
Fundamental data types.

・Value: collection of objects.

・Operations: insert, remove, iterate, test if empty.

・Intent is clear when we insert.

・Which item do we remove?

Stack. Examine the item most recently added.

Queue. Examine the item least recently added.

pop

pushstack

2

Stacks and queues

LIFO = "last in first out"

FIFO = "first in first out"

enqueue dequeue

queue

3

Client, implementation, interface

Separate interface and implementation.

Ex: stack, queue, bag, priority queue, symbol table, union-find, .…

Benefits.

・Client can't know details of implementation ⇒

client has many implementation from which to choose.

・Implementation can't know details of client needs ⇒

many clients can re-use the same implementation.

・Design: creates modular, reusable libraries.

・Performance: use optimized implementation where it matters.

 Client: program using operations defined in interface.

 Implementation: actual code implementing operations.

 Interface: description of data type, basic operations.

6

How to implement a stack with a linked list?

A. Can't be done efficiently with a singly-linked list.

B.

C.

top of stack

it was the best of null

of best the was it null

top of stack

7

Stack: linked-list implementation

・Maintain pointer first to first node in a singly-linked list.

・Push new item before first.

・Pop item from first.

first

of best the was it null

top of stack

8

Stack pop: linked-list implementation

to

be

orfirst

first = first.next;

to

be
or

first

null

null

Removing the first node in a linked list

String item = first.item;

save item to return

delete first node

return item;

return saved item

inner class

private class Node
{
 String item;
 Node next;
}

9

Stack push: linked-list implementation

to

be

Inserting a new node at the beginning of a linked list

first = new Node();

Node oldfirst = first;

orfirst

to

be

or

oldfirst

oldfirst

first

save a link to the list

create a new node for the beginning

set the instance variables in the new node

first.item = "not";
first.next = oldfirst;

to

be
or

notfirst

null

null

null

inner class

private class Node
{
 String item;
 Node next;
}

Proposition. Every operation takes constant time in the worst case.

Proposition. A stack with N items uses ~ 40 N bytes.

Remark. This accounts for the memory for the stack

(but not the memory for strings themselves, which the client owns).

11

Stack: linked-list implementation performance

8 bytes (reference to String)

8 bytes (reference to Node)

16 bytes (object overhead)

40 bytes per stack node

public class Node
{
 String item;
 Node next;
...
}

node object (inner class) 40 bytes

references

object
overhead

extra
overhead

item

next

8 bytes (inner class extra overhead)

inner class

private class Node
{
 String item;
 Node next;
}

Tradeoffs. Can implement a stack with either resizing array or linked list;

client can use interchangeably. Which one is better?

Linked-list implementation.

・Every operation takes constant time in the worst case.

・Uses extra time and space to deal with the links.

Resizing-array implementation.

・Every operation takes constant amortized time.

・Less wasted space.

23

Stack implementations: resizing array vs. linked list

to be or not null null null nullN = 4

to

be

Inserting a new node at the beginning of a linked list

first = new Node();

Node oldfirst = first;

orfirst

to

be

or

oldfirst

oldfirst

first

save a link to the list

create a new node for the beginning

set the instance variables in the new node

first.item = "not";
first.next = oldfirst;

to

be
or

notfirst

null

null

null

26

How to implement a queue with a linked list?

A. Can't be done efficiently with a singly-linked list.

B.

C.

back of queue front of queue

of best the wastimes it null

front of queue back of queue

was the best ofit times null

27

Queue: linked-list implementation

・Maintain one pointer first to first node in a singly-linked list.

・Maintain another pointer last to last node.

・Dequeue from first.

・Enqueue after last.

first last

was the best ofit times null

front of queue back of queue

Remark. Identical code to linked-list stack pop().
28

Queue dequeue: linked-list implementation

or

be

tofirst

first = first.next;

or

be
to

first

null

null

Removing the first node in a linked list

String item = first.item;

save item to return

delete first node

return item;

return saved item

last

lastinner class

private class Node
{
 String item;
 Node next;
}

29

Queue enqueue: linked-list implementation

inner class

private class Node
{
 String item;
 Node next;
}

or

be

Inserting a new node at the end of a linked list

last = new Node();
last.item = "not";

Node oldlast = last;

tofirst

or

be

to

oldlast

oldlast

last

save a link to the last node

create a new node for the end

link the new node to the end of the list

oldlast.next = last;

not

not

or
be

tofirst

null

null

null

null

last

last
first

oldlast

Design challenge. Support iteration over stack items by client,

without revealing the internal representation of the stack.

Java solution. Make stack implement the java.lang.Iterable interface.

Iteration

43

s[]

N

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

i

first current

of best the wastimes it null

49

Java collections library

List interface. java.util.List is API for an sequence of items.

Implementations. java.util.ArrayList uses resizing array;

java.util.LinkedList uses linked list.

 public interface List<Item> implements Iterable<Item> public interface List<Item> implements Iterable<Item> public interface List<Item> implements Iterable<Item>

List() create an empty list

boolean isEmpty() is the list empty?

int size() number of items

void add(Item item) append item to the end

Item get(int index) return item at given index

Item remove(int index) return and delete item at given index

boolean contains(Item item) does the list contain the given item?

Iterator<Item> iterator() iterator over all items in the list

...

caveat: only some
operations are efficient

