
Lectures on
Proof-Carrying Code

Peter Lee
Carnegie Mellon University

Lecture 1 (of 3)
June 21-22, 2003

University of Oregon

2004 Summer School on Software Security

Code Safety

CPU

Code

Is this safe to execute?

Trusted Host

Approach 1
Trust the code producer

CPU

Code

sig

PK1

PK1

PK2

PK2

Trust is based on
personal authority, not
program properties

Scaling problems?

Trusted 3rd PartyTrusted Host

Approach 2
Baby-sit the program

CPU

Code

Execution
monitor

Expensive

E.g., Software Fault Isolation [Wahbe &
Lucco], Inline Reference Monitors [Schneider]Trusted Host

Approach 3
Java

CPU

Code

Interp/
JIT

Expensive
and/or big

Limited in
expressive power

Verifier

Trusted Host

Approach 4
Formal verification

Theorem
Prover

CPU

Code

Flexible and
powerful.
But really really
really hard and
must be correct.Trusted Host

A key idea: Checkable certificates

Certifying
Prover

CPU

Proof
Checker

Code

Proof

Trusted Host

A key idea: Checkable certificates

Certifying
Prover

CPU

Code

ProofProof
Checker

Five Frequently Asked
Questions

Question 1

How are the proofs represented
and checked?

Formal proofs

Write “x is a proof of predicate P”
as x:P.

What do proofs look like?

Example inference rule

If we have a proof x of P and a proof
y of Q, then x and y together
constitute a proof of P ∧ Q.

Or, in ASCII:

•Given x:P, y:Q then (x,y):P*Q.

More inference rules

Assume we have a proof x of P. If we
can then obtain a proof b of Q, then
we have a proof of P ⇒ Q.

• Given [x:P] b:Q then
fn (x:P) => b : P → Q.

More rules:
• Given x:P*Q then fst(x):P

• Given y:P*Q then snd(y):Q

Types and proofs

So, for example:

fn (x:P*Q) => (snd(x), fst(x))
: P*Q → Q*P

This is an ML program!

Also, typechecking provides a
“smart” blackboard!

Curry-Howard Isomorphism

In a logical framework language,
predicates can be represented as
types and proofs as programs (i.e.,
expression terms).

Furthermore, under certain
conditions typechecking is
sufficient to ensure the validity
of the proofs.

“Proofs as Programs”

“Propositions as Types”

LF

The Edinburgh Logical Framework
language, or LF, provides an
expressive language for proofs-as-
programs.

Furthermore, its use of dependent
types allows, among other things,
the axioms and rules of inference
to be specified as well

Oracle strings

A

B rlrrllrrllrlrlrllrlrrllrrll…

Question 2

How well does this work in practice?

The Necula-Lee experiments

Certifying
Prover

CPU

Code

Proof

Simple,
small (<52KB),
and fast.

No longer need to
trust this component.

Proof
Checker

Reasonable in size (0-10%).

Crypto test suite results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ID
EA

In
st

al
l

Ba
se

64
St

re
am

SH
A0

SH
A1

SP
EE

D

M
D5 RC

2

RC
4

HA
VA

L

HM
AC

PCC Java JIT

sec

Question 3

Aren’t the properties we’re trying
to prove undecideable?

How on earth can we hope to
generate the proofs?

How to generate the proofs?

Proving theorems about real
programs is indeed hard

•Most useful safety properties of
low-level programs are undecidable

•Theorem-proving systems are
unfamiliar to programmers and
hard to use even for experts

The role of
programming languages

Civilized programming languages can
provide “safety for free”

•Well-formed/well-typed ⇒ safe

Idea: Arrange for the compiler to
“explain” why the target code it
generates preserves the safety
properties of the source program

Certifying Compilers
[Necula & Lee, PLDI’98]

Intuition:

•Compiler “knows” why each translation
step is semantics-preserving

•So, have it generate a proof that safety
is preserved

This is the planned topic for
tomorrow’s lecture

Certifying compilation

Certifying
Compiler

CPU
Looks and smells like a compiler.

% spjc foo.java bar.class baz.c -ljdk1.2.2

Source
code

Proof

Object
code

Certifying
Prover

Proof
Checker

Java

Java is a worthwhile subject of
research.

However, it contains many
outrageous and mostly
inexcusable design errors.

As researchers, we should not
forget that we have already done
much better, and must continue
to do better in the future.

Question 4

Just what, exactly, are we
proving?

What are the limits?

And isn’t static checking inherently
less powerful than dynamic
checking?

Semantics

Define the states of the target
machine

•S = (Π, ρ, pc)

and a transition function Step(S).

Define also the safe machine
states via the safety policy SP(S).

program

register
state

program
counter

Semantics, cont’d

Then we have the following
predicate for safe execution:

Safe(S) = Πn:Nat. SP(Stepn(S))

and proof-carrying code:

PCC = (S0:State, P:Safe(S0))

Reference Interpreters

A reference interpreter (RI) is a
standard interpreter extended
with instrumentation to check the
safety of each instruction before
it is executed, and abort
execution if anything unsafe is
about to happen.

In other words, an RI is capable
only of safe execution.

Reference Interpreters
cont’d

The reference interpreter is never
actually implemented.

The point will be to prove that
execution of the code on the RI
never aborts, and thus execution
on the real hardware will be
identical to execution on the RI.

Question for you

Suppose that we require the code
to execute no more than N
instructions.

Is such a safety property
enforceable by an RI?

Question for you

Suppose we require the code to
terminate eventually. Is such a
safety property enforceable by an
RI?

What can’t be enforced?

Informally:

Safety properties ⇒ Yes
• “No bad thing will happen”

Liveness properties ⇒ Not yet
• “A good thing will eventually happen”

Static vs dynamic checking

PCC provides a basis for static
enforcement of safety conditions

However, PCC is not just for
static checking

PCC can be used, for example, to
verify that necessary dynamic
checks are carried out properly

Question 5

Even if the proof is valid, how do
we know that it is a safety proof
of the given program?

OK, but let me
quickly look over the
instructions first.

Please install
and execute
this.

Code producer Host

Code producer Host

This store
instruction is
dangerous!

Code producer Host

Can you prove
that it is
always safe?

Code producer Host

Yes! Here’s the proof I
got from my certifying
Java compiler!

λ

Can you prove
that it is
always safe?

Code producer Host

Your proof checks
out. I believe you
because I believe
in logic.λ

Code producer Host

The safety policy

We need a method for

• identifying the dangerous instructions,
and

• generating logical predicates whose
validity implies that the instruction is
safe to execute

In practice, we will also need
• specifications (pre/post-conditions) for

each required entry point in the code, as
well as the trusted API.

High-level architecture

Explanation

Code
Code

analyzer

Checker

Safety
policy

Agent

Host

High-level architecture

Proof

Code
Verification
condition
generator

Proof

checker

Proof
rules

Agent

Host

VCgen

The job of identifying dangerous
instructions and generating
predicates for them is performed
via an old method:

• verification-condition generation

A Case Study

A case study
As a case study, let us consider the
problem of verifying that programs do
not use more than a specified amount
of some resource.
s ::= skip

| i := e
| if e then s else s
| while e do s
| s ; s
| use e

e ::= n
| i | read()
| e + e | e – e | …

Denotes the use of
n pieces of the
resource, where e
evaluates to n

Case study, cont’d

Under normal circumstances, one
would implement the statement:

•use e;

in such a way that every time it is
executed, a run-time check is
performed in order to determine
whether n pieces of the resource
are available (assuming e
evaluates to n).

Case study, cont’d

However, this stinks because
many times we should be able to
infer that there are definitely
available resources.

…
if …
then use 4;
else use 5;

use 4;
…

If somehow we know that
there are ≥9 available here…

…then certainly there is no
need to check any of these
uses!

An easy (well, probably) case

Program Static
i := 0
while i < 10000

use 1
i := i + 1

We ought to be
able to prove
statically whether
the uses are safe

A hopeless case

Program Dynamic
while read() != 0

use 1

An interesting case

Program Interesting
N := read()
i := 0
while i < N

use 1
i := i + 1

In principle, with just a single
dynamic check, static proof
ought to be possible

Also interesting

Program AlsoInteresting
while read() != 0

i := 0
while i < 100

use 1
i := i + 1

A core principle of PCC

In the code,

• the implementation of a safety-
critical operation

should be separated from

• the implementation of its safety
checks

Separating use from check

So, what we would like
to do is to separate the
safety check from the
use.

We do this by
introducing a new
construct, acquire

acquire requests n
amount of resource;
use no longer does
any checking

s ::= skip
| i := e
| if e then s else s
| while e do s
| s ; s
| use e
| acquire e

Separation permits optimization

The point of acquire is to allow the
programmer (or compiler) to hoist and
coalesce the checks

…
acquire n;
i := 0;
while (i++ < n) do {
…
use 1;
…

}

…
acquire 9;
if …
then use 4;
else use 5;

use 4;
…

It will be up to PCC to verify that each use is
definitely safe to execute

High-level architecture

Proof

Code
Verification
condition
generator

Proof

checker

Proof
rules

Agent

Host

	Lectures onProof-Carrying CodePeter LeeCarnegie Mellon University
	Code Safety
	Approach 1Trust the code producer
	Approach 2Baby-sit the program
	Approach 3Java
	Approach 4Formal verification
	A key idea: Checkable certificates
	A key idea: Checkable certificates
	Question 1
	Formal proofs
	Example inference rule
	More inference rules
	Types and proofs
	Curry-Howard Isomorphism
	LF
	Oracle strings
	Question 2
	The Necula-Lee experiments
	Crypto test suite results
	Question 3
	How to generate the proofs?
	The role ofprogramming languages
	Certifying Compilers[Necula & Lee, PLDI’98]
	Certifying compilation
	Java
	Question 4
	Semantics
	Semantics, cont’d
	Reference Interpreters
	Reference Interpreterscont’d
	Question for you
	Question for you
	What can’t be enforced?
	Static vs dynamic checking
	Question 5
	The safety policy
	High-level architecture
	High-level architecture
	VCgen
	A case study
	Case study, cont’d
	Case study, cont’d
	An easy (well, probably) case
	A hopeless case
	An interesting case
	Also interesting
	A core principle of PCC
	Separating use from check
	Separation permits optimization
	High-level architecture

