CSC300: Resizing Arrays and Amortized Analysis

Contents [0/13]

Amortized Analysis [1/13]
PerformanceOfArrays [2/13]
PerformanceOfArrays +1 [3/13]
PerformanceOfArrays +10 [4/13]
PerformanceOfArrays +100 [5/13]
PerformanceOfArrays *2 [6/13]
PerformanceOfArrays *4 [7/13]
PerformanceOfArrays *8 [8/13]
PerformanceOfArrays *1.5 [9/13]
PerformanceOfArrays *1.1 [10/13]
PerformanceOfStrings [11/13]
PerformanceOfStrings [12/13]
PerformanceOfStrings [13/13]

(Click here for one slide per page)


Amortized Analysis [1/13]

Algorithm input includes data and a sequence of operations performed by the client

Amortized analysis provides a worst-case performance guarantee on a sequence of operations

We will look at

PerformanceOfArrays [2/13]

file:PerformanceOfArrays.java [source]
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
package ds1.student.orderofgrowth;

import stdlib.StdOut;
import stdlib.Stopwatch;

public class PerformanceOfArrays {
  private double[] a;
  private int N;
  public PerformanceOfArrays() {
    this.a = new double[1];
    this.N = 0;
  }
  private void resize(int capacity) {
    double[] temp = new double[capacity];
    for (int i = 0; i < N; i+=1) {
      if (SHOW) StdOut.format ("%02d ", i);
      temp[i] = a[i];
      ops += 1;
    }
    if (SHOW) StdOut.println();
    a = temp;
  }
  public void append(double item) {
    if (N == a.length) resize (1+N); //resize((int)Math.ceil (N*1.5));
    a[N] = item;
    N += 1;
    ops += 1;
  }
  
  private static long ops;
  private static boolean SHOW = true;
  public static void main(String[] args) {
    timeTrial(32);
    SHOW = false;
    
    int MIN = 256; 
    int MAX = 100_000_000;
    double prevTime = timeTrial(MIN);
    double prevOps = ops;
    double deltaSum = 0;
    int deltaNum = 0;
    for (int N = MIN*2; N<=MAX; N += N) {
      double time = timeTrial(N);
      StdOut.format ("Elapsed count f(%,13d): %,17d: %10.3f [%10.3f : %10.3f]\n", N, ops, ops / prevOps, time, time/prevTime);
      prevTime = time;
      deltaSum += ops/prevOps;
      deltaNum += 1;
      prevOps = ops;
    }
    StdOut.format ("Average delta: %.3f\n", deltaSum/deltaNum);
  }
  public static double timeTrial(int N) {
    ops = 0;
    Stopwatch s = new Stopwatch();
    PerformanceOfArrays perfOfArrays = new PerformanceOfArrays();
    for (int j=0; j<N; j+=1) {
      perfOfArrays.append(j);
    }
    return s.elapsedTime();
  }
}

PerformanceOfArrays +1 [3/13]

01
02
03
04
05
  public void append(double item) {
    if (N == a.length) resize(1+N);
    a[N] = item;
    N += 1;
  }

Output

00 
00 01 
00 01 02 
00 01 02 03 
00 01 02 03 04 
00 01 02 03 04 05 
00 01 02 03 04 05 06 
00 01 02 03 04 05 06 07 
00 01 02 03 04 05 06 07 08 
00 01 02 03 04 05 06 07 08 09 
00 01 02 03 04 05 06 07 08 09 10 
00 01 02 03 04 05 06 07 08 09 10 11 
00 01 02 03 04 05 06 07 08 09 10 11 12 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
Elapsed count f(          512):           131,328:      3.992 [     0.005 :      2.500]
Elapsed count f(        1,024):           524,800:      3.996 [     0.010 :      2.000]
Elapsed count f(        2,048):         2,098,176:      3.998 [     0.008 :      0.800]
Elapsed count f(        4,096):         8,390,656:      3.999 [     0.060 :      7.500]
Elapsed count f(        8,192):        33,558,528:      4.000 [     0.088 :      1.467]
Elapsed count f(       16,384):       134,225,920:      4.000 [     0.182 :      2.068]
Elapsed count f(       32,768):       536,887,296:      4.000 [     0.685 :      3.764]
Elapsed count f(       65,536):     2,147,516,416:      4.000 [     2.292 :      3.346]
Elapsed count f(      131,072):     8,590,000,128:      4.000 [     8.996 :      3.925]
Elapsed count f(      262,144):    34,359,869,440:      4.000 [    38.306 :      4.258]

N appends in quadratic time

Each append is amortized linear time

PerformanceOfArrays +10 [4/13]

01
02
03
04
05
  public void append(double item) {
    if (N == a.length) resize(10+N);
    a[N] = item;
    N += 1;
  }

Output


00 
00 01 02 03 04 05 06 07 08 09 10 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
Elapsed count f(          512):            13,824:      3.914 [     0.001 :   Infinity]
Elapsed count f(        1,024):            53,657:      3.881 [     0.003 :      3.000]
Elapsed count f(        2,048):           211,353:      3.939 [     0.003 :      1.000]
Elapsed count f(        4,096):           842,956:      3.988 [     0.011 :      3.667]
Elapsed count f(        8,192):         3,366,912:      3.994 [     0.011 :      1.000]
Elapsed count f(       16,384):        13,441,433:      3.992 [     0.063 :      5.727]
Elapsed count f(       32,768):        53,713,305:      3.996 [     0.085 :      1.349]
Elapsed count f(       65,536):       214,813,900:      3.999 [     0.348 :      4.094]
Elapsed count f(      131,072):       859,176,960:      4.000 [     1.005 :      2.888]
Elapsed count f(      262,144):     3,436,288,409:      4.000 [     3.955 :      3.935]
Elapsed count f(      524,288):    13,744,314,777:      4.000 [    17.241 :      4.359]
Elapsed count f(    1,048,576):    54,976,629,964:      4.000 [    71.803 :      4.165]

N appends in quadratic time

Out of 10 appends: 9 are constant time; 1 is linear

Each append is amortized linear time

PerformanceOfArrays +100 [5/13]

01
02
03
04
05
  public void append(double item) {
    if (N == a.length) resize(100+N);
    a[N] = item;
    N += 1;
  }

Output


00


        
Elapsed count f(          512):             2,018:      3.610 [     0.000 :      0.000]
Elapsed count f(        1,024):             6,535:      3.238 [     0.000 :        NaN]
Elapsed count f(        2,048):            23,069:      3.530 [     0.001 :   Infinity]
Elapsed count f(        4,096):            86,137:      3.734 [     0.006 :      6.000]
Elapsed count f(        8,192):           340,374:      3.952 [     0.008 :      1.333]
Elapsed count f(       16,384):         1,353,148:      3.975 [     0.013 :      1.625]
Elapsed count f(       32,768):         5,395,896:      3.988 [     0.019 :      1.462]
Elapsed count f(       65,536):        21,550,192:      3.994 [     0.072 :      3.789]
Elapsed count f(      131,072):        86,002,883:      3.991 [     0.162 :      2.250]
Elapsed count f(      262,144):       343,877,866:      3.998 [     0.553 :      3.414]
Elapsed count f(      524,288):     1,374,719,831:      3.998 [     1.775 :      3.210]
Elapsed count f(    1,048,576):     5,498,344,562:      4.000 [     7.048 :      3.971]
Elapsed count f(    2,097,152):    21,992,308,724:      4.000 [    29.507 :      4.187]

N appends in quadratic time

Out of 100 appends: 99 are constant time; 1 is linear

Each append is amortized linear time

PerformanceOfArrays *2 [6/13]

01
02
03
04
05
  public void append(double item) {
    if (N == a.length) resize(2*N);
    a[N] = item;
    N += 1;
  }

Output

00 
00 01 
00 01 02 03 
00 01 02 03 04 05 06 07 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 
Elapsed count f(          512):             1,023:      2.002 [     0.000 :        NaN]
Elapsed count f(        1,024):             2,047:      2.001 [     0.000 :        NaN]
Elapsed count f(        2,048):             4,095:      2.000 [     0.000 :        NaN]
Elapsed count f(        4,096):             8,191:      2.000 [     0.000 :        NaN]
Elapsed count f(        8,192):            16,383:      2.000 [     0.000 :        NaN]
Elapsed count f(       16,384):            32,767:      2.000 [     0.001 :   Infinity]
Elapsed count f(       32,768):            65,535:      2.000 [     0.003 :      3.000]
Elapsed count f(       65,536):           131,071:      2.000 [     0.007 :      2.333]
Elapsed count f(      131,072):           262,143:      2.000 [     0.002 :      0.286]
Elapsed count f(      262,144):           524,287:      2.000 [     0.003 :      1.500]
Elapsed count f(      524,288):         1,048,575:      2.000 [     0.007 :      2.333]
Elapsed count f(    1,048,576):         2,097,151:      2.000 [     0.015 :      2.143]
Elapsed count f(    2,097,152):         4,194,303:      2.000 [     0.028 :      1.867]
Elapsed count f(    4,194,304):         8,388,607:      2.000 [     0.043 :      1.536]
Elapsed count f(    8,388,608):        16,777,215:      2.000 [     0.055 :      1.279]
Elapsed count f(   16,777,216):        33,554,431:      2.000 [     0.147 :      2.673]
Elapsed count f(   33,554,432):        67,108,863:      2.000 [     0.360 :      2.449]
Elapsed count f(   67,108,864):       134,217,727:      2.000 [     0.597 :      1.658]
Average delta: 2.000

N appends in linear time

Each time we resize: constant appends double

Each append is amortized constant time

PerformanceOfArrays *4 [7/13]

01
02
03
04
05
  public void append(double item) {
    if (N == a.length) resize(4*N);
    a[N] = item;
    N += 1;
  }

Output



00 
00 01 02 03 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 
Elapsed count f(          512):               853:      2.501 [     0.000 :        NaN]
Elapsed count f(        1,024):             1,365:      1.600 [     0.000 :        NaN]
Elapsed count f(        2,048):             3,413:      2.500 [     0.000 :        NaN]
Elapsed count f(        4,096):             5,461:      1.600 [     0.000 :        NaN]
Elapsed count f(        8,192):            13,653:      2.500 [     0.001 :   Infinity]
Elapsed count f(       16,384):            21,845:      1.600 [     0.001 :      1.000]
Elapsed count f(       32,768):            54,613:      2.500 [     0.002 :      2.000]
Elapsed count f(       65,536):            87,381:      1.600 [     0.003 :      1.500]
Elapsed count f(      131,072):           218,453:      2.500 [     0.007 :      2.333]
Elapsed count f(      262,144):           349,525:      1.600 [     0.006 :      0.857]
Elapsed count f(      524,288):           873,813:      2.500 [     0.008 :      1.333]
Elapsed count f(    1,048,576):         1,398,101:      1.600 [     0.010 :      1.250]
Elapsed count f(    2,097,152):         3,495,253:      2.500 [     0.037 :      3.700]
Elapsed count f(    4,194,304):         5,592,405:      1.600 [     0.029 :      0.784]
Elapsed count f(    8,388,608):        13,981,013:      2.500 [     0.100 :      3.448]
Elapsed count f(   16,777,216):        22,369,621:      1.600 [     0.061 :      0.610]
Elapsed count f(   33,554,432):        55,924,053:      2.500 [     0.429 :      7.033]
Elapsed count f(   67,108,864):        89,478,485:      1.600 [     0.288 :      0.671]
Average delta: 2.050

N appends in linear time

Each time we resize: constant appends quadruple

Each append is amortized constant time

PerformanceOfArrays *8 [8/13]

01
02
03
04
05
  public void append(double item) {
    if (N == a.length) resize(8*N);
    a[N] = item;
    N += 1;
  }

Output




00 
00 01 02 03 04 05 06 07 
Elapsed count f(          512):               585:      1.778 [     0.000 :        NaN]
Elapsed count f(        1,024):             1,609:      2.750 [     0.000 :        NaN]
Elapsed count f(        2,048):             2,633:      1.636 [     0.000 :        NaN]
Elapsed count f(        4,096):             4,681:      1.778 [     0.000 :        NaN]
Elapsed count f(        8,192):            12,873:      2.750 [     0.001 :   Infinity]
Elapsed count f(       16,384):            21,065:      1.636 [     0.001 :      1.000]
Elapsed count f(       32,768):            37,449:      1.778 [     0.001 :      1.000]
Elapsed count f(       65,536):           102,985:      2.750 [     0.006 :      6.000]
Elapsed count f(      131,072):           168,521:      1.636 [     0.005 :      0.833]
Elapsed count f(      262,144):           299,593:      1.778 [     0.007 :      1.400]
Elapsed count f(      524,288):           823,881:      2.750 [     0.013 :      1.857]
Elapsed count f(    1,048,576):         1,348,169:      1.636 [     0.016 :      1.231]
Elapsed count f(    2,097,152):         2,396,745:      1.778 [     0.017 :      1.063]
Elapsed count f(    4,194,304):         6,591,049:      2.750 [     0.095 :      5.588]
Elapsed count f(    8,388,608):        10,785,353:      1.636 [     0.043 :      0.453]
Elapsed count f(   16,777,216):        19,173,961:      1.778 [     0.060 :      1.395]
Elapsed count f(   33,554,432):        52,728,393:      2.750 [     0.733 :     12.217]
Elapsed count f(   67,108,864):        86,282,825:      1.636 [     0.298 :      0.407]
Average delta: 2.055

N appends in linear time

Each time we resize: constant appends multiply by 8

Each append is amortized constant time

PerformanceOfArrays *1.5 [9/13]

01
02
03
04
05
  public void append(double item) {
    if (N == a.length) resize((int)Math.ceil (N*1.5));
    a[N] = item;
    N += 1;
  }

Output

00 
00 01 
00 01 02 
00 01 02 03 04 
00 01 02 03 04 05 06 07 
00 01 02 03 04 05 06 07 08 09 10 11 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 
Elapsed count f(          512):             1,922:      2.189 [     0.000 :        NaN]
Elapsed count f(        1,024):             3,144:      1.636 [     0.001 :   Infinity]
Elapsed count f(        2,048):             6,831:      2.173 [     0.000 :      0.000]
Elapsed count f(        4,096):            14,872:      2.177 [     0.000 :        NaN]
Elapsed count f(        8,192):            32,453:      2.182 [     0.001 :   Infinity]
Elapsed count f(       16,384):            52,782:      1.626 [     0.002 :      2.000]
Elapsed count f(       32,768):           114,681:      2.173 [     0.002 :      1.000]
Elapsed count f(       65,536):           249,859:      2.179 [     0.003 :      1.500]
Elapsed count f(      131,072):           407,564:      1.631 [     0.004 :      1.333]
Elapsed count f(      262,144):           884,271:      2.170 [     0.006 :      1.500]
Elapsed count f(      524,288):         1,924,095:      2.176 [     0.012 :      2.000]
Elapsed count f(    1,048,576):         3,148,295:      1.636 [     0.020 :      1.667]
Elapsed count f(    2,097,152):         6,821,541:      2.167 [     0.039 :      1.950]
Elapsed count f(    4,194,304):        14,824,201:      2.173 [     0.042 :      1.077]
Elapsed count f(    8,388,608):        32,305,900:      2.179 [     0.147 :      3.500]
Elapsed count f(   16,777,216):        52,653,164:      1.630 [     0.150 :      1.020]
Elapsed count f(   33,554,432):       114,275,340:      2.170 [     0.508 :      3.387]
Elapsed count f(   67,108,864):       248,730,932:      2.177 [     1.268 :      2.496]
Average delta: 2.025

N appends in linear time

Each time we resize: constant appends multiply by 1.5

Each append is amortized constant time

PerformanceOfArrays *1.1 [10/13]

01
02
03
04
05
  public void append(double item) {
    if (N == a.length) resize((int)Math.ceil (N*1.1));
    a[N] = item;
    N += 1;
  }

Output

00 
00 01 
00 01 02 
00 01 02 03 
00 01 02 03 04 
00 01 02 03 04 05 
00 01 02 03 04 05 06 
00 01 02 03 04 05 06 07 
00 01 02 03 04 05 06 07 08 
00 01 02 03 04 05 06 07 08 09 
00 01 02 03 04 05 06 07 08 09 10 
00 01 02 03 04 05 06 07 08 09 10 11 12 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
Elapsed count f(          512):             5,721:      2.024 [     0.001 :   Infinity]
Elapsed count f(        1,024):            11,402:      1.993 [     0.001 :      1.000]
Elapsed count f(        2,048):            22,520:      1.975 [     0.002 :      2.000]
Elapsed count f(        4,096):            48,320:      2.146 [     0.001 :      0.500]
Elapsed count f(        8,192):            94,698:      1.960 [     0.002 :      2.000]
Elapsed count f(       16,384):           185,318:      1.957 [     0.005 :      2.500]
Elapsed count f(       32,768):           362,372:      1.955 [     0.006 :      1.200]
Elapsed count f(       65,536):           772,598:      2.132 [     0.012 :      2.000]
Elapsed count f(      131,072):         1,509,413:      1.954 [     0.018 :      1.500]
Elapsed count f(      262,144):         2,948,653:      1.954 [     0.018 :      1.000]
Elapsed count f(      524,288):         6,283,714:      2.131 [     0.048 :      2.667]
Elapsed count f(    1,048,576):        12,272,649:      1.953 [     0.046 :      0.958]
Elapsed count f(    2,097,152):        23,970,316:      1.953 [     0.051 :      1.109]
Elapsed count f(    4,194,304):        46,819,577:      1.953 [     0.102 :      2.000]
Elapsed count f(    8,388,608):        99,760,500:      2.131 [     0.223 :      2.186]
Elapsed count f(   16,777,216):       194,835,921:      1.953 [     0.454 :      2.036]
Elapsed count f(   33,554,432):       380,541,255:      1.953 [     0.953 :      2.099]
Elapsed count f(   67,108,864):       743,288,834:      1.953 [     1.579 :      1.657]
Average delta: 2.002

N appends in linear time

Each time we resize: constant appends multiply by 1.1

Each append is amortized constant time

The choice of multiplier value is a tradeoff between time and space.

PerformanceOfStrings [11/13]

Strings are typically implemented as arrays of characters.

file:PerformanceOfStrings.java [source]
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
package ds1.student.orderofgrowth;

import stdlib.StdOut;
import stdlib.Stopwatch;

public class PerformanceOfStrings {
  /** create a string consisting of N asterisks */
  public static String makeStringUsingConcat (int N) {
    String result = "";
    for (int i=0; i<N; i+=1) {
      result = result + "*";
      ops += result.length();
    }
    return result;
  }
  /** create a string consisting of N asterisks */
  public static String makeStringUsingBuilder (int N) {
    StringBuilder result = new StringBuilder ();
    for (int i=0; i<N; i+=1) { 
      result.append ("*");
      ops += 1;
    }
    return result.toString ();
  }
  private static long ops;
  private static String result;
  public static void main(String[] args) {
    timeTrial(32);
    StdOut.println(result);
    
    int MIN = 256; 
    int MAX = 1_000_000_000;
    double prevTime = timeTrial(MIN);
    double prevOps = ops;
    for (int N = MIN*2; N<=MAX; N += N) {
      double time = timeTrial(N);
      StdOut.format ("Elapsed count f(%,13d): %,17d: %10.3f [%10.3f : %10.3f]\n", N, ops, ops / prevOps, time, time/prevTime);
      prevTime = time;
      prevOps = ops;
    }
  }
  public static double timeTrial(int N) {
    ops = 0;
    Stopwatch sw = new Stopwatch();
    result = makeStringUsingConcat(N);
    //result = makeStringUsingBuilder(N);
    return sw.elapsedTime();
  }
}

PerformanceOfStrings [12/13]

01
02
03
04
05
06
07
  public static String makeStringUsingConcat (int N) {
    String result = "";
    for (int i=0; i<N; i+=1) {
      result = result + "*";
    }
    return result;
  }

Output

********************************
Elapsed count f(          512):           131,328:      3.992 [     0.001 :      1.000]
Elapsed count f(        1,024):           524,800:      3.996 [     0.001 :      1.000]
Elapsed count f(        2,048):         2,098,176:      3.998 [     0.004 :      4.000]
Elapsed count f(        4,096):         8,390,656:      3.999 [     0.011 :      2.750]
Elapsed count f(        8,192):        33,558,528:      4.000 [     0.048 :      4.364]
Elapsed count f(       16,384):       134,225,920:      4.000 [     0.098 :      2.042]
Elapsed count f(       32,768):       536,887,296:      4.000 [     0.180 :      1.837]
Elapsed count f(       65,536):     2,147,516,416:      4.000 [     0.574 :      3.189]
Elapsed count f(      131,072):     8,590,000,128:      4.000 [     1.794 :      3.125]
Elapsed count f(      262,144):    34,359,869,440:      4.000 [     6.947 :      3.872]
Elapsed count f(      524,288):   137,439,215,616:      4.000 [    28.864 :      4.155]
Elapsed count f(    1,048,576):   549,756,338,176:      4.000 [   125.439 :      4.346]

N concatenations in quadratic time

Each concatenation is amortized linear time

A common bug in collections (how to print an array in quadratic time):

01
02
03
04
05
06
07
  public static String toString () {
    String result = "";
    for (int i=0; i<N; i+=1) {
      result = result + a[i];
    }
    return result;
  }

PerformanceOfStrings [13/13]

01
02
03
04
05
06
07
  public static String makeStringUsingBuilder (int N) {
    StringBuilder result = new StringBuilder ();
    for (int i=0; i<N; i+=1) { 
      result.append ("*");
    }
    return result.toString ();
  }

Output

********************************
Elapsed count f(          512):               512:      2.000 [     0.001 :   Infinity]
Elapsed count f(        1,024):             1,024:      2.000 [     0.000 :      0.000]
Elapsed count f(        2,048):             2,048:      2.000 [     0.000 :        NaN]
Elapsed count f(        4,096):             4,096:      2.000 [     0.000 :        NaN]
Elapsed count f(        8,192):             8,192:      2.000 [     0.001 :   Infinity]
Elapsed count f(       16,384):            16,384:      2.000 [     0.002 :      2.000]
Elapsed count f(       32,768):            32,768:      2.000 [     0.002 :      1.000]
Elapsed count f(       65,536):            65,536:      2.000 [     0.002 :      1.000]
Elapsed count f(      131,072):           131,072:      2.000 [     0.004 :      2.000]
Elapsed count f(      262,144):           262,144:      2.000 [     0.007 :      1.750]
Elapsed count f(      524,288):           524,288:      2.000 [     0.008 :      1.143]
Elapsed count f(    1,048,576):         1,048,576:      2.000 [     0.014 :      1.750]
Elapsed count f(    2,097,152):         2,097,152:      2.000 [     0.037 :      2.643]
Elapsed count f(    4,194,304):         4,194,304:      2.000 [     0.057 :      1.541]
Elapsed count f(    8,388,608):         8,388,608:      2.000 [     0.120 :      2.105]
Elapsed count f(   16,777,216):        16,777,216:      2.000 [     0.229 :      1.908]
Elapsed count f(   33,554,432):        33,554,432:      2.000 [     0.430 :      1.878]
Elapsed count f(   67,108,864):        67,108,864:      2.000 [     0.879 :      2.044]
Elapsed count f(  134,217,728):       134,217,728:      2.000 [     1.843 :      2.097]
Elapsed count f(  268,435,456):       268,435,456:      2.000 [     3.706 :      2.011]
Elapsed count f(  536,870,912):       536,870,912:      2.000 [     7.635 :      2.060]

N appends in linear time

Each append is amortized constant time

Java's StringBuilder is implemented with a resizing array.