CSC403: HW Answers [2/2] |
3.3.1 AES => E / \ A S E E S / \ => / | \ A QSY A Q Y E S E S U S / | \ => / | | \ => / \ A Q TUY A Q T Y E U / \ / \ A Q T Y S S / \ / \ E U => E O U / \ / \ / | \ / \ A IOQ T Y A I Q T Y S / \ E O U / | \ / \ A IN Q T Y =========================================================== 3.3.2 LPY => P / \ L Y P L P / \ => / | \ HLM XY H M XY L P L P X P / | \ => / | | \ => / \ CH M RXY CH M R Y L X / \ / \ CH M R Y P P / \ / \ L X => C L X / \ / \ / | \ / \ ACH M R Y A H M R Y P / \ C L X / | \ / \ A EH M RS Y =========================================================== 3.3.3 Tree is: E R / | \ AC HM SX Here's one class of solution: Insert order: + first three inserted must include one of E,R and one from a leaf on either side. + next two include other of E,R + one from the leaf not included before. + the three remaining, which are from three different leaves These are AEH, RX AEX, HR ARX, EH HRX, AE where order within the groups doesn't matter A could be C H could be M X could be S But it's also possible: AER, (C)HX ERX, (S)AH =========================================================== 3.3.5 1: * 2: * * 3: * / \ * * 4: * / \ * ** 5a: * / \ * * ** 5b: * * / | \ * * * 6: * * / | \ * * ** 7a (add to 3-node of 6): * / \ * * / \ / \ * * * * 7b (add to 2-node of 6): * * / | \ ** * ** 8a (add to 2-node of 7a or 3-node of 7b): * / \ * * / \ / \ * * * ** 8b (add to 2-node of 7b): * * / | \ ** ** ** 9a (add to 2-node of 8a or 3-node of 8b) * / \ * * / \ / \ * * ** ** 9b (add to 2-node of 8a or 3-node of 8b) * / \ * * / \ / \ * ** * ** 9c (add to 3-node of 8a) * / \ * * * / \ / | \ * * * * * 10a (add to 2-node of 9a or 9b) * / \ * * / \ / \ * ** ** ** 10b (add to 3-node of 9a or 2-node of 9c) * / \ * * * / \ / | \ * * * * ** 10c (add to 3-node of 9b or 2-node of 9c) * / \ * * * / \ / | \ * ** * * * =========================================================== 3.3.9 i) no - not balanced ii) no - not balanced iii) yes iv) yes =========================================================== 3.3.10 S S / \ / \ E O U == O U / | \ / \ // \ / \ A IN Q T Y E Q T Y / \ A N // I =========================================================== 3.3.11 P P / \ / \ C L X == L X / | \ / \ // \ / \ A EH M RS Y C M S Y / \ // A H R // E =========================================================== 3.3.14 A B \\ => // B A B B // \\ => / \ A C A C B B / \ / \ A C ==> A D \\ // D C B B D / \ / \\ // \ A D ==> A D ==> B E // \\ / \ / \ C E C E A C D D // \ // \ B E ==> B F / \ \\ / \ // A C F A C E D D D // \ // \\ / \ B F ==> B F ==> B F / \ // \\ / \ / \ / \ / \ A C E G A C E G A C E G D D / \ / \ B F B F / \ / \ ==> / \ / \ A C E G A C E H \\ // H G D D D / \ / \ / \ B F B F B H / \ / \ ==> / \ / \\ ==> / \ // \ A C E H A C E H A C F I // \\ / \ / \ G I G I E G D D / \ / \ B H B H / \ // \ ==> / \ // \ A C F I A C F J / \ \\ / \ // E G J E G I D D D H / \ / \ / \\ // \ B H B H B H D J / \ // \ ==> / \ // \\ ==> / \ / \ ==> / \ / \ A C F J A C F J A C F J B F I K / \ // \\ / \ / \ / \ / \ / \ / \ E G I K E G I K E G I K A C E G On 2-3 threes: ABC => B / \ A C B B D / \ => / | \ A CDE A C E B D B D F D / | \ => / | | \ => / \ A C EFG A C E G B F / \ / \ A C E G D D / \ / \ B F => B F H / \ / \ / \ / | \ A C E GHI A C E G I D D D H / \ / \ / | \ B F H => B F H J => B F J / \ / | \ / \ / | | \ / \ / \ / \ A C E G IJK A C E G I K A C E G I K 3-nodes pile up on the right in intermediate states. At most one red link from root to leaf. =========================================================== 3.3.15 On 2-3 threes: IJK => J / \ I K J H J / \ => / | \ GHI K G I K H J F H J H / | \ => / | | \ => / \ EFG I K E G I K F J / \ / \ E G I K H H / \ / \ F J => D F J / \ / \ / | \ / \ CDE G I K C E G I K H H D H / \ / \ / | \ D F J => B D F J => B F J / | \ / \ / | | \ / \ / \ / \ / \ ABC E G I K A C E G I K A C E G I K 3-nodes pile up on the left in intermediate states. All red links on path from root to least node.