Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms FOURTH EDITION

 \checkmark

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

introductiondigraph API

digraph search

topological sort

strong components

4.2 DIRECTED GRAPHS

introduction

digraph API

digraph search

topological sort

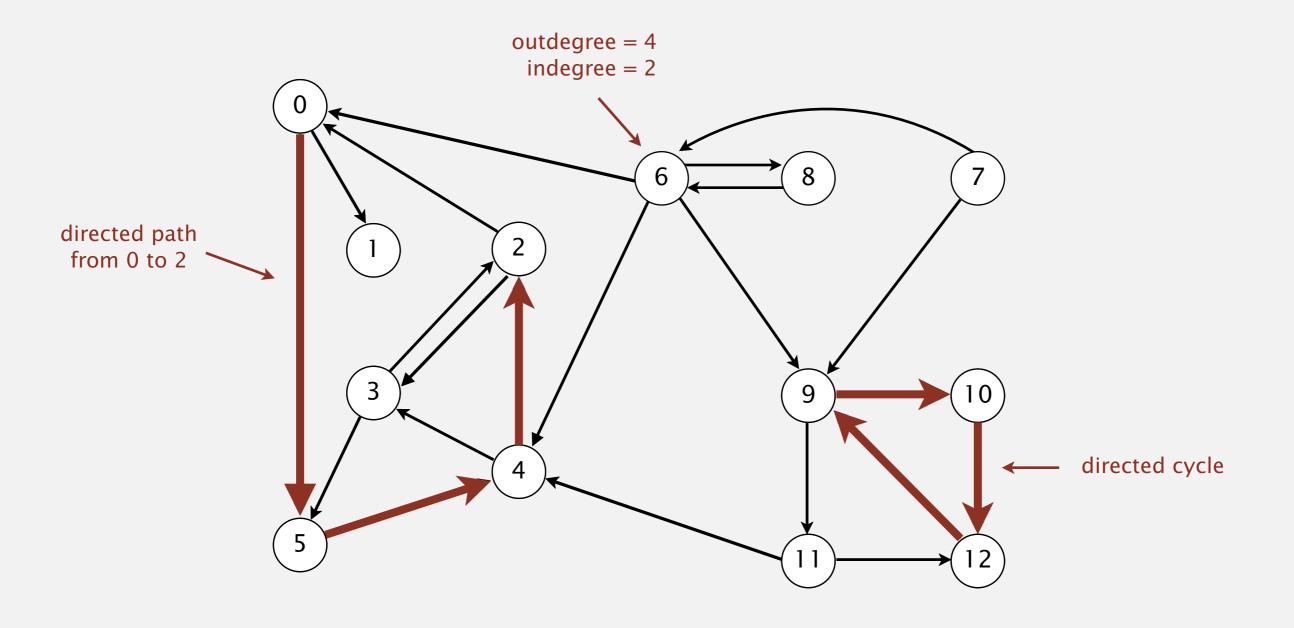
strong components

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

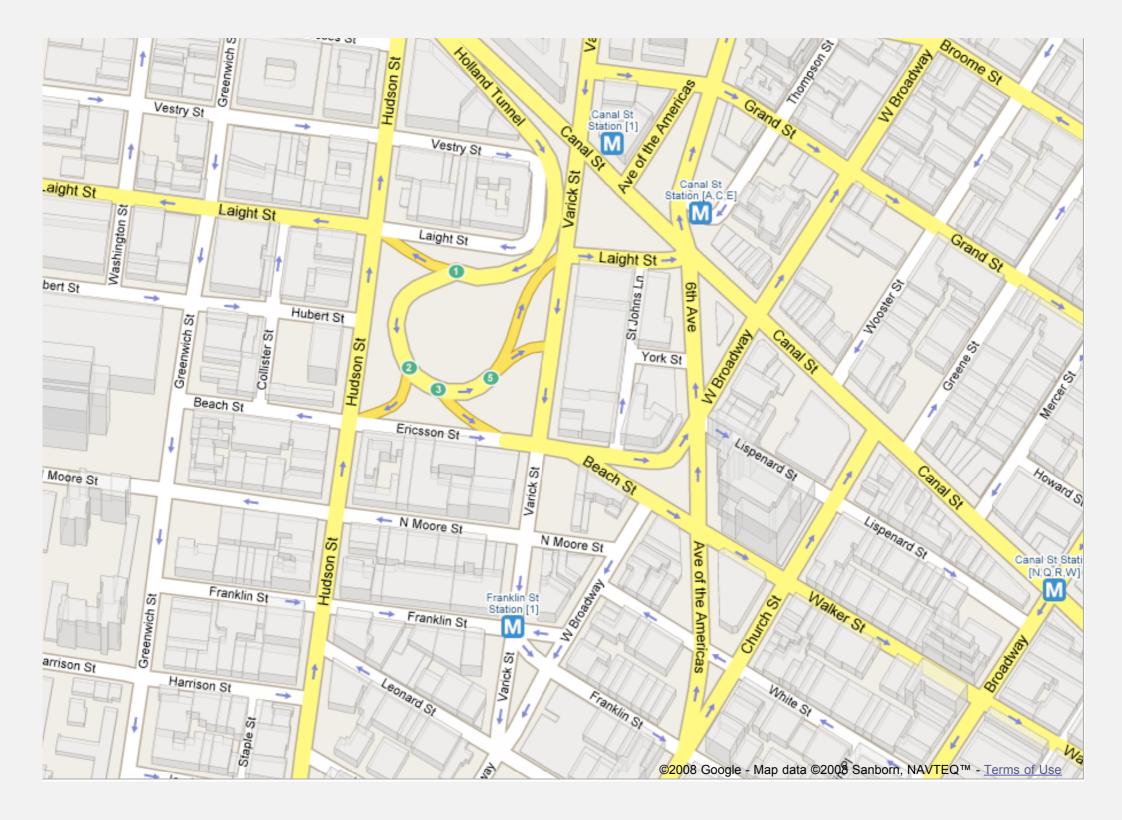
http://algs4.cs.princeton.edu

Digraph. Set of vertices connected pairwise by directed edges.



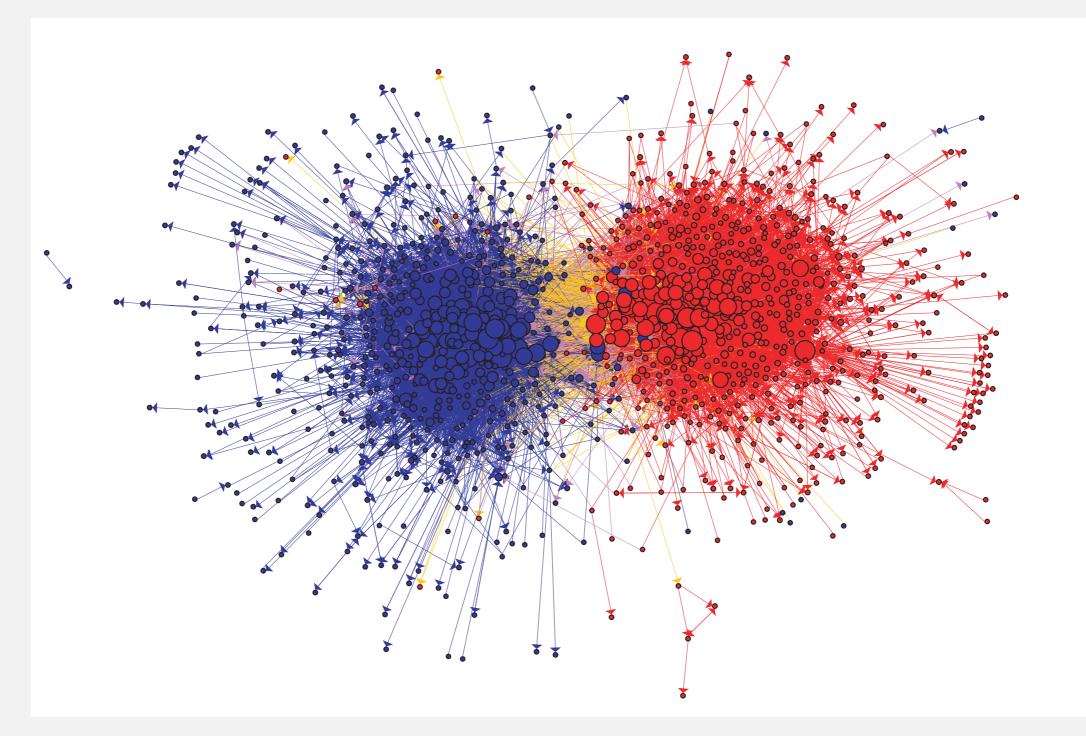
Road network

Vertex = intersection; edge = one-way street.



Political blogosphere graph

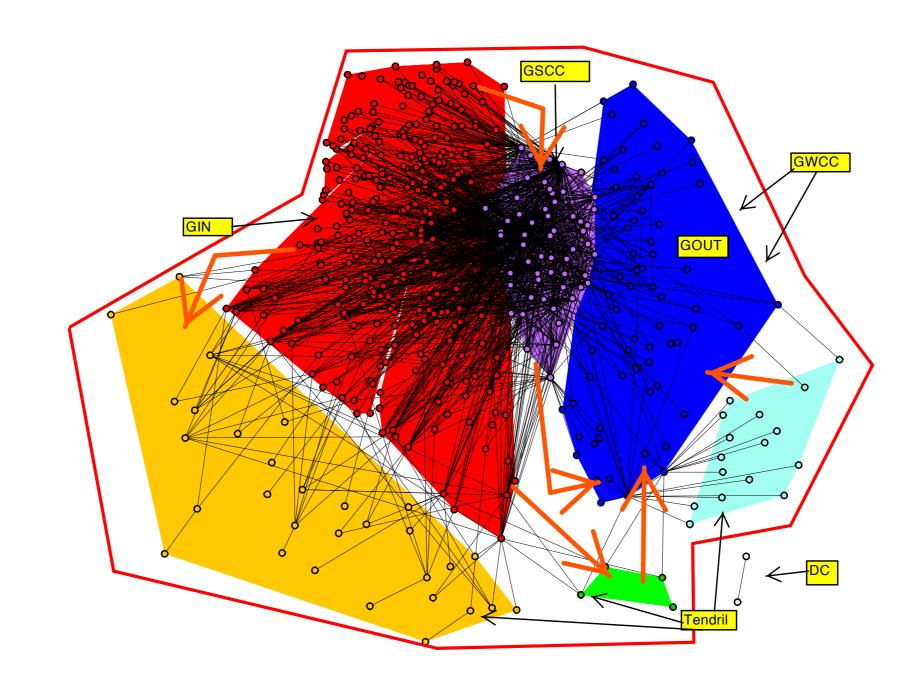
Vertex = political blog; edge = link.



The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Overnight interbank loan graph

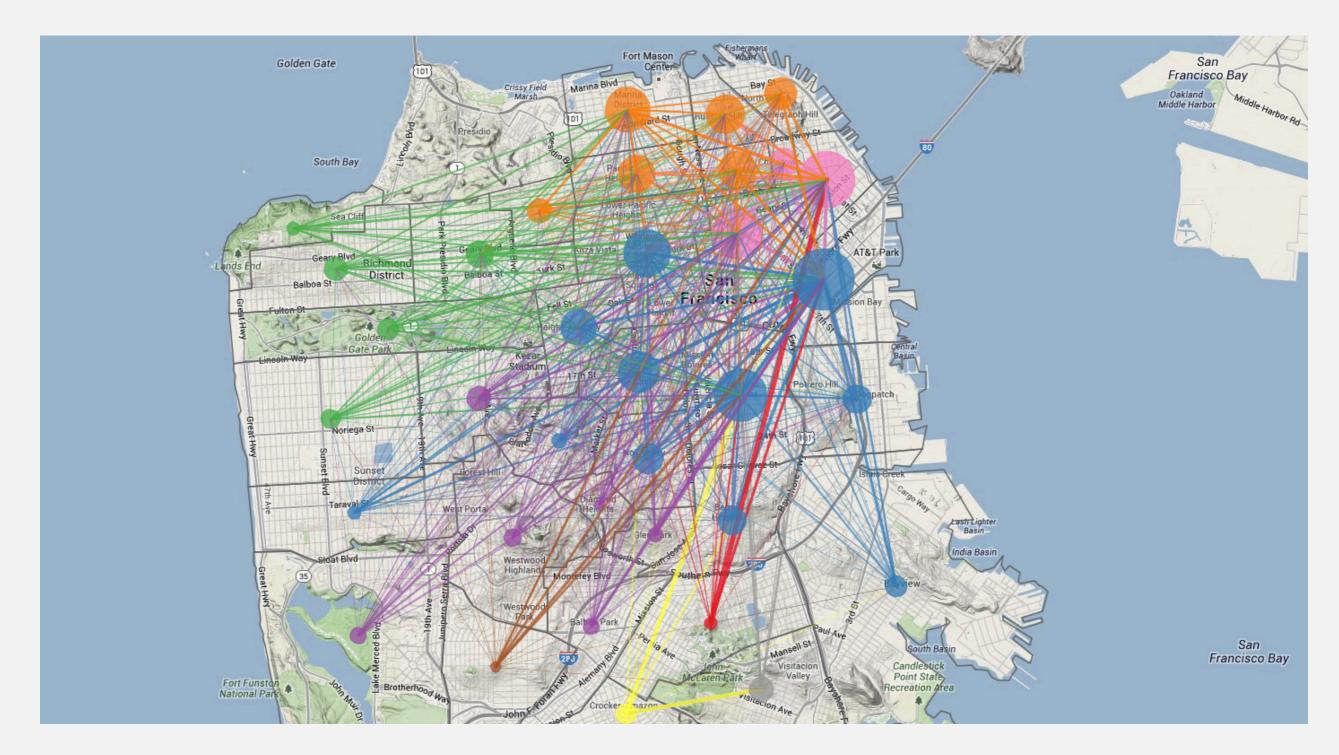
Vertex = bank; edge = overnight loan.



The Topology of the Federal Funds Market, Bech and Atalay, 2008

Uber taxi graph

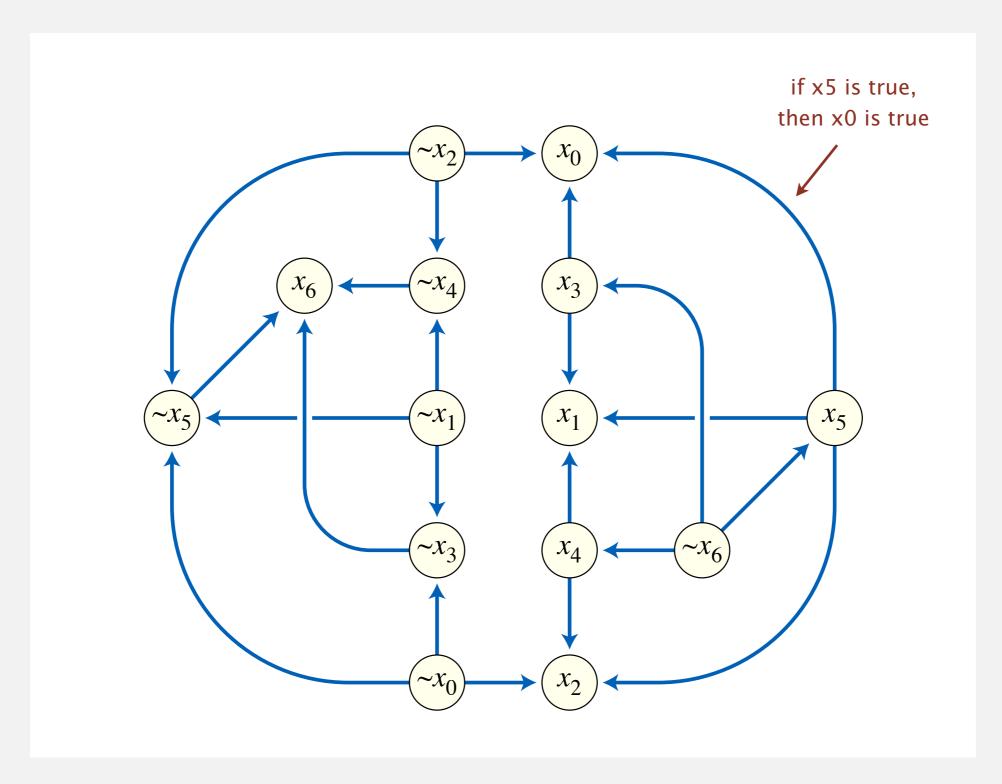
Vertex = taxi pickup; edge = taxi ride.



http://blog.uber.com/2012/01/09/uberdata-san-franciscomics/

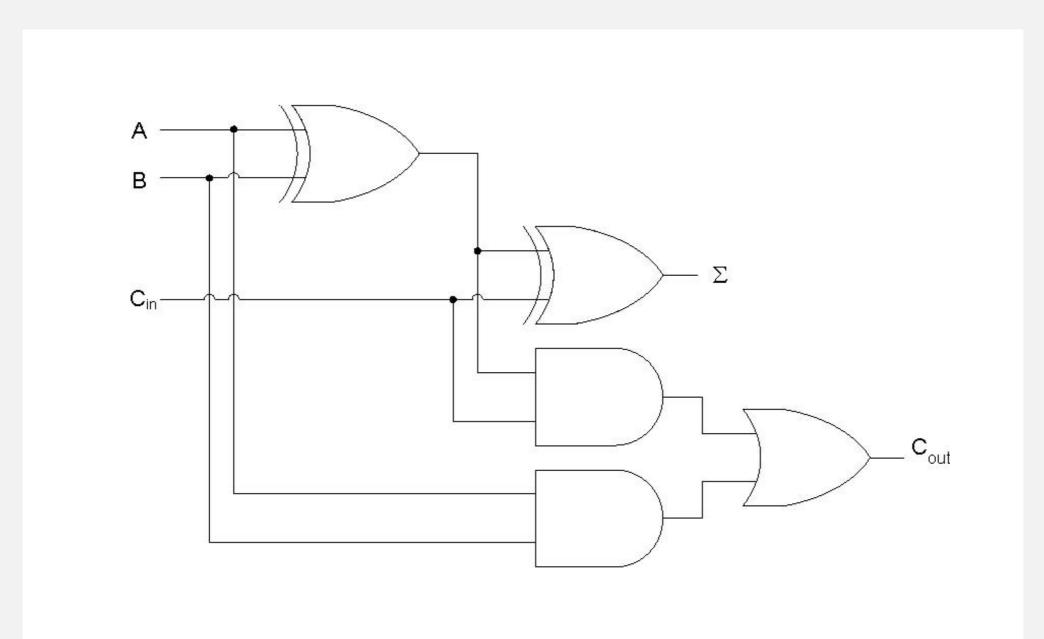
Implication graph

Vertex = variable; edge = logical implication.

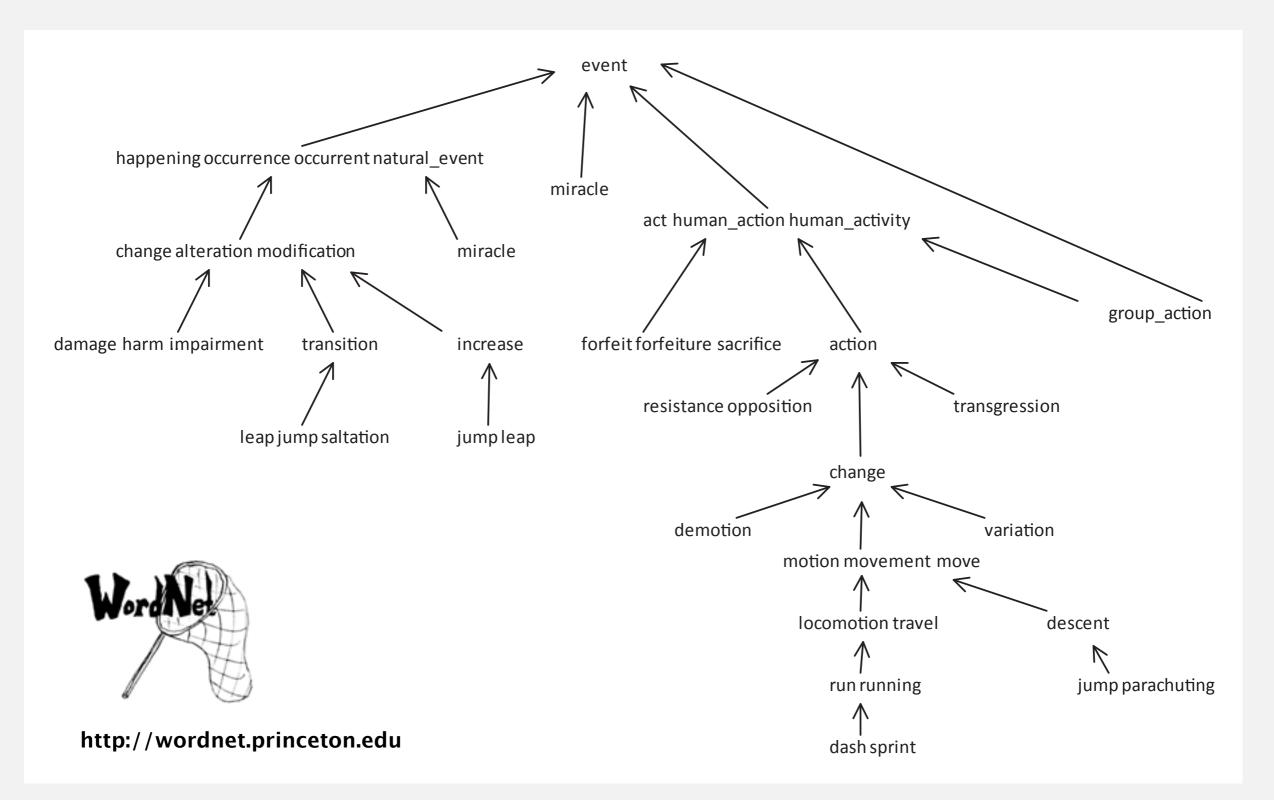


Combinational circuit

Vertex = logical gate; edge = wire.



Vertex = synset; edge = hypernym relationship.



Digraph applications

digraph	vertex	directed edge		
transportation	street intersection	one-way street		
web	web page	hyperlink		
food web	species	predator-prey relationship		
WordNet	synset	hypernym		
scheduling	task	precedence constraint		
financial	bank	transaction		
cell phone	person	placed call		
infectious disease	person	infection		
game	board position	legal move		
citation	journal article	citation		
object graph	object	pointer		
inheritance hierarchy	class	inherits from		
control flow	code block	jump		

problem	description	
s→t path	Is there a path from s to t?	
shortest s→t path	What is the shortest path from s to t?	
directed cycle	Is there a directed cycle in the graph ?	
topological sort	Can the digraph be drawn so that all edges point upwards?	
strong connectivity	Is there a directed path between all pairs of vertices ?	
transitive closure	For which vertices v and w is there a directed path from v to w ?	
PageRank	What is the importance of a web page ?	

4.2 DIRECTED GRAPHS

introduction

digraph API

digraph search

topological sort

strong components

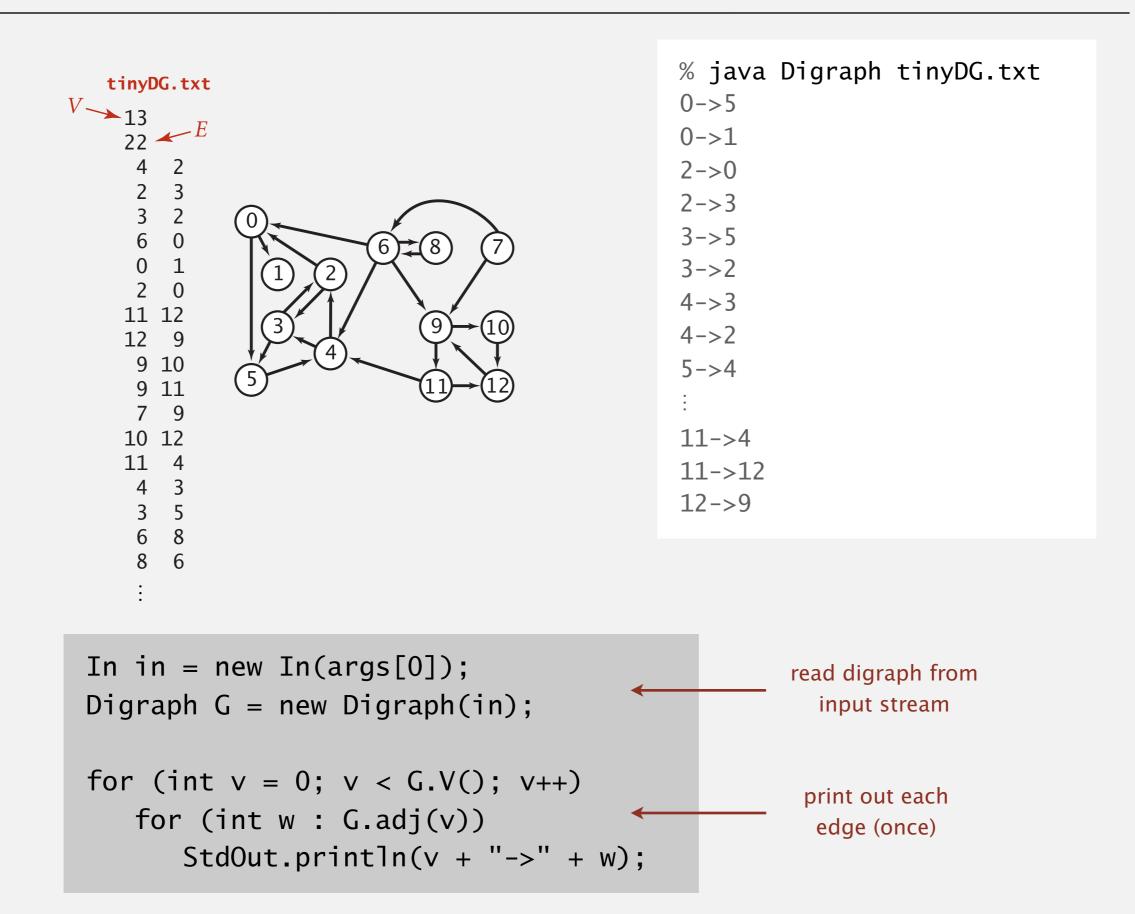
Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

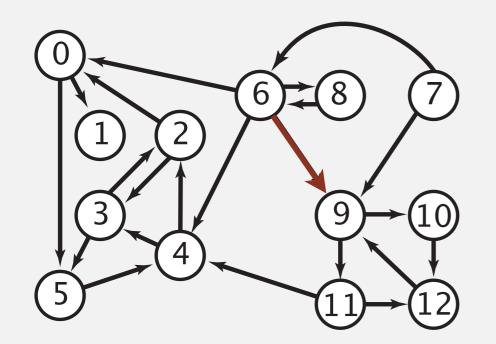
Almost identical to Graph API.

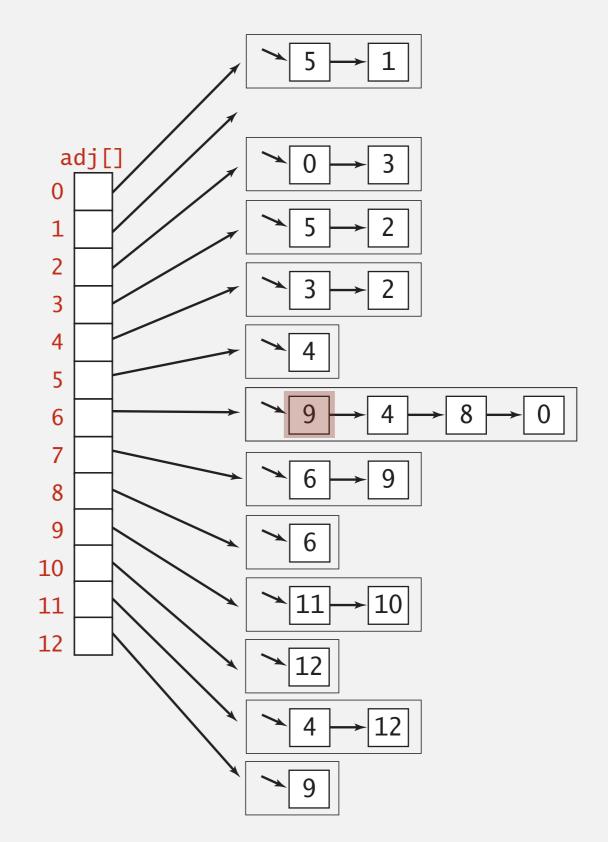
public class	Digraph		
	Digraph(int V)	create an empty digraph with V vertices	
	Digraph(In in)	create a digraph from input stream	
void	addEdge(int v, int w) add a directed edge $v \rightarrow w$		
Iterable <integer></integer>	adj(int v) <i>vertices pointing from v</i>		
int	V()	number of vertices	
int	E()	number of edges	
Digraph	reverse()	reverse of this digraph	
String	toString()	string representation	



Digraph representation: adjacency lists

Maintain vertex-indexed array of lists.





Digraph representations

In practice. Use adjacency-lists representation.

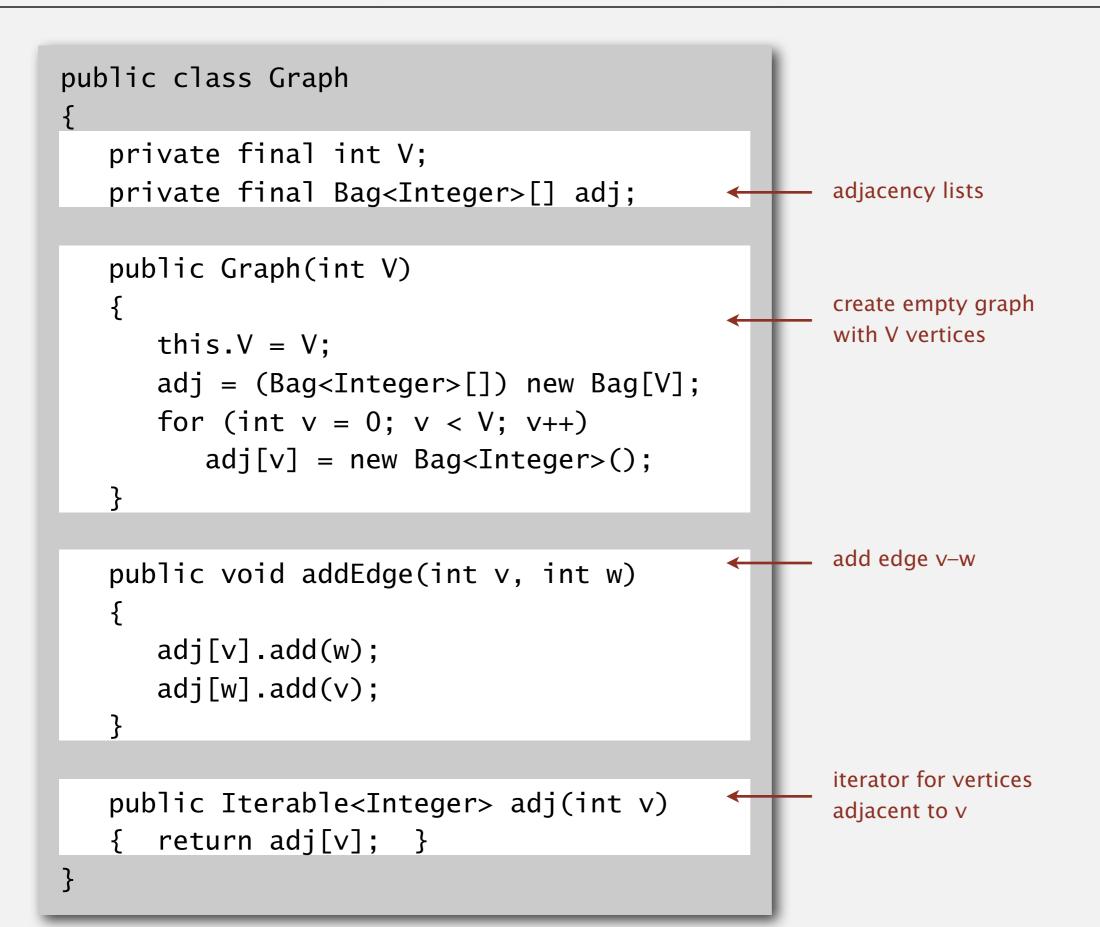
- Algorithms based on iterating over vertices pointing from v.
- Real-world digraphs tend to be sparse.

huge number of vertices, small average vertex degree

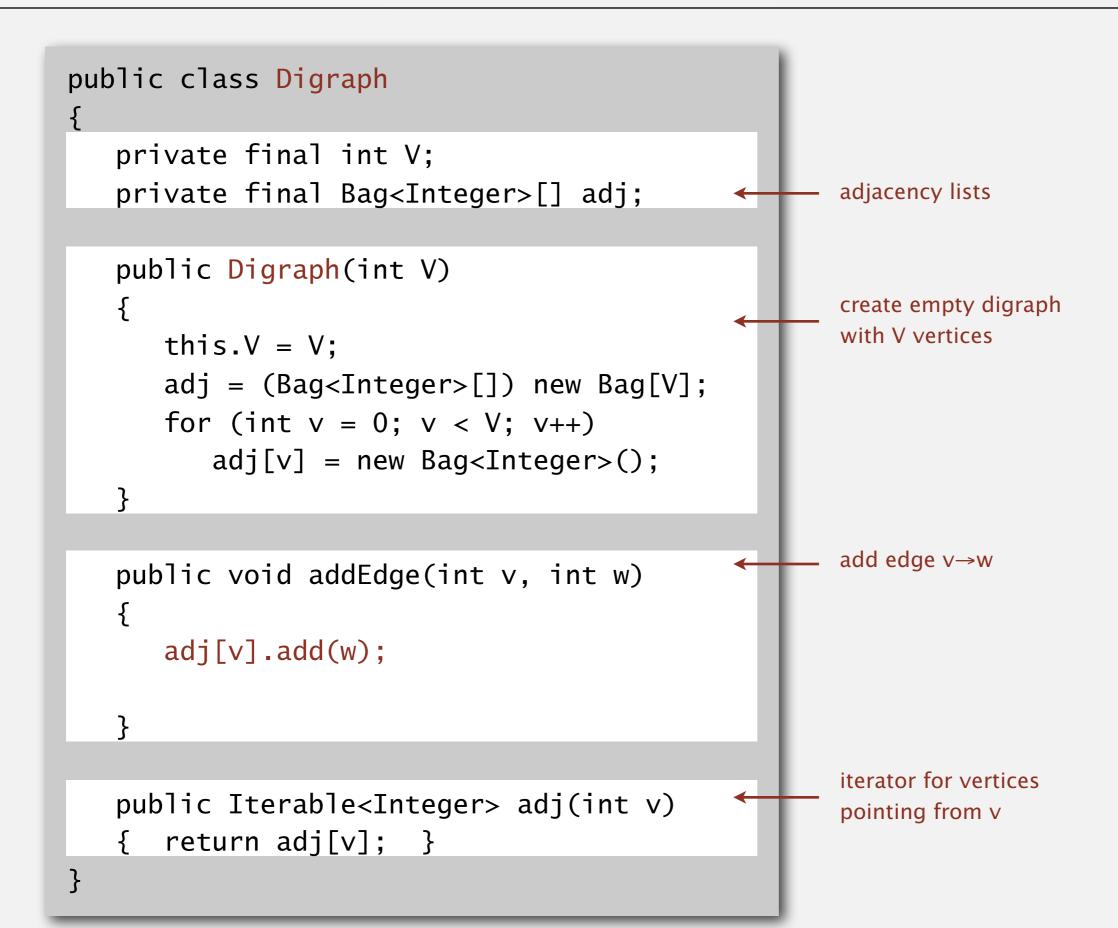
representation	space	insert edge from ∨ to w	edge from v to w?	iterate over vertices pointing from v?
list of edges	E	1	E	E
adjacency matrix	V^2	1†	1	V
adjacency lists	E + V	1	outdegree(v)	outdegree(v)

[†] disallows parallel edges

Adjacency-lists graph representation (review): Java implementation



Adjacency-lists digraph representation: Java implementation



4.2 DIRECTED GRAPHS

Algorithms

digraph search

topological sort

strong components

introduction

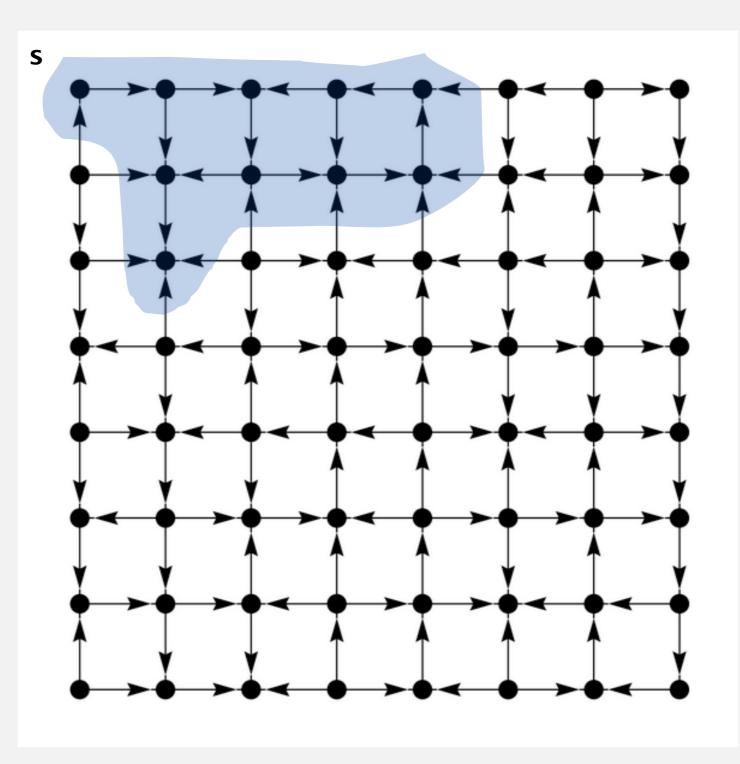
digraph API

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Reachability

Problem. Find all vertices reachable from *s* along a directed path.



Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked

vertices w pointing from v.

Depth-first search demo

• Mark vertex v as visited.

To visit a vertex *v* :

4→2 2→3

0→1

6→4

6→9

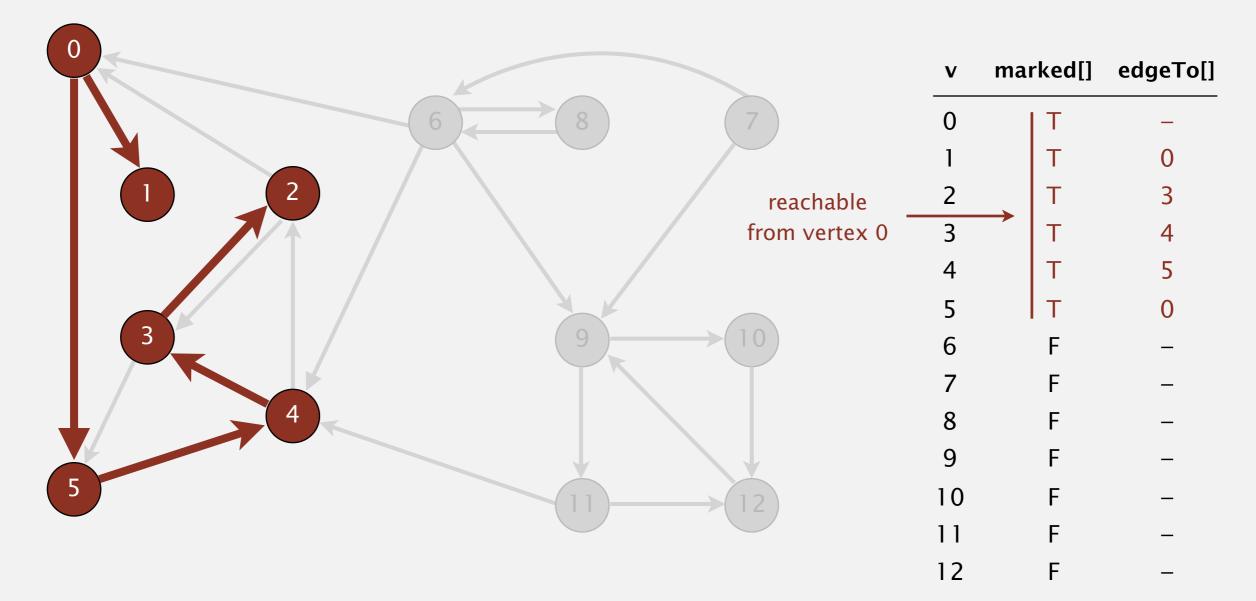
7→6

- Recursively visit all unmarked vertices pointing from v. $3 \rightarrow 2$ $6 \rightarrow 0$
 - 2→0 $\mathbf{0}$ 11→12 12→9 7 6 8 9→10 9→11 2 8→9 10→12 11→4 3 9 10 4→3 3→5 4 6→8 8→6 5 5→4 12 0→5

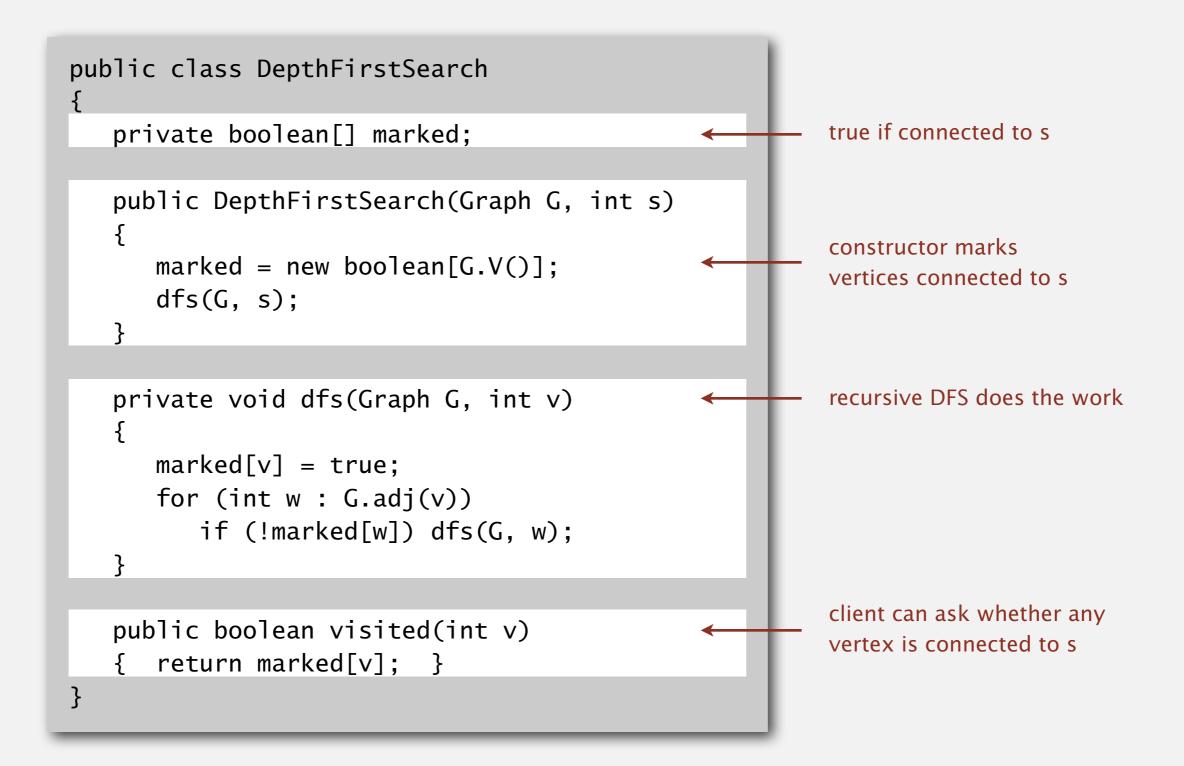
Depth-first search demo

To visit a vertex v:

- Mark vertex *v* as visited.
- Recursively visit all unmarked vertices pointing from v.



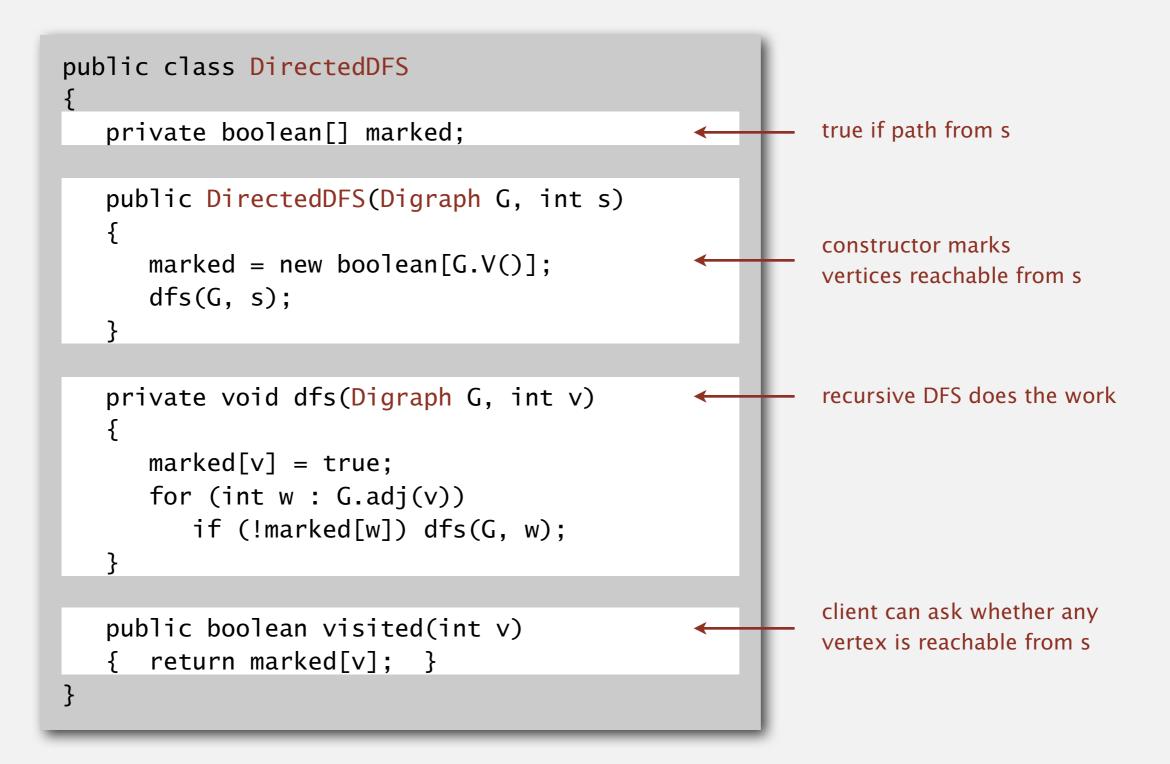
Recall code for undirected graphs.



Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one.

[substitute Digraph for Graph]



Reachability application: program control-flow analysis

Every program is a digraph.

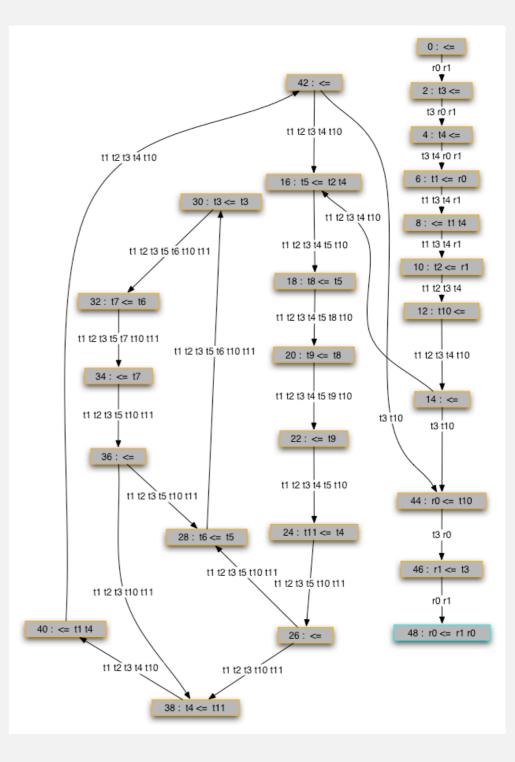
- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.

Find (and remove) unreachable code.

Infinite-loop detection.

Determine whether exit is unreachable.



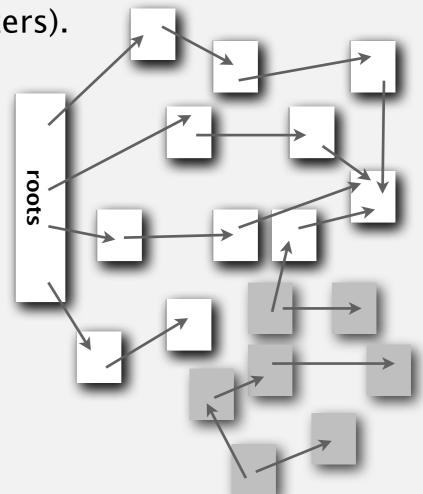
Reachability application: mark-sweep garbage collector

Every data structure is a digraph.

- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).

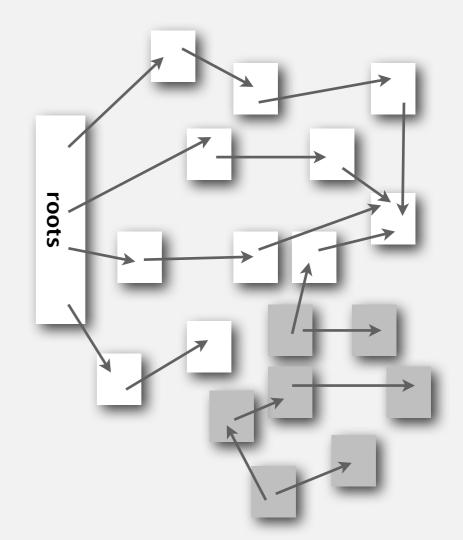


Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).



DFS enables direct solution of simple digraph problems.

- ✓ Reachability.
 - Path finding.
 - Topological sort.
 - Directed cycle detection.

Basis for solving difficult digraph problems.

- 2-satisfiability.
- Directed Euler path.
- Strongly-connected components.

SIAM J. COMPUT. Vol. 1, No. 2, June 1972 **DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS* ROBERT TARJAN† Abstract.** The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants k_1, k_2 , and k_3 , where V is the number of vertices and E is the number of edges of the graph being examined.

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:

- remove the least recently added vertex v
- for each unmarked vertex pointing from v:

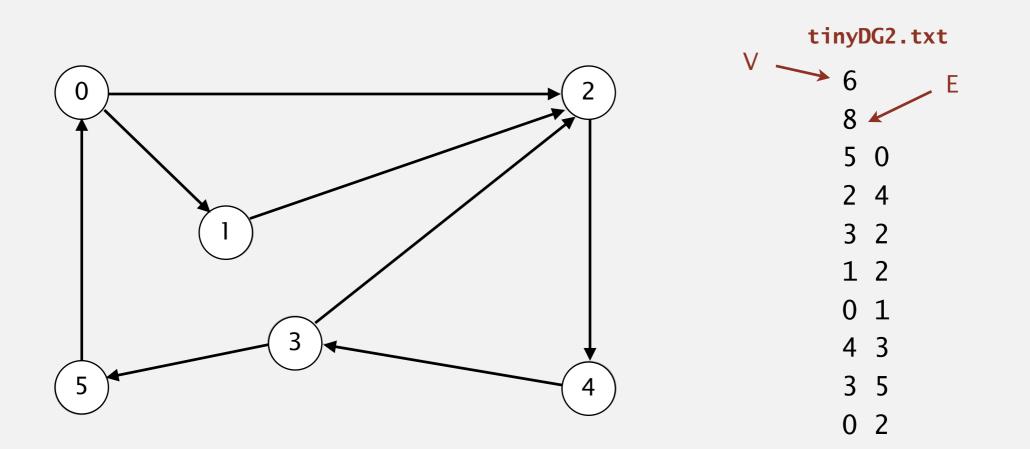
add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges) from *s* to all other vertices in a digraph in time proportional to E + V.

Directed breadth-first search demo

Repeat until queue is empty:

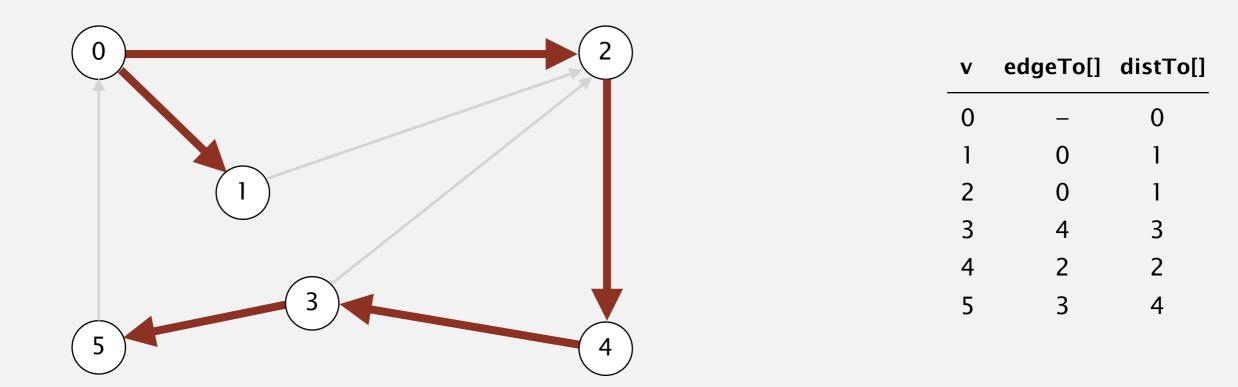
- Remove vertex *v* from queue.
- Add to queue all unmarked vertices pointing from v and mark them.



Directed breadth-first search demo

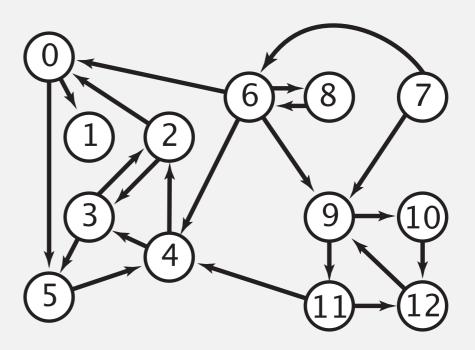
Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices pointing from v and mark them.



Multiple-source shortest paths. Given a digraph and a set of source vertices, find shortest path from any vertex in the set to each other vertex.

- **Ex.** $S = \{ 1, 7, 10 \}.$
 - Shortest path to 4 is $7 \rightarrow 6 \rightarrow 4$.
 - Shortest path to 5 is $7 \rightarrow 6 \rightarrow 0 \rightarrow 5$.
 - Shortest path to 12 is $10 \rightarrow 12$.



- Q. How to implement multi-source shortest paths algorithm?
- A. Use BFS, but initialize by enqueuing all source vertices.

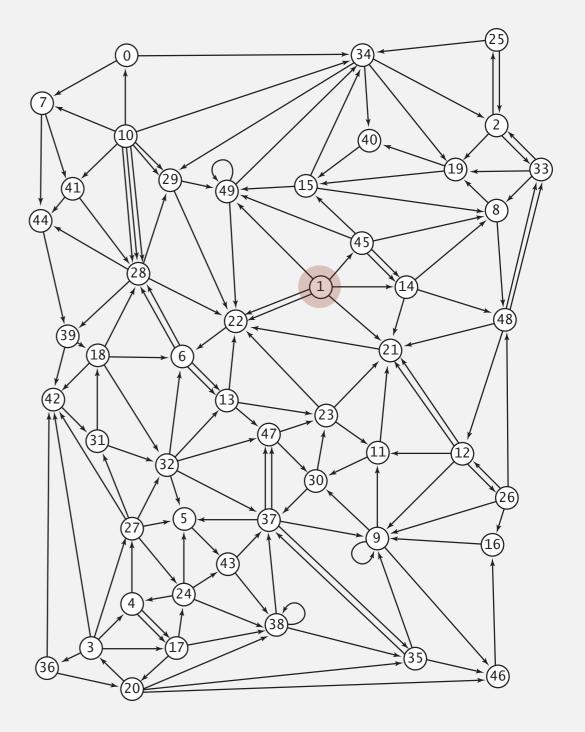
Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.

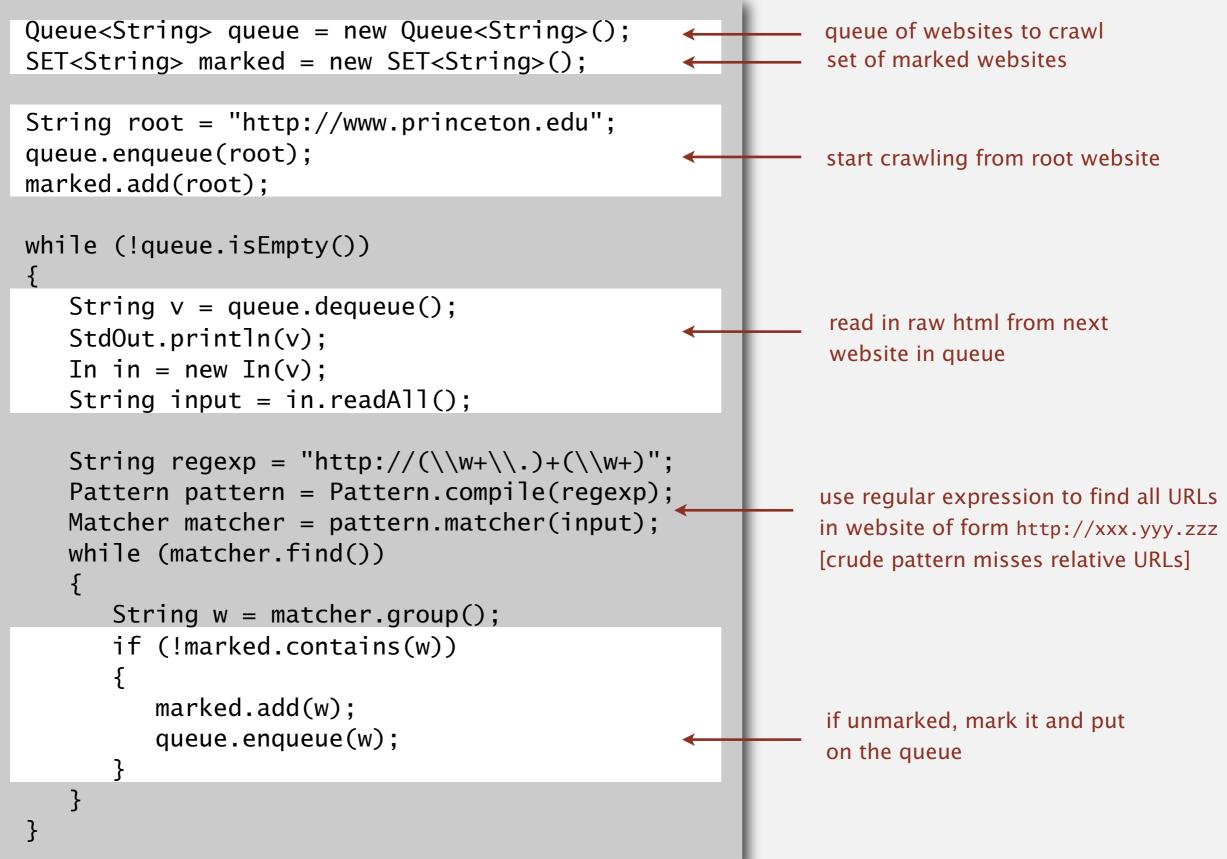
Solution. [BFS with implicit digraph]

- Choose root web page as source *s*.
- Maintain a Queue of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links

(provided you haven't done so before).



Bare-bones web crawler: Java implementation



Web crawler output

BFS crawl

. . .

http://www.princeton.edu http://www.w3.org http://ogp.me http://giving.princeton.edu http://www.princetonartmuseum.org http://www.goprincetontigers.com http://library.princeton.edu http://helpdesk.princeton.edu http://tigernet.princeton.edu http://alumni.princeton.edu http://gradschool.princeton.edu http://vimeo.com http://princetonusg.com http://artmuseum.princeton.edu http://jobs.princeton.edu http://odoc.princeton.edu http://blogs.princeton.edu http://www.facebook.com http://twitter.com http://www.youtube.com http://deimos.apple.com http://qeprize.org http://en.wikipedia.org

DFS crawl

. . .

http://www.princeton.edu http://deimos.apple.com http://www.youtube.com http://www.google.com http://news.google.com http://csi.gstatic.com http://googlenewsblog.blogspot.com http://labs.google.com http://groups.google.com http://img1.blogblog.com http://feeds.feedburner.com http:/buttons.googlesyndication.com http://fusion.google.com http://insidesearch.blogspot.com http://agoogleaday.com http://static.googleusercontent.com http://searchresearch1.blogspot.com http://feedburner.google.com http://www.dot.ca.gov http://www.TahoeRoads.com http://www.LakeTahoeTransit.com http://www.laketahoe.com http://ethel.tahoeguide.com

4.2 DIRECTED GRAPHS

Algorithms

topological sort

strong components

digraph search

introduction

digraph API

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

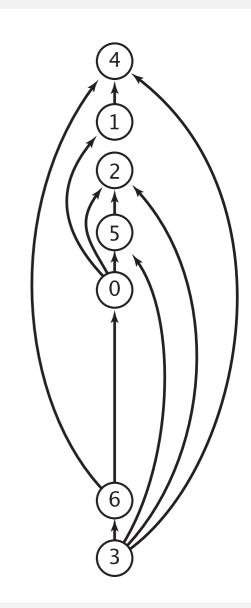
- 0. Algorithms
- 1. Complexity Theory
- 2. Artificial Intelligence
- 3. Intro to CS
- 4. Cryptography
- 5. Scientific Computing

tasks

6. Advanced Programming

 $\begin{array}{c} 0 \\ \hline 2 \\ \hline 3 \\ \hline 6 \end{array}$

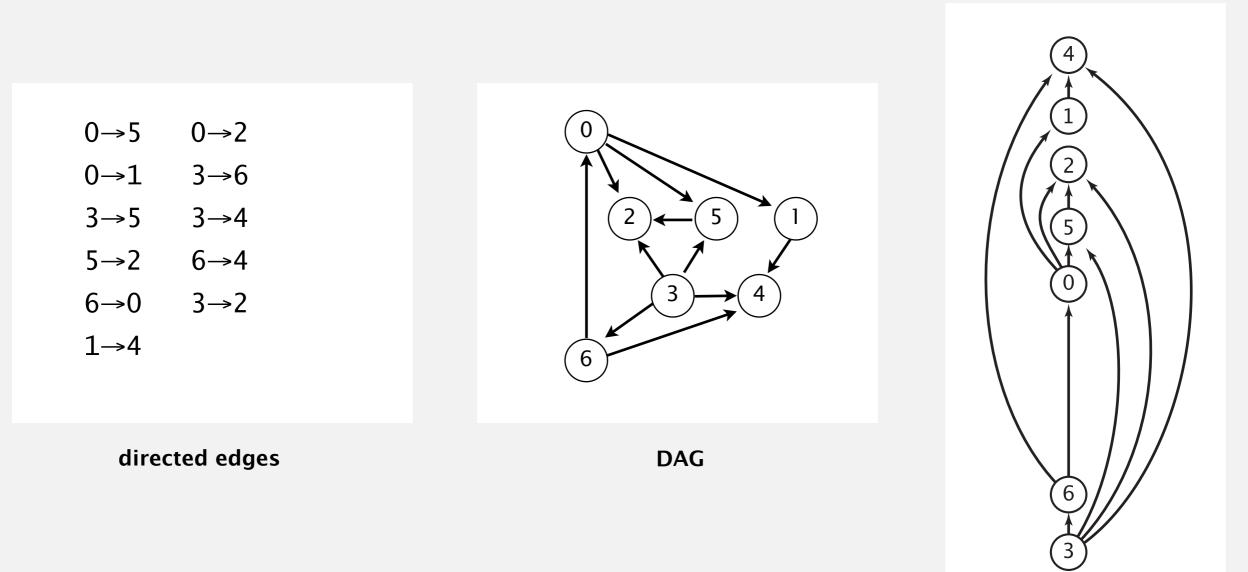
precedence constraint graph



feasible schedule

DAG. Directed acyclic graph.

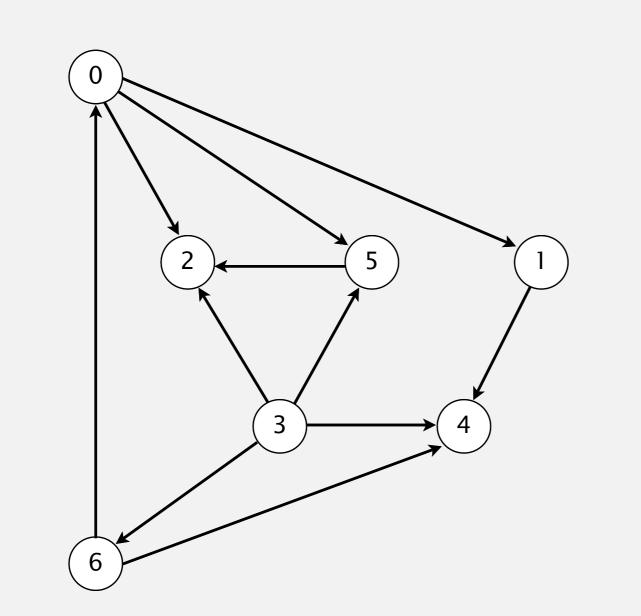
Topological sort. Redraw DAG so all edges point upwards.

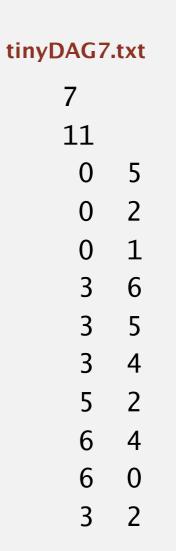


Solution. DFS. What else?

Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

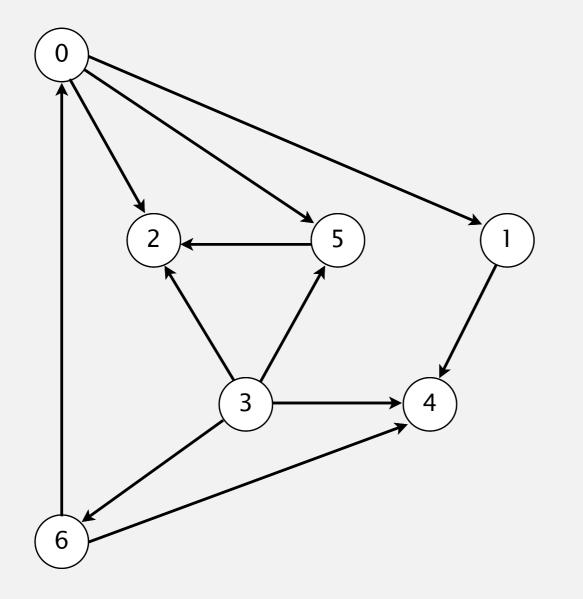




a directed acyclic graph

Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.



postorder

4 1 2 5 0 6 3

topological order

3 6 0 5 2 1 4

Depth-first search order

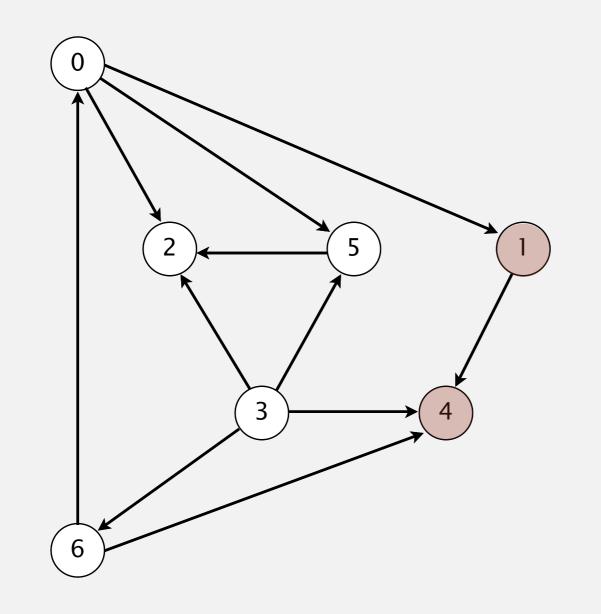
```
public class DepthFirstOrder
{
  private boolean[] marked;
  private Stack<Integer> reversePostorder;
   public DepthFirstOrder(Digraph G)
      reversePostorder = new Stack<Integer>();
      marked = new boolean[G.V()];
      for (int v = 0; v < G.V(); v++)
         if (!marked[v]) dfs(G, v);
   }
   private void dfs(Digraph G, int v)
   Ł
      marked[v] = true;
      for (int w : G.adj(v))
         if (!marked[w]) dfs(G, w);
      reversePostorder.push(v);
   }
                                                          returns all vertices in
  public Iterable<Integer> reversePostorder() 
                                                          "reverse DFS postorder"
   { return reversePostorder; }
}
```

Topological sort in a DAG: intuition

Why does topological sort algorithm work?

- First vertex in postorder has outdegree 0.
- Second-to-last vertex in postorder can only point to last vertex.

• ...



postorder

4 1 2 5 0 6 3

topological order

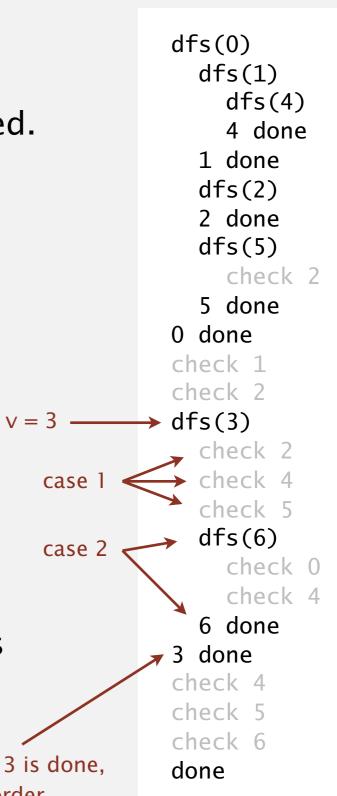
3 6 0 5 2 1 4

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order. Pf. Consider any edge $v \rightarrow w$. When dfs(v) is called:

- Case 1: dfs(w) has already been called and returned.
 Thus, w was done before v.
- Case 2: dfs(w) has not yet been called.
 dfs(w) will get called directly or indirectly
 by dfs(v) and will finish before dfs(v).
 Thus, w will be done before v.
- Case 3: dfs(w) has already been called, but has not yet returned.
 Can't happen in a DAG: function call stack contains path from w to v, so v→w would complete a cycle.

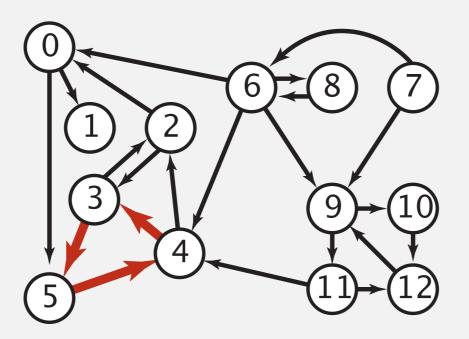
all vertices pointing from 3 are done before 3 is done, so they appear after 3 in topological order



Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle. Pf.

- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.



a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle. Solution. DFS. What else? See textbook.

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

PAGE 3			
DEPARTMENT	COURSE	DESCRIPTION	PREREQS
COMPUTER SCIENCE		INTERMEDIATE COMPILER DESIGN, WITH A FOCUS ON DEPENDENCY RESOLUTION.	CPSC 432
		In the column project	

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

```
public class A extends B
{
    ...
}
```

public class B extends C
{
 ...
}

```
public class C extends A
{
    ....
}
```

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

💿 🔿 📄 Workbook1									
\diamond		Α	В		С	D			
1	"=B1 -	+ 1"	=C1 + 1		"=A1 + 1"				
2									
3									
4									
5									
6									
7	1		licrosoft Excel cannot calculate a formula.						
8		Cell references in the formula refer to the formula's result, creating a circular reference. Try one of the following:							
9									
10		 If you accidentally created the circular reference, click OK. This will display the Circular Reference toolbar and help for using it to correct your formula. To continue leaving the formula as it is, click Cancel. 							
11									
12		Cancel OK							
13									
14									
15									
16									
17									
18									
E E Sheet1 Sheet2 Sheet3									
-	-								

Observation. DFS visits each vertex exactly once. The order in which it does so can be important.

Orderings.

- Preorder: order in which dfs() is called.
- Postorder: order in which dfs() returns.
- Reverse postorder: reverse order in which dfs() returns.

```
private void dfs(Graph G, int v)
{
    marked[v] = true;
    preorder.enqueue(v);
    for (int w : G.adj(v))
        if (!marked[w]) dfs(G, w);
        postorder.enqueue(v);
        reversePostorder.push(v);
}
```

4.2 DIRECTED GRAPHS

Algorithms

strong components

introduction

digraph API

digraph search

topological sort

Robert Sedgewick | Kevin Wayne

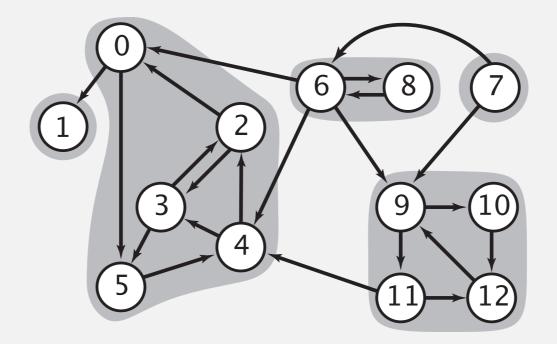
http://algs4.cs.princeton.edu

Def. Vertices *v* and *w* are **strongly connected** if there is both a directed path from *v* to *w* and a directed path from *w* to *v*.

Key property. Strong connectivity is an equivalence relation:

- *v* is strongly connected to *v*.
- If *v* is strongly connected to *w*, then *w* is strongly connected to *v*.
- If v is strongly connected to w and w to x, then v is strongly connected to x.

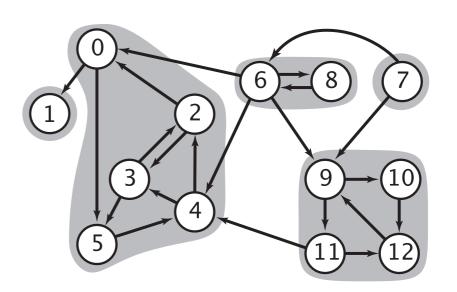
Def. A strong component is a maximal subset of strongly-connected vertices.



5 strongly-connected components

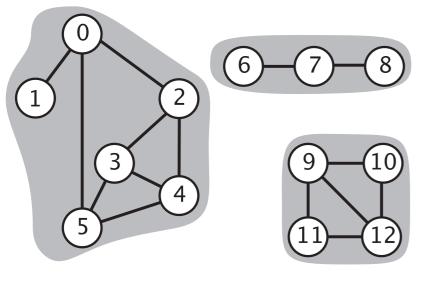
Connected components vs. strongly-connected components

v and w are **connected** if there is a path between v and w v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v



5 strongly-connected components

53

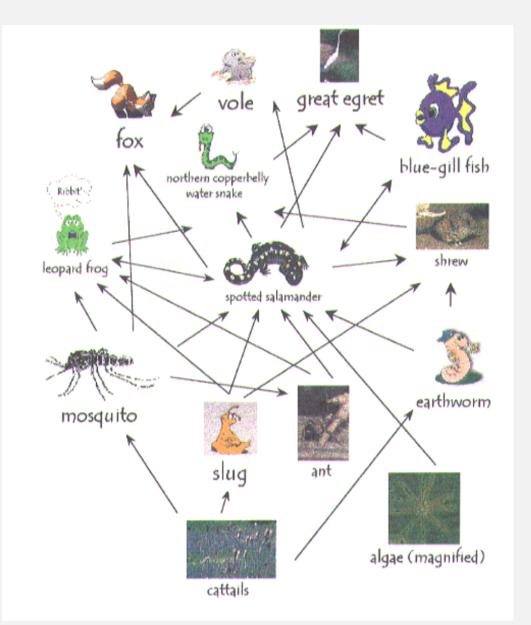


3 connected components

connected component id (easy to compute with DFS)	strongly-connected component id (how to compute?)				
id[] $\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 2 3 4 5 6 7 8 9 10 11 12 id[] 1 0 1 1 1 3 4 3 2 2 2 2				
<pre>public boolean connected(int v, int w) { return id[v] == id[w]; } </pre>	<pre>public boolean stronglyConnected(int v, int w) { return id[v] == id[w]; } </pre>				
constant-time client connectivity query	constant-time client strong-connectivity query				

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.



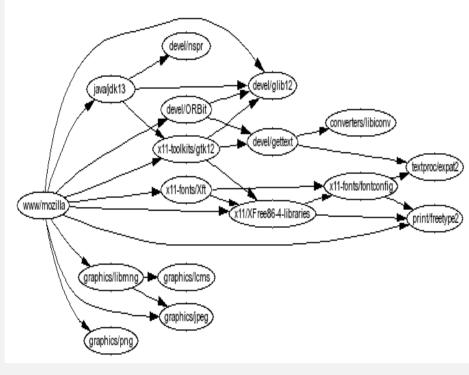
http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.

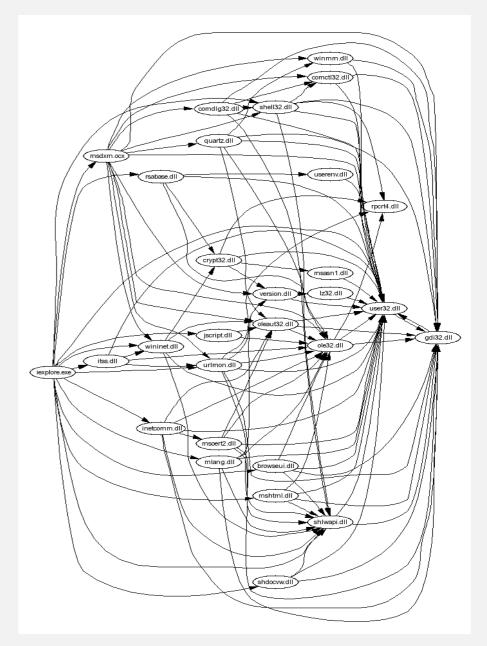
Strong component application: software modules

Software module dependency graph.

- Vertex = software module.
- Edge: from module to dependency.



Firefox



Internet Explorer

Strong component. Subset of mutually interacting modules.

Approach 1. Package strong components together.

Approach 2. Use to improve design!

Strong components algorithms: brief history

1960s: Core OR problem.

- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

- Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).

- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.

- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

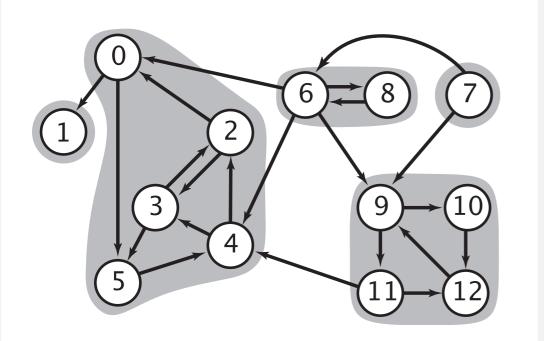
Reverse graph. Strong components in G are same as in G^R .

Kernel DAG. Contract each strong component into a single vertex.

Idea.

how to compute?

- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.

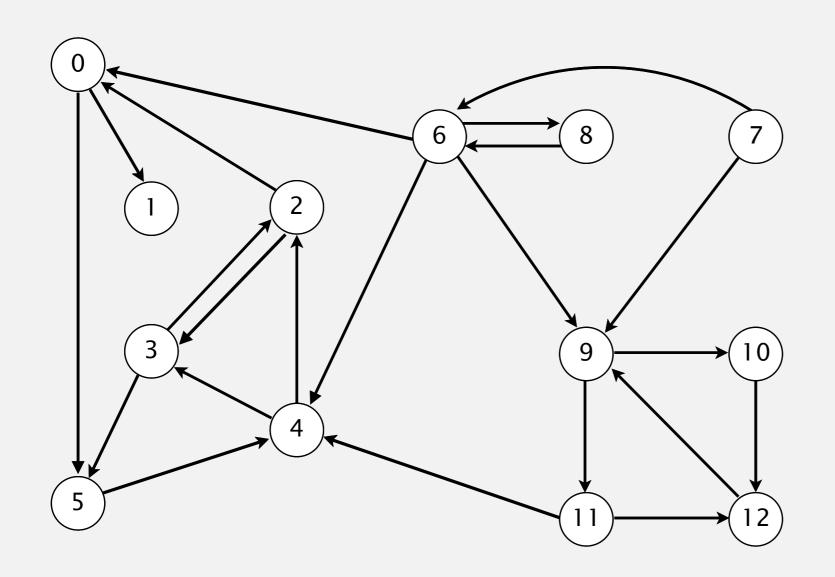


kernel DAG of G (topological order: A B C D E)

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G^R.

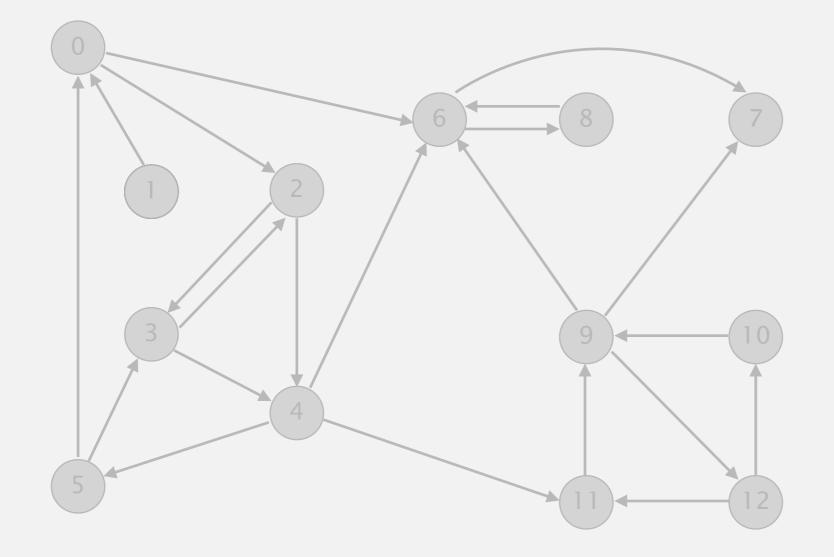
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R .



digraph G

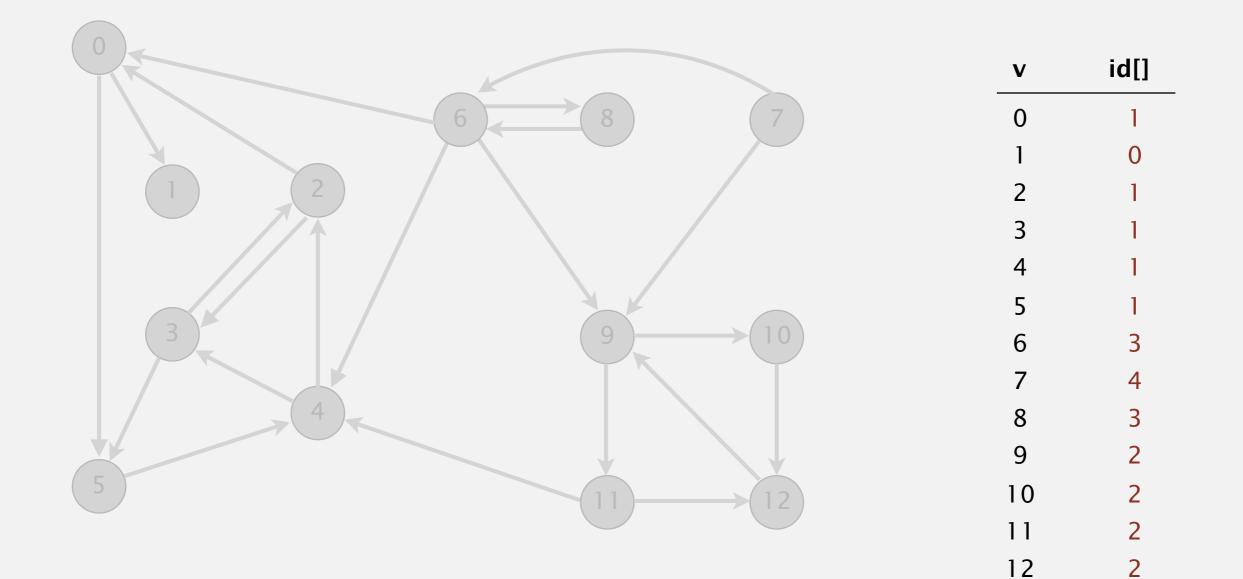
Phase 1. Compute reverse postorder in G^R.

1 0 2 4 5 3 11 9 12 10 6 7 8



Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R .

1 0 2 4 5 3 11 9 12 10 6 7 8



done

Simple (but mysterious) algorithm for computing strong components.

- Phase 1: run DFS on G^R to compute reverse postorder.
- Phase 2: run DFS on G, considering vertices in order given by first DFS.

5)

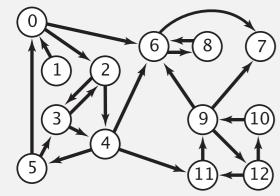
3

7

6

10

DFS in reverse digraph G^R



check unmarked vertices in the order 0 1 2 3 4 5 6 7 8 9 10 11 12

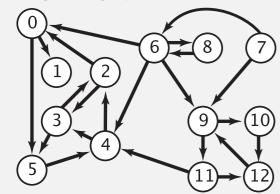
reverse postorder for use in second dfs() 1 0 2 4 5 3 11 9 12 10 6 7 8

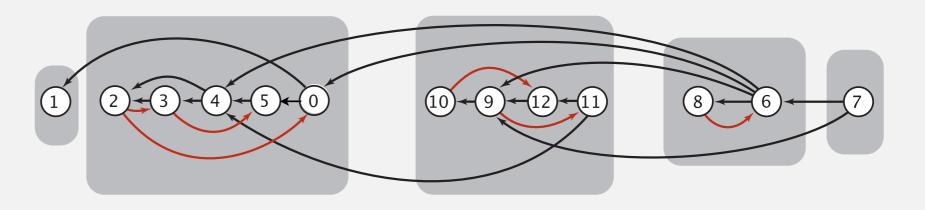
> dfs(0)dfs(6) dfs(8)check 6 8 done dfs(7)7 done 6 done dfs(2)dfs(4)dfs(11) dfs(9)dfs(12) check 11 dfs(10) check 9 10 done 12 done check 7 check 6

Simple (but mysterious) algorithm for computing strong components.

- Phase 1: run DFS on *G*^{*R*} to compute reverse postorder.
- Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in original digraph G





dfs(1) dfs(0) 1 done dfs(5) dfs(4) dfs(3) dfs(2) check 5 dfs(2) check 3 2 done 3 done check 2 4 done 5 done check 1 0 done check 2 check 4 check 3	dfs(11) check 4 dfs(12) dfs(9) check 11 dfs(10) check 12 10 done 9 done 12 done 11 done check 9 check 12 check 12 check 10	dfs(6) check 9 check 4 dfs(8) check 6 8 done check 0 6 done	dfs(7) check 6 check 9 7 done check 8
---	--	--	---

Kosaraju-Sharir algorithm

Proposition. Kosaraju-Sharir algorithm computes the strong components of a digraph in time proportional to E + V.

Pf.

- Running time: bottleneck is running DFS twice (and computing G^R).
- Correctness: tricky, see textbook (2nd printing).
- Implementation: easy!

Connected components in an undirected graph (with DFS)

```
public class CC
{
   private boolean marked[];
   private int[] id;
   private int count;
   public CC(Graph G)
   {
      marked = new boolean[G.V()];
      id = new int[G.V()];
      for (int v = 0; v < G.V(); v++)
      {
         if (!marked[v])
         {
            dfs(G, v);
            count++;
         }
      }
   }
   private void dfs(Graph G, int v)
   {
      marked[v] = true;
      id[v] = count;
      for (int w : G.adj(v))
         if (!marked[w])
            dfs(G, w);
   }
   public boolean connected(int v, int w)
      return id[v] == id[w]; }
}
```

Strong components in a digraph (with two DFSs)

```
public class KosarajuSharirSCC
{
   private boolean marked[];
   private int[] id;
   private int count;
   public KosarajuSharirSCC(Digraph G)
   {
      marked = new boolean[G.V()];
      id = new int[G.V()];
      DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
      for (int v : dfs.reversePostorder())
      {
         if (!marked[v])
         {
            dfs(G, v);
            count++;
         }
      }
   }
   private void dfs(Digraph G, int v)
   {
      marked[v] = true;
      id[v] = count;
      for (int w : G.adj(v))
         if (!marked[w])
            dfs(G, w);
   }
   public boolean stronglyConnected(int v, int w)
      return id[v] == id[w];
                              }
}
```

Digraph-processing summary: algorithms of the day

