
Automata Theory and Formal Grammars: Lecture 3

Regular Expressions and Languages

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.1/45

Regular Expressions and Languages

Last Time

Deterministic Finite Automata (DFAs) and their Languages

Closure Properties of DFA Languages (the product construction)

Nondeterministic Finite Automata (NFAs) and their Languages

Relating DFAs and NFAs (the subset construction)

Today

Regular Expressions and Regular Languages

Properties of Regular Languages

Relating NFAs and regular expressions: Kleene’s Theorem

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.2/45

NFAs: Finishing Up

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.3/45

NFAε

Sipser uses a more general definition than I gave last week:

Definition A nondeterministic finite automaton with empty
transitions (NFAε) is a quintuple 〈Q, Σ, q0, δ, A〉 where:

Q is a finite set of states;

Σ is the input alpabet;

q0 ∈ Q is the start state;

A ⊆ Q is the set of accepting states; and

δ : Q × Σ∪{ε} → 2Q is the transition function.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.4/45

Relating NFA and NFA ε

Theorem The set of NFA languages is identical to the set of NFAε

languages.

Proof?

One direction is trivial: An NFA (without empty transitions) is an NFAε

where for all q:

δ(q, ε) = ∅

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.5/45

The Subset Construction for NFA ε

Let N = 〈Q, Σ, q0, δ, A〉 be a NFAε.
We want to construct a DFA D(N) accepting the same language.
States in D(N) will be sets of states from N .
Let P range over states of D(N).
P ∈ 2Q, that is, P ⊆ Q.

D(N) = 〈2Q , Σ , δ(q0, ε) , δDN , ADN 〉

where

δDN (P, a) =
⋃

q∈P

δ∗(q, a)

ADN = {P | P ∈ 2Q and P ∩ A 6= ∅ }

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.6/45

Example

Consider the NFA M given by K = {q0, q1, q2}, Σ = {0, 1, 2}, s = q0,
F = {q2} with transition relation ∆ given below:

q σ ∆(q,σ)

q0 0 q0

q0 ε q1

q1 1 q1

q1 ε q2

q2 2 q2

L(M) = {0}∗{1}∗{2}∗.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.7/45

Example continued

The resulting DFA M ′ has K′ = {{q0, q1, q2}, {q1, q2}, {q2}, ∅},
s′ = {q0, q1, q2}, F = {{q0, q1, q2}, {q1, q2}, {q2}} and δ′:

q σ δ′ (q,σ)

{ q0, q1, q2 } 0 { q0, q1, q2 }

{ q0, q1, q2 } 1 { q1, q2 }

{ q0, q1, q2 } 2 { q2 }

{ q1, q2 } 0 ∅
{ q1, q2 } 1 { q1, q2 }

{ q1, q2 } 2 { q2 }

{ q2 } 0,1 ∅
{ q2 } 2 { q2 }

∅ 0,1,2 ∅

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.8/45

Another example

Let Σ = {a1, ..., an} where n ≥ 2.

Let L = {w | ∃i. ai does not appear in w }.

For example, If Σ = {a1, a2, a3} then a1a1a2 ∈ Σ but a1a2a3 /∈ Σ.

Intuitively, the NFA would work in the following manner:

Guess the symbol ai that is missing from the input.

If no symbol is missing, move to a dead state.

If a symbol ai is missing, go to state qi.

If in state qi you ever encounter ai, move to a dead state.

Otherwise eat the remaining symbols and accept.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.9/45

Another Example (continued)

For the construction of the NFA we need one starting state q0 and one
state for each symbol in the alphabet, q1, . . . , qn.

There are ε-transitions from q0 into each of q1, . . . , qn, and self-loops
on each of q1, . . . , qn labeled with the states that are legal.

What happens when we use the construction to produce a DFA
accepting this language?

The equivalent DFA M ′ has initial state s′ = {q0, q1, q2, q3, ..., qn}.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.10/45

Regular Languages

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.11/45

Regular Languages

This course: a study of the computing power needed to “process”
different kinds of languages.

The first class of languages we will study: regular languages.

Regular languages are defined using regular expressions.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.12/45

Regular Expressions

... a notation for defining languages.

Definition Let Σ be an alphabet. Then the set R(Σ) of regular
expressions over Σ is defined recursively as follows.

∅ ∈ R(Σ)

ε ∈ R(Σ)

a ∈ R(Σ) if a ∈ Σ

r + s ∈ R(Σ) if r ∈ R(Σ) and s ∈ R(Σ)

r ◦ s ∈ R(Σ) if r ∈ R(Σ) and s ∈ R(Σ)

r∗ ∈ R(Σ) if r ∈ R(Σ)

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.13/45

Comments about Regular Expressions

The previous definition just gives the syntax of regular expressions:
◦,∪, ∗ are symbols that we will shortly give an interpretation to.

Examples Let Σ = {a, b}. The following are regular expressions in

R(Σ).

a

(a + (b ◦ b))∗
(((b∗) ◦ ((a ◦ a) + b)) ◦ ∅)

Notation

Usually, ◦ will be omitted.

Also, to reduce parentheses, we will adopt the following precedence:
∗ > ◦ > ∪.

So (((b∗) ◦ ((a ◦ a) + b)) ◦ ∅) can be written as b∗(aa + b)∅.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.14/45

Derived Operations

We will sometimes use the following derived operations on regular
expressions.

r+ = r ◦ (r∗)

ri =







ε if i = 0

r ◦ (ri−1) otherwise

E.g. (b + a)2 = (b + a) ◦ (b + a) ◦ ε

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.15/45

How Do Regular Expressions “Define” Lan-
guages?

To make connection with languages precise, we need to define a
semantics for regular expressions saying what they “mean”.

Semantics will be given in form of function L : R(Σ) → 2Σ
∗

.

For any regular expression r, L(r) ⊆ Σ∗ will be the language
defined by r.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.16/45

The Semantics of Regular Expressions

Definition Fix alphabet Σ. Then L : R(Σ) → 2Σ
∗

is defined as
follows.

L(r) =



















































∅ if r = ∅
{ε} if r = ε

{a} if r = a and a ∈ Σ

L(s1) ∪ L(s2) if r = s1 + s2

L(s1) ◦ L(s2) if r = s1 ◦ s2

(L(s))∗ if r = s∗

Definition L ⊆ Σ∗ is a regular language if there is a regular
expression r such that L = L(r).

(Note: This is a denotational semantics.)

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.17/45

Questions about Regular Languages

1. What language does (a + b)∗ define?
All strings built from a and b.

L((a + b)∗) = (L(a + b))∗

= (L(a) ∪ L(b))∗

= ({a} ∪ {b})∗ = {a, b}∗

2. What is L(((a + b)(a + b))∗)?
All even-length strings from {a, b}∗.

L(((a + b)(a + b))∗) = (L((a + b)(a + b)))∗

= (L(a + b) ◦ L(a + b))∗

= ({a, b} ◦ {a, b})∗

= {aa, ab, ba, bb}∗

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.18/45

Questions (cont.)

Let Σ = {a, b}.

1. What is a regular expression for all words in Σ∗ ending in a?
(a + b)∗a

2. What is a regular expression for all odd-length words in Σ∗?
((a + b)(a + b))∗(a + b)

3. How do you prove that L1 comprising words with exactly two b’s is
regular?
Give a regular expression r1 such that L(r1) = L1. One choice for
r1 is a∗ba∗ba∗.

4. How do you prove that L2 consisting of words not containing ab is
regular?
Give a regular expression r2 such that L(r2) = L2. One choice for
r2 is b∗a∗.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.19/45

Simplifying Regular Expressions

Definition Let r1, r2 be regular expressions. Then r1 =L r2 exactly
when L(r1) = L(r2).

Some Laws for =L

r + ∅ =L r

r ◦ ∅ =L ∅ ◦ r =L ∅
r ◦ ε =L ε ◦ r =L r

r1 ◦ (r2 ◦ r3) =L (r1 ◦ r2) ◦ r3

r1 ◦ (r2 + r3) =L (r1 ◦ r2) + (r1 ◦ r3)

(r + s)∗ =L r∗ if L(s) ⊆ L(r∗)
(r + ε)∗ =L r∗

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.20/45

Finite Languages and Regularity

Definition A language L is finite if it contains a finite number of
words.

Example L1 = {aa, b, aba} is finite; L2 = {w ∈ {a, b}∗ | |w| is even }
is not.

It turns out that every finite language is regular!

E.g. Regular expression for L1 is aa + b + aba.

A proof of this fact would use induction (on what?) and might rely on a
lemma (“subtheorem”) about singleton languages.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.21/45

Singleton Languages are Regular

Lemma For any w ∈ Σ∗, the language {w} is regular.

Proof: Define the function fword : Σ∗ → R(Σ) as follows

fword(w) =







ε when w = ε

ar′ when w = aw′ and fword(w
′) = r′

By induction on w, show that for all w, L(fword(w)) = {w}.

For a more detailed version, see the following slides.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.22/45

Finite Languages are Regular

Lemma Any finite language is regular.

Proof: Define the relation flang ⊂ 2Σ
∗ → R(Σ) as follows

flang(L) =















∅ when L = ∅
r + r′ when L = {w} ∪ L′ and fword(w) = r

and flang(L
′) = r′

By induction on k ∈ N, show that if |L| = k then L(flang(L)) = L.

Note that flang is not actually a well defined function.
We need to pick words {w} deterministically.
This can be done by defining an order on regular expressions.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.23/45

Singleton Languages Detail (1)

Lemma Let Σ be an alphabet, and let w ∈ Σ∗. Then the language
{w} is regular.

How do we prove this? First, write down the logical form.

Logical Form ∀w ∈ Σ∗. P (w), where P (w) is “{w} is regular.”

We can prove this by induction on the definition of Σ∗; i.e. we could
prove the statement ∀k ∈ N. ∀w ∈ (Σ∗)k. P (w).

Another possibility: do induction on the length of w. Using this proof
method, the statement to be shown is:

∀n ∈ N. ∀w ∈ Σ∗. (|w| = n) implies P (w)

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.24/45

Singleton Languages Detail (2)

The proof proceeds by induction on word length; the statement to be
proved is ∀n ∈ N. Q(n), where Q(n) is
“∀w ∈ Σ∗. (|w| = n) −→ {w} “is regular”.

Base case. We must show Q(0), i.e. that for any word w, if |w| = 0,
then {w} is regular. So fix w and assume that |w| = 0. This implies that
w = ε. But {ε} is regular, since the regular expression ε is such that
L(ε) = {ε}.

Induction step. We must show that for any n, Q(n) −→ Q(n + 1). So fix
n and assume (induction hypothesis) that Q(n) holds. We must prove
Q(n + 1), i.e. that for any w of length n + 1, {w} is regular. Now fix w

and assume that |w| = n + 1; we must find a regular expression r such
that L(r) = {w}.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.25/45

Singleton Languages Detail (3)

By definition of |w|, since |w| = n + 1 there must exist a ∈ Σ and
w′ ∈ Σ∗ such that w = a ◦ w′ and |w′| = n. The induction hypothesis
guarantees that {w′} is regular, i.e. that there is a regular expression r′

with L(r′) = {w′}. Now consider the regular expression r = a ◦ r′.

L(r) = L(a ◦ r′) Definition of r

= {a} ◦ {w′} Definition of L
= {a ◦ w′} Definition of ◦
= {w}

Consequently, {w} is regular.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.26/45

Closure Properties for Regular Languages

Theorem The class of regular languages is closed with respect to
∪, ◦, and ∗.

For example, consider language union.

Suppose that L1 and L2 are regular; we want to prove that L1 ∪ L2 is
also regular. To do so, we must find a regular expression r12 such that
L(r12) = L1 ∪ L2.

Since L1 and L2 are regular there exist regular expressions r1, r2 such
that L(r1) = L1 and L(r2) = L2. Now consider r12 = r1 + r2.

L(r12) = L(r1∪r2) Definition of r12

= L(r1) ∪ L(r2) Definition of L
= L1 ∪ L2 Assumption

Conseqently, L1 ∪ L2 is regular.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.27/45

Kleene’s Theorem

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.28/45

Relating Automata and Regular Languages

So far we have three ways of “defining” languages:

Regular expressions

DFAs

NFAs

We also know that that languages definable using DFAs are the same
as those definable using NFAs.

What about languages definable using regular expressions?

They coincide with those for DFAs/NFAs!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.29/45

Kleene’s Theorem

Theorem L ⊆ Σ∗ is regular if and only if there is a DFA M with
L = L(M).

How can we show this? By giving constructions for converting:

regular expressions to DFAs; and

DFAs to regular expressions.

Today we will only prove the first part.

Instead of building DFAs from regular expressions we will construct
NFAs. (Why is this sufficient?)

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.30/45

Converting Regular Expressions into NFAs

Somehow, we need to get “operational content” (i.e. states and
transitions) out of regular expressions. Basic regular expressions are
easy:

Regular Expression NFA

∅

ε

a(∈ Σ)
a

But how do we handle the operators ∪, ◦ and ∗?

Book uses on approach based on NFAs that also have
ε-transitions.

We’ll pursue a different approach.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.31/45

Converting Regular Expressions into NFAs (cont.)

(Recall: R(Σ) is the set of regular expressions over Σ.)

1. We’ll define a predicate
√

on regular expressions; r
√

should hold
exactly when ε ∈ L(r).

2. We’ll also define a relation −→⊆ R(Σ) × Σ ×R(Σ). Intuitively, −→
should explain how to “build” words in L(r): if r

a−→ r′ then any
word w′ ∈ L(r′) should give rise to a word in aw′ ∈ L(r).

3. We’ll then use these to construct a NFA from r as follows.

States are regular expressions.

Start state is r.

Transitions given by −→
Accepting states given by

√
.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.32/45

Defining
√

Definition is recursive on structure of regular expressions!

Definition Let Σ be an alphabet. Then
√

is defined as follows.

ε
√

always (1)

r∗√ always (2)

(r + s)
√

if r
√

(3)

(r + s)
√

if s
√

(4)

(rs)
√

if r
√

and s
√

(5)

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.33/45

Examples of
√

εa∗√ since ε
√

and a∗√

¬((a + b)
√

) since neither a
√

nor b
√

01 + (1 + 01)∗√ since (1 + 01)∗√

¬(01(1 + 01)∗√) since ¬(01
√

)

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.34/45

Proving
√

Is Correct

Lemma Let r be a regular expression. Then ε ∈ L(r) iff r
√

.

Proof Outline The proof proceeds by induction on r, where the
induction hypothesis allows the assumption of the result for “smaller”
r′. One would then do a case analysis based on the structure of r:

r = ∅
r = ε

r = a

r = r1 + r2

r = r1 ◦ r2

r = r1∗

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.35/45

Defining −→

Definition Let Σ be an alphabet. Then for r, r′ ∈ Reg(Σ) and

a ∈ Σ, r
a−→ r′ is defined as follows.

a
a−→ ε if a ∈ Σ (1)

r + s
a−→ r′ if r

a−→ r′ (2)

r + s
a−→ s′ if s

a−→ s′ (3)

rs
a−→ r′s if r

a−→ r′ (4)

rs
a−→ s′ if s

a−→ s′ and r
√

(5)

r∗ a−→ r′(r∗) if r
a−→ r′ (6)

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.36/45

Examples of −→

0 + 1
0−→ ε Why?

0
0−→ ε By rule for 0

0 + 1
0−→ ε By first rule for ∪

(abb + a)∗ a−→ εbb(abb + a)∗ Why?

a
a−→ ε By rule for a

abb
a−→ εbb By first rule for ◦

abb + a
a−→ εbb By first rule for ∪

(abb + a)∗ a−→ εbb(abb + a)∗ By rule for ∗

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.37/45

Proving −→ Correct

Lemma Let r ∈ Reg(Σ), a ∈ Σ, and w′ ∈ Σ∗. Then:

aw′ ∈ L(r) iff ∃r′ ∈ Reg(Σ). r
a−→ r′ and w′ ∈ L(r′)

Note This lemma says two things about −→.

If r
a−→ r′ and w′ ∈ L(r′) then aw′ ∈ L(r).

If aw′ ∈ L(r) for some a ∈ Σ then there is some r′ such that r
a−→ r′

and w′ ∈ L(r′).

In other words, the construction of every non-ε element in L(r) can be
“initiated” using −→!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.38/45

Computing Outgoing Transitions

In building NFAs we will need to be able to compute the set of outgoing
transitions from regular expression r, i.e. the set { 〈a, r′〉 | r

a−→ r′ }.

How do we do it? Recursively!

If r is ∅ or ε, it has no transitions: { }.

If r is a, it has one transition: {〈a, ε〉}.

Otherwise, recursively compute transitions of subexpressions of r.
Then use rules to convert transitions of subexpressions into
transitions for r.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.39/45

Example: Computing Outgoing Transitions

What are transitions of 0 + 1?

Compute transitions of 0: {〈0, ε〉}

Compute transitions of 1: {〈1, ε〉}

From above and rules for ∪, transitions for 0 + 1 are {〈0, ε〉, 〈1, ε〉}

What are transitions of a∗b∗?

Compute transitions of a∗.

Compute transitions of a: {〈a, ε〉}.

From above and rule for ∗, transitions for a∗ are {〈a, εa∗〉}.

Compute transitions for b∗: they are {〈b, εb∗〉}.

Since a∗√, both rules for ◦ are applicable, and transitions for a∗b∗
are {〈a, εa∗b∗〉, 〈b, εb∗〉}.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.40/45

Building NFAs Using −→ and
√

Suppose that

r0

a1−→ r1

a2−→ ···rn−1

an−→ rn

and rn

√
. Then the lemmas about

√
and −→ guarantee that

a1...an ∈ L(r0).

This suggests a way to build a NFA from a regular expression r.

States are regular expressions “reachable” from r by some number
of −→ steps.

Start state is r.

Transitions given by −→.

Accepting states given by
√

.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.41/45

Building NFAs: Implementation

One way to implement previous strategy: build states, transitions in
NFA for r in demand-driven manner.

Start with state set Q = {r}.

Maintain set toProc of states whose outgoing transitions need to
be calculated; initially, toProc = {r}.

While toProc is nonempty, choose an element from it, compute
outgoing transitions from it, and add target states of transitions to
Q and toProc if necessary.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.42/45

Building NFA for (abb∪a)∗

Initially
Q = {(abb + a)∗}
toProc = {(abb + a)∗}

(abb + a)∗

Transitions for (abb + a)∗:
{〈a, (abb + a)∗〉, 〈a, bb(abb + a)∗〉}

Q = {(abb + a)∗, bb(abb + a)∗}
toProc = {bb(abb + a)∗}

a

a

bb(abb + a)∗

(abb + a)∗

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.43/45

Transitions for bb(abb + a)∗:

{〈b, b(abb + a)∗〉}

Q = {(abb + a)∗, bb(abb + a)∗, b(abb + a)∗}
toProc = {b(abb + a)∗}

a

b

a

bb(abb + a)∗

b(abb + a)∗

(abb + a)∗

Transitions for b(abb + a)∗:

{〈b, (abb + a)∗〉}

Q = {(abb + a)∗, bb(abb + a)∗, b(abb + a)∗}
toProc = ∅; we are finished!

a

b

a

b bb(abb + a)∗

b(abb + a)∗

(abb + a)∗

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.44/45

Implications of Kleene’s Theorem

1. Regular languages are closed with respect to complement and
intersection.

2. Theorem has practical importance.

ls *.c OS’s convert regular expressions to DFAs to imple-
ment this

egrep String search utility converts regular expressions to
DFAs

lex Scanner generator used in compiler construction;
converts regular expressions for keywords, identifiers
into DFAs

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.45/45

	Regular Expressions and Languages
	NFAs: Finishing Up
	NFA$emptystring $
	Relating NFA and NFA$emptystring $
	The Subset Construction for NFA{
ed $emptystring $}
	Example
	Example continued
	Another example
	Another Example (continued)
	Regular Languages
	Regular Languages
	Regular Expressions
	Comments about Regular Expressions
	Derived Operations
	How Do Regular Expressions ``Define'' Languages?
	The Semantics of Regular Expressions
	Questions about Regular Languages
	Questions (cont.)
	Simplifying Regular Expressions
	Finite Languages and Regularity
	Singleton Languages are Regular
	Finite Languages are Regular
	Singleton Languages Detail (1)
	Singleton Languages Detail (2)
	Singleton Languages Detail (3)
	Closure Properties for Regular Languages
	Kleene's Theorem
	Relating Automata and Regular Languages
	Kleene's Theorem
	Converting Regular Expressions into NFAs
	Converting Regular Expressions into NFAs (cont.)
	Defining $surd $
	Examples of $surd $
	Proving $surd $ Is Correct
	Defining $derives {}$
	Examples of $derives {}$
	Proving $derives {}$ Correct
	Computing Outgoing Transitions
	Example: Computing Outgoing Transitions
	Building NFAs Using $derives {}$ and $surd $
	Building NFAs: Implementation
	Building NFA for $(abb
eunion a)
estar $
	Implications of Kleene's Theorem

