
Table-driven parsing

Our recursive descent parser contained a procedure for each nonterminal. The
generation of these procedures could be automated—through the construction and
testing of and sets—for any grammar free of left recursion.

Another equally automatable approach is to use a simple parsing engine that is
driven by tables constructed by similar analysis of the grammar.

Input

Grammar
Analyzer
Grammar

Table

Parsing Engine

Stack

LL(k)

The parsing engine begins by pushing the start symbol onto the stack. Each
subsequent action is one of the following:

Match: pairs an input symbol an on top-of-stack.

Apply: replaces the nonterminal with , where .
Copyright c 1994 Ron K. Cytron. All rights reserved – 52 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL



Match

If the top-of-stack contains the terminal symbol “a”, then the parsing engine must
find an “a” as the next input symbol; the stack is popped, and the input is advanced.

Before

a a
After

If a match simultaneously empties the stack and exhausts the input stream, then
the string is accepted by the parser.

If a match is attempted, but the symbols disagree, then an error is declared.

Copyright c 1994 Ron K. Cytron. All rights reserved – 53 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL



Apply

If the top-of-stack contains a nonterminal , then the parsing engine must choose
the appropriate rule for , say . The stack is popped of symbol , and the
symbols , , and are pushed onto the stack, such that is the new top-of-stack.

Before

aN
After

aα
β
γ

Since a match is always required when a terminal is exposed on top-of-stack, the
only information that must be coded in our table is the rule that should be applied
when a nonterminal appears on top-of-stack. As with our recursive descent parser,
this decision can be based on symbols of lookahead into the input stream.

Copyright c 1994 Ron K. Cytron. All rights reserved – 54 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL



Constructing the table

1 S A C $
2 C c
3
4 A a B C d
5 B Q
6
7 B b B
8 d
9 Q q

First Follow
$

$

$
$

Lookahead
NonTerm a b c d q $

S 1 1 1 1 1
C 2 3 3
A 4 5 6 5 6
B 7 8
Q 9

The nonblank entries in the above table indicate the number of the rule that should
be applied, given a nonterminal on top-of-stack and an input symbol as lookahead.

Copyright c 1994 Ron K. Cytron. All rights reserved – 55 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL



Using the table

1 S A C $
2 C c
3
4 A a B C d
5 B Q
6
7 B b B
8 d
9 Q q

Lookahead
NonTerm a b c d q $

S 1 1 1 1 1
C 2 3 3
A 4 5 6 5 6
B 7 8
Q 9

Below is shown the stack activity in parsing the input string “abbddc$”.

S

A
C
$
1

a
B
C
d
C
$
4

b
B
C
d
C
$
7

b
B
C
d
C
$
7

d
C
d
C
$
8

d
C
$
3

c
$
2

Input string

a b b d d c $

Copyright c 1994 Ron K. Cytron. All rights reserved – 56 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL


