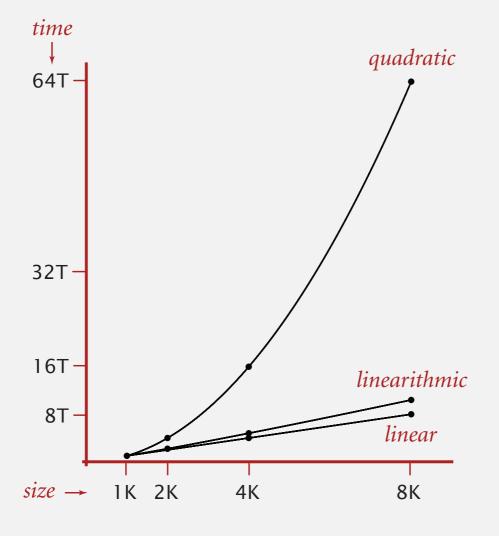


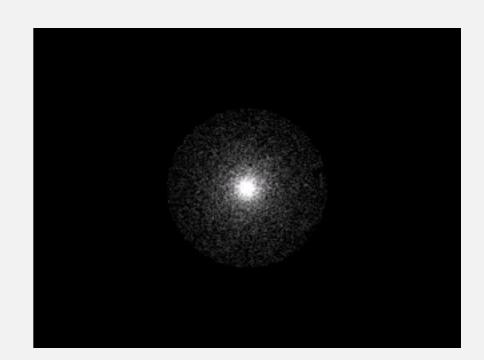
Some algorithmic successes

N-body simulation.

- Simulate gravitational interactions among N bodies.
- Brute force: N^2 steps.
- Barnes-Hut algorithm: $N \log N$ steps, enables new research.

Andrew Appel PU '81





The challenge

Q. Will my program be able to solve a large practical input?

Why is my program so slow?

Why does it run out of memory?

Insight. [Knuth 1970s] Use scientific method to understand performance.

Scientific method applied to analysis of algorithms

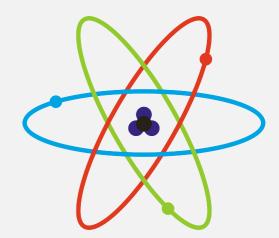
A framework for predicting performance and comparing algorithms.

Scientific method.

- Observe some feature of the natural world.
- Hypothesize a model that is consistent with the observations.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate by repeating until the hypothesis and observations agree.

Principles.

- Experiments must be reproducible.
- Hypotheses must be falsifiable.



Feature of the natural world. Computer itself.

3-SUM: brute-force algorithm

```
public class ThreeSum
   public static int count(int[] a)
      int N = a.length;
      int count = 0;
      for (int i = 0; i < N; i++)
         for (int j = i+1; j < N; j++)
                                                          check each triple
            for (int k = j+1; k < N; k++)
                if (a[i] + a[j] + a[k] == 0)
                                                          for simplicity, ignore
                                                          integer overflow
                   count++;
      return count;
   public static void main(String[] args)
      In in = new In(args[0]);
      int[] a = in.readAllInts();
      StdOut.println(count(a));
```

Measuring the running time

- Q. How to time a program?
- A. Manual.

% java ThreeSum 1Kints.txt

70

% java ThreeSum 2Kints.txt

tick tick

528

% java ThreeSum 4Kints.txt

tick tick

Measuring the running time

- Q. How to time a program?
- A. Automatic.

```
public static void main(String[] args)
{
    In in = new In(args[0]);
    int[] a = in.readAllInts();
    Stopwatch stopwatch = new Stopwatch();
    StdOut.println(ThreeSum.count(a));
    double time = stopwatch.elapsedTime();
    StdOut.println("elapsed time " + time);
}
```

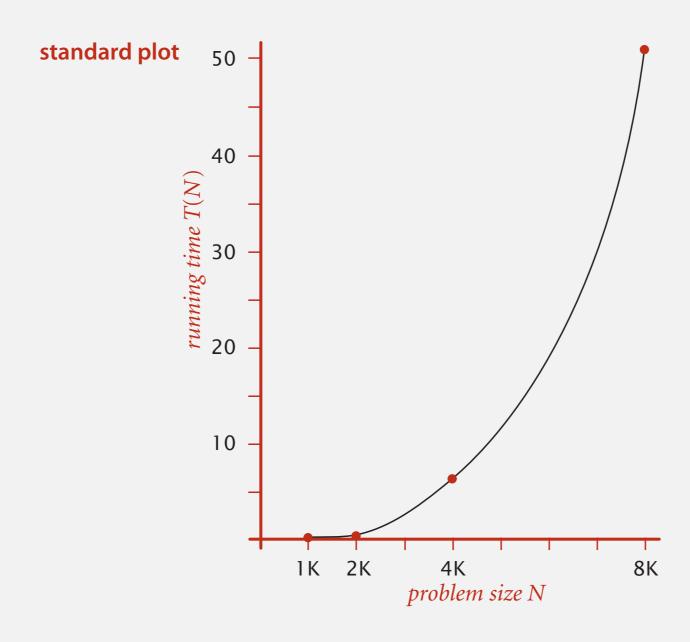
Empirical analysis

Run the program for various input sizes and measure running time.

N	time (seconds) †
250	0.0
500	0.0
1,000	0.1
2,000	0.8
4,000	6.4
8,000	51.1
16,000	?

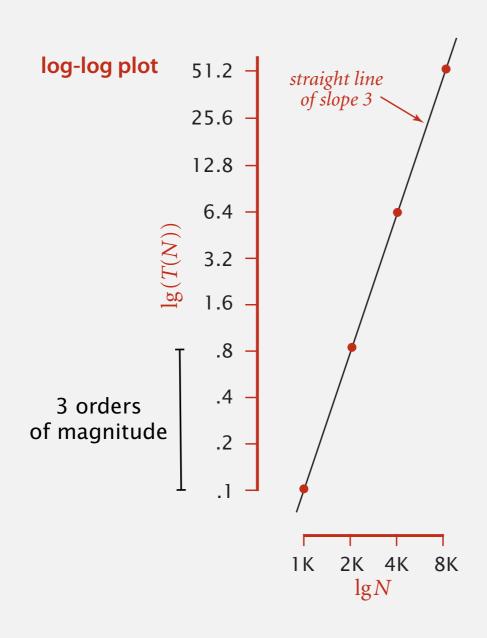
Data analysis

Standard plot. Plot running time T(N) vs. input size N.



Data analysis

Log-log plot. Plot running time T(N) vs. input size N using log-log scale.



$$lg(T(N)) = b lg N + c$$

 $b = 2.999$
 $c = -33.2103$

$$T(N) = a N^b$$
, where $a = 2^c$

power law

Regression. Fit straight line through data points: $a N^b$.

Hypothesis. The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.

Prediction and validation

Hypothesis. The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.

"order of growth" of running time is about N³ [stay tuned]

Predictions.

- 51.0 seconds for N = 8,000.
- 408.1 seconds for N = 16,000.

Observations.

N	time (seconds) †
8,000	51.1
8,000	51.0
8,000	51.1
16,000	410.8

validates hypothesis!

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Run program, doubling the size of the input.

N	time (seconds) †	ratio	lg ratio	$T(2N)$ $a(2N)^b$
250	0.0		-	$\frac{1}{T(N)} = \frac{1}{aN^b}$
500	0.0	4.8	2.3	$= 2^b$
1,000	0.1	6.9	2.8	
2,000	0.8	7.7	2.9	
4,000	6.4	8.0	3.0 ←	- Ig (6.4 / 0.8) = 3.0
8,000	51.1	8.0	3.0	
		seems	to converge to	a constant b ≈ 3

Hypothesis. Running time is about $a N^b$ with b = Ig ratio.

Caveat. Cannot identify logarithmic factors with doubling hypothesis.

Experimental algorithmics

System independent effects.

Algorithm.
 Input data.

determines exponent in power law

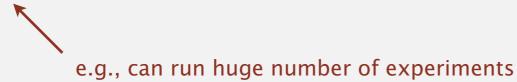
System dependent effects.

- Hardware: CPU, memory, cache, ...
- Software: compiler, interpreter, garbage collector, ...
- System: operating system, network, other apps, ...

determines constant in power law

Bad news. Difficult to get precise measurements.

Good news. Much easier and cheaper than other sciences.



Cost of basic operations

Challenge. How to estimate constants.

operation	example	nanoseconds †
integer add	a + b	2.1
integer multiply	a * b	2.4
integer divide	a / b	5.4
floating-point add	a + b	4.6
floating-point multiply	a * b	4.2
floating-point divide	a / b	13.5
sine	Math.sin(theta)	91.3
arctangent	Math.atan2(y, x)	129.0

[†] Running OS X on Macbook Pro 2.2GHz with 2GB RAM

Cost of basic operations

Observation. Most primitive operations take constant time.

operation	example	nanoseconds †
variable declaration	int a	c_1
assignment statement	a = b	<i>C</i> 2
integer compare	a < b	<i>C</i> 3
array element access	a[i]	<i>C</i> 4
array length	a.length	<i>C</i> 5
1D array allocation	new int[N]	$c_6 N$
2D array allocation	new int[N][N]	$c_7 N^2$

Caveat. Non-primitive operations often take more than constant time.

Simplifying the calculations

"It is convenient to have a measure of the amount of work involved in a computing process, even though it be a very crude one. We may count up the number of times that various elementary operations are applied in the whole process and then given them various weights. We might, for instance, count the number of additions, subtractions, multiplications, divisions, recording of numbers, and extractions of figures from tables. In the case of computing with matrices most of the work consists of multiplications and writing down numbers, and we shall therefore only attempt to count the number of multiplications and recordings." — Alan Turing

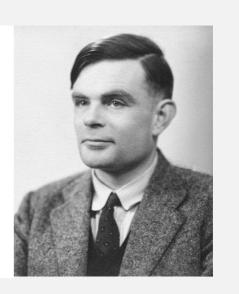
ROUNDING-OFF ERRORS IN MATRIX PROCESSES

By A. M. TURING

(National Physical Laboratory, Teddington, Middlesex)
[Received 4 November 1947]

SUMMARY

A number of methods of solving sets of linear equations and inverting matrices are discussed. The theory of the rounding-off errors involved is investigated for some of the methods. In all cases examined, including the well-known 'Gauss elimination process', it is found that the errors are normally quite moderate: no exponential build-up need occur.



Common order-of-growth classifications

Definition. If $f(N) \sim c \ g(N)$ for some constant c > 0, then the order of growth of f(N) is g(N).

- Ignores leading coefficient.
- Ignores lower-order terms.

Ex. The order of growth of the running time of this code is N^3 .

```
int count = 0;
for (int i = 0; i < N; i++)
  for (int j = i+1; j < N; j++)
    for (int k = j+1; k < N; k++)
      if (a[i] + a[j] + a[k] == 0)
      count++;</pre>
```

Typical usage. With running times.

Common order-of-growth classifications

Good news. The set of functions

1, $\log N$, N, $N \log N$, N^2 , N^3 , and 2^N suffices to describe the order of growth of most common algorithms.



Common order-of-growth classifications

order of growth	name	typical code framework	description	example	T(2N) / T(N)
1	constant	a = b + c;	statement	add two numbers	1
$\log N$	logarithmic	while (N > 1) { N = N / 2; }	divide in half	binary search	~ 1
N	linear	for (int i = 0; i < N; i++) { }	loop	find the maximum	2
$N \log N$	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N^{2}	quadratic	for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { }	double loop	check all pairs	4
N ³	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }</pre>	triple loop	check all triples	8
2^N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

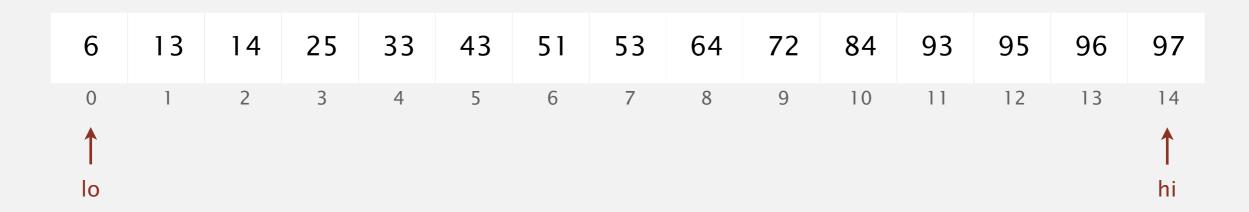
Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

- Too small, go left.
- Too big, go right.
- Equal, found.

successful search for 33



Comparing programs

Hypothesis. The sorting-based $N^2 \log N$ algorithm for 3-Sum is significantly faster in practice than the brute-force N^3 algorithm.

N	time (seconds)
1,000	0.1
2,000	0.8
4,000	6.4
8,000	51.1

ThreeSum.java

N	time (seconds)
1,000	0.14
2,000	0.18
4,000	0.34
8,000	0.96
16,000	3.67
32,000	14.88
64,000	59.16

ThreeSumDeluxe.java

Guiding principle. Typically, better order of growth \Rightarrow faster in practice.

Types of analyses

Best case. Lower bound on cost.

- Determined by "easiest" input.
- Provides a goal for all inputs.

Worst case. Upper bound on cost.

- Determined by "most difficult" input.
- Provides a guarantee for all inputs.

Average case. Expected cost for random input.

- Need a model for "random" input.
- Provides a way to predict performance.

this course

Ex 1. Array accesses for brute-force 3-Sum.

Best: $\sim \frac{1}{2} N^3$

Average: $\sim \frac{1}{2} N^3$

Worst: $\sim \frac{1}{2} N^3$

Ex 2. Compares for binary search.

Best: ~ 1

Average: $\sim \lg N$

Worst: $\sim \lg N$

Theory of algorithms

Goals.

- Establish "difficulty" of a problem.
- Develop "optimal" algorithms.

Approach.

- Suppress details in analysis: analyze "to within a constant factor."
- Eliminate variability in input model: focus on the worst case.

Upper bound. Performance guarantee of algorithm for any input.

Lower bound. Proof that no algorithm can do better.

Optimal algorithm. Lower bound = upper bound (to within a constant factor).

Commonly-used notations in the theory of algorithms

notation	provides	example	shorthand for	used to
Big Theta	asymptotic order of growth	$\Theta(N^2)$	$\frac{1}{2} N^2$ $10 N^2$ $5 N^2 + 22 N \log N + 3N$:	classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	$O(N^2)$	$10 N^{2}$ $100 N$ $22 N \log N + 3 N$ \vdots	develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	$\Omega(N^2)$	$\frac{1/2}{N^{5}}$ N^{5} $N^{3} + 22 N \log N + 3 N$:	develop lower bounds

Basics

Bit. 0 or 1.

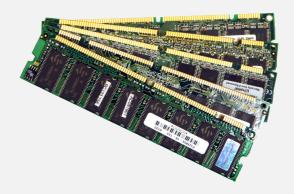
NIST

most computer scientists

Byte. 8 bits.

Megabyte (MB). 1 million or 2²⁰ bytes.

Gigabyte (GB). 1 billion or 2³⁰ bytes.



64-bit machine. We assume a 64-bit machine with 8-byte pointers.

- Can address more memory.
- Pointers use more space.

some JVMs "compress" ordinary object pointers to 4 bytes to avoid this cost

Typical memory usage for primitive types and arrays

type	bytes
boolean	1
byte	1
char	2
int	4
float	4
long	8
double	8

primitive types

type	bytes
char[]	2N + 24
int[]	4N + 24
double[]	8N + 24

one-dimensional arrays

type	bytes
char[][]	$\sim 2~M~N$
int[][]	$\sim 4~M~N$
double[][]	~ 8 <i>M N</i>

two-dimensional arrays

Typical memory usage for objects in Java

Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Each object uses a multiple of 8 bytes.

Ex 1. A Date object uses 32 bytes of memory.

```
public class Date
   private int day;
                                    object
                                                        16 bytes (object overhead)
   private int month;
                                  overhead
   private int year;
                                    day
                                                        4 bytes (int)
                                   month
                                                        4 bytes (int)
                                   year
                                                        4 bytes (int)
                                   padding
                                                        4 bytes (padding)
                                                        32 bytes
```

Typical memory usage summary

Total memory usage for a data type value:

- Primitive type: 4 bytes for int, 8 bytes for double, ...
- Object reference: 8 bytes.
- Array: 24 bytes + memory for each array entry.
- Object: 16 bytes + memory for each instance variable.
- Padding: round up to multiple of 8 bytes.

+ 8 extra bytes per inner class object (for reference to enclosing class)

Shallow memory usage: Don't count referenced objects.

Deep memory usage: If array entry or instance variable is a reference, count memory (recursively) for referenced object.

Example

Q. How much memory does WeightedQuickUnionUF use as a function of N? Use tilde notation to simplify your answer.

```
16 bytes
public class WeightedQuickUnionUF
                                                             (object overhead)
   private int[] id;
                                                             8 + (4N + 24) bytes each
                                                             (reference + int[] array)
   private int[] sz;
                                                             4 bytes (int)
   private int count;
                                                             4 bytes (padding)
   public WeightedQuickUnionUF(int N)
                                                             8N + 88 bytes
      id = new int[N];
      sz = new int[N];
      for (int i = 0; i < N; i++) id[i] = i;
      for (int i = 0; i < N; i++) sz[i] = 1;
```

A. $8N + 88 \sim 8N$ bytes.

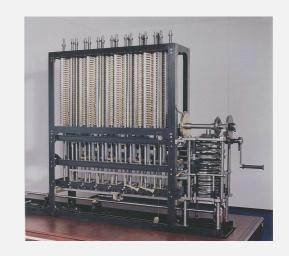
Turning the crank: summary

Empirical analysis.

- Execute program to perform experiments.
- Assume power law and formulate a hypothesis for running time.
- Model enables us to make predictions.

Mathematical analysis.

- Analyze algorithm to count frequency of operations.
- · Use tilde notation to simplify analysis.
- Model enables us to explain behavior.



Scientific method.

- Mathematical model is independent of a particular system; applies to machines not yet built.
- Empirical analysis is necessary to validate mathematical models and to make predictions.