
Syntax + Semantics = Language
While thegrammar for a languageenforces syntactic constraints onaccepted strings,
some language issues are often postponed until after parsing.

For example, some language definitions contain rules that cannot be enforced by
any context-free mechanism.

The most common examples involve
some form of type-checking. Recall
our expression grammar, a form of
which appears in most programming
language grammars. While the gram-
mar allows an expression such as

most languages contain rules that re-
strict the types of and . For example,
addition does not make sense if is a
character string and is an array.

A grammar that accommodates type
information would involve some con-
text, and such grammars are difficult to
design and expensive to process. Vi-
able approaches to this problem involve
some form of semantic processing, per-
formed during or shortly after parsing:

Attribute grammars
specify equations whose resolution
essentially performs type checking.

Symbol tables are the most common
solution. Type information is entered
when identifiers are declared, so
that expression types can be subse-
quently checked.

There is still the issue of whether type checking occurs in the same pass over the input
as syntactic checking. Some languages forbid the kinds of “forward” declarations
that would require extra passes for type checking.
Copyright c 1994 Ron K. Cytron. All rights reserved – 77 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL



Semantic processing

Also, there are often language constraints that are difficult or unwieldy to enforce
syntactically.

For example, theANSICgrammar essen-
tially has a set of rules:

Declaration Qualifiers id
Qualifiers Qualifiers Qualifier

Qualifier
Qualifier int

float
static
extern
...

While this grammar allows strings like

static int x

the grammar also admits strings such as

static int extern float x

The language actually offers three kinds
of typequalifiers. Atmost one fromeach
category is allowed for any identifier.

The grammar could be transformed to enforce the kind and number of qualifiers that
are allowed, but this would increase the size of the grammar.

Another example would be the evaluation of an expression. If we restricted the
size of its terms, each expression could be syntactically evaluated by a huge
grammar. Taken further, any programming language can be processed by a finite-
state machine if the program size is bounded.

Ultimately, issues of taste and efficiently dictate how and where language issues are
addressed.

Copyright c 1994 Ron K. Cytron. All rights reserved – 78 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL



Ordering from a Chinese menu

Beef

Quail

Chicken

Fish

Lamb

Potato

Spinach

Corn

Peas

Cheesecake

Ice Cream

Pudding

The rules for a “correctly” placed order
are:

1. At most one item may be selected
from any column.

2. Some columns may be skipped.

3. At least one item must be chosen.

4. The items can be arbitrarily ordered.

Order Choices
Choices Choice Choices

Choice
Choice ColA

ColB
ColC

ColA BEEF
CHICKEN
QUAIL
FISH
LAMB

ColB POTATO
SPINACH
CORN
PEAS

ColC CHEESECAKE
PUDDING
ICECREAM

The assignment is to rewrite the grammar to enforce the rules. This is exactly what’s
needed to enforce C’s rules for declarations.

Copyright c 1994 Ron K. Cytron. All rights reserved – 79 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL



Solution

Order Choices
Choices ColA

ColB
ColC
ColA ColB
ColB ColA
ColA ColC
ColC ColA
ColB ColC
ColC ColB
ColA ColB ColC
ColA ColC ColB
ColB ColA ColC
ColB ColC ColA
ColC ColA ColB
ColC ColB ColA

ColA BEEF
CHICKEN
QUAIL
FISH
LAMB

ColB POTATO
SPINACH
CORN
PEAS

ColC CHEESECAKE
ICECREAM
PUDDING

While some factoring of this grammar is possible, this example illustrates the tradeoff
between grammar size and specificity of the parse.

Copyright c 1994 Ron K. Cytron. All rights reserved – 80 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL



Symbol tables

The symbol table tracks symbols and
their types, where type information
could be any property of a symbol rele-
vant to subsequent activity in the com-
piler.

static char *a[5];

is an array of 5 pointers to characters.

Such information typically includes

the basic type of a variable (ptr, int,
char, float, struct, etc.);

structure layout, pointer specifics,
array information;

initialization values;

scope information.

I provide the following symbol table access functions:

IncrNestLevel(): increase the nest level by one.

DecrNestLevel(): decrease the nest level by one.

EnterSymbol(M,name): enters the string name as a symbol of type M at the current
nest level.

RetrieveSymbol(name): returns a pointer to thecurrently active declaration of name.
If name is not active, an error message is produced and the parse is aborted.

ExistsSymbol(name): operates like RetrieveSymbol(), but instead of aborting, a NULL
pointer is returned if name isn’t active.

I provide extra credit for those who implement their own, hash-based symbol table
manager.

Copyright c 1994 Ron K. Cytron. All rights reserved – 81 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL



Symbol tables

Essential information

1. Names;

2. Scope information;

3. Type information;

4. Storage specifics.

Issues

1. Programs typically contain a mix of
very longand very short names (i vs.

WindowMaxAccelScreenMouse()).

2. Type checking and code genera-
tion do not require access to all
scopes at all times. Typically, ac-
cess is required only to the current
scope and its outer scopes. Even
then, programs use the current and
outermost scopes most frequently.

There are two popular methods of establishing symbol tables:

1. Make a separate pass over the program to create the symbol table;

2. Build the symbol table as you parse.

Given that one typically creates an abstract syntax tree anyway, it seems wise to
defer symbol table creation to a separate pass. On the other hand, restructuring the
grammar to simplify symbol table creation is a good exercise, and it is necessary for
a one-pass compiler.

Copyright c 1994 Ron K. Cytron. All rights reserved – 82 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL



Symbol table organization

Each cell
Same Actual Same Same
hash symbol ID scope
(H) info (V) (L)

scope

x

y

z

x

y

hash

x

The above scheme implements a stack for each variable , where top-of-stack is the
currently active instance of . Let be the hash index for variable :

Entering a scope: each variable is pushed onto the stack headed by its (chained)
hash index .

Leaving a scope : each variable linked from scope is popped off its stack.

Lookup: use , with chaining via , to locate the named variable.

Copyright c 1994 Ron K. Cytron. All rights reserved – 83 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL


