001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
package horstmann.ch03_day3;
public class Day
{
  /**
      Constructs a day with a given year, month, and day
      of the Julian/Gregorian calendar. The Julian calendar
      is used for all days before October 15, 1582
      @param aYear a year != 0
      @param aMonth a month between 1 and 12
      @param aDate a date between 1 and 31
   */
  public Day(int aYear, int aMonth, int aDate)
  {
    year = aYear;
    month = aMonth;
    date = aDate;
    ymdValid = true;
    julianValid = false;
  }

  /**
      Returns the year of this day
      @return the year
   */
  public int getYear()
  {
    ensureYmd();
    return year;
  }

  /**
      Returns the month of this day
      @return the month
   */
  public int getMonth()
  {
    ensureYmd();
    return month;
  }

  /**
      Returns the day of the month of this day
      @return the day of the month
   */
  public int getDate()
  {
    ensureYmd();
    return date;
  }

  /**
      Returns a day that is a certain number of days away from
      this day
      @param n the number of days, can be negative
      @return a day that is n days away from this one
   */
  public Day addDays(int n)
  {
    ensureJulian();
    return new Day(julian + n);
  }

  /**
      Returns the number of days between this day and another
      day
      @param other the other day
      @return the number of days that this day is away from
      the other (>0 if this day comes later)
   */
  public int daysFrom(Day other)
  {
    ensureJulian();
    other.ensureJulian();
    return julian - other.julian;
  }

  private Day(int aJulian)
  {
    julian = aJulian;
    ymdValid = false;
    julianValid = true;
  }

  /**
      Computes the Julian day number of this day if
      necessary
   */
  private void ensureJulian()
  {
    if (julianValid) return;
    julian = toJulian(year, month, date);
    julianValid = true;
  }

  /**
      Converts this Julian day mumber to a calendar date if necessary.
   */
  private void ensureYmd()
  {
    if (ymdValid) return;
    int[] ymd = fromJulian(julian);
    year = ymd[0];
    month = ymd[1];
    date = ymd[2];
    ymdValid = true;
  }

  /**
      Computes the Julian day number of the given day day.

      @param year a year
      @param month a month
      @param date a day of the month
      @return The Julian day number that begins at noon of
      the given day
      Positive year signifies CE, negative year BCE.
      Remember that the year after 1 BCE is 1 CE.

      A convenient reference point is that May 23, 1968 noon
      is Julian day number 2440000.

      Julian day number 0 is a Monday.

      This algorithm is from Press et al., Numerical Recipes
      in C, 2nd ed., Cambridge University Press 1992
   */
  private static int toJulian(int year, int month, int date)
  {
    int jy = year;
    if (year < 0) jy++;
    int jm = month;
    if (month > 2) jm++;
    else
    {
      jy--;
      jm += 13;
    }
    int jul = (int) (java.lang.Math.floor(365.25 * jy)
        + java.lang.Math.floor(30.6001 * jm) + date + 1720995.0);

    int IGREG = 15 + 31 * (10 + 12 * 1582);
    // Gregorian Calendar adopted Oct. 15, 1582

    if (date + 31 * (month + 12 * year) >= IGREG)
      // Change over to Gregorian calendar
    {
      int ja = (int) (0.01 * jy);
      jul += 2 - ja + (int) (0.25 * ja);
    }
    return jul;
  }

  /**
      Converts a Julian day number to a calendar date.

      This algorithm is from Press et al., Numerical Recipes
      in C, 2nd ed., Cambridge University Press 1992

      @param j  the Julian day number
      @return an array whose 0 entry is the year, 1 the month,
      and 2 the day of the month.
   */
  @SuppressWarnings("cast")
  private static int[] fromJulian(int j)
  {
    int ja = j;

    int JGREG = 2299161;
    // The Julian day number of the adoption of the Gregorian calendar

    if (j >= JGREG)
      // Cross-over to Gregorian Calendar produces this correction
    {
      int jalpha = (int) (((float) (j - 1867216) - 0.25)
          / 36524.25);
      ja += 1 + jalpha - (int) (0.25 * jalpha);
    }
    int jb = ja + 1524;
    int jc = (int) (6680.0 + ((float) (jb - 2439870) - 122.1)
        / 365.25);
    int jd = (int) (365 * jc + (0.25 * jc));
    int je = (int) ((jb - jd) / 30.6001);
    int date = jb - jd - (int) (30.6001 * je);
    int month = je - 1;
    if (month > 12) month -= 12;
    int year = jc - 4715;
    if (month > 2) --year;
    if (year <= 0) --year;
    return new int[] { year, month, date };
  }

  private int year;
  private int month;
  private int date;
  private int julian;
  private boolean ymdValid;
  private boolean julianValid;
}