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Outline
• What is computer security?

– Protecting against worms and viruses?
– Making sure programs obey their specifications?
– Still plenty of security problems even if these 

problems are solved…

Acknowledgments: Steve Zdancewic, Fred Schneider
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What is security?
• Security: prevent bad things from happening

– Confidential information leaked
– Important information damaged
– Critical services unavailable
– Clients not paying for services
– Money stolen
– Improper access to physical resources
– System used to violate law
– Loss of value

… or at least make them less likely
• Versus an adversary!
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Attack Sampler #1:  Morris Worm

1988: Penetrated an estimated 5 to 10 percent 
of the 6,000 machines on the internet.

Used a number of clever methods to gain 
access to a host.
– brute force password guessing
– bug in default sendmail configuration
– X windows vulnerabilities, rlogin, etc.
– buffer overrun in fingerd

Remarks:
– System diversity helped to limit the spread.
– “root kits” for cracking modern systems are easily 

available and largely use the same techniques.
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2002: MS-SQL Slammer worm
• Jan. 25, 2002: SQL and MSDE servers on Internet 

turned into worm broadcasters
– YABO
– Spread to most vulnerable servers

on the Internet in less than 10 min!

• Denial of Service attack
– Affected databases unavailable
– Full-bandwidth network load ⇒ widespread service outage
– “Worst attack ever” – brought down many sites, not Internet

• Can’t rely on patching!
– Infected SQL servers at Microsoft itself
– Owners of most MSDE systems didn’t know they were 

running it…support for extensibility
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Attack sampler #2: Love Bug, 
Melissa
• 1999: Two email- based viruses that 

exploited:
– a common mail client (MS Outlook)
– trusting (i.e., uneducated) users
– VB scripting extensions within messages to:

• look up addresses in the contacts database
• send a copy of the message to those contacts

• Melissa: hit an estimated 1.2 million 
machines.

• Love Bug:  caused estimated $10B in 
damage.

• Remarks:
– no passwords, crypto, or native code involved
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Attack sampler #3: Hotmail
• 1999: All Hotmail email accounts fully 

accessible by anyone, without a password
• Just change username in an access URL (no 

programming required!)
• Selected other Hotmail headlines (1998- 99)

Hotmail bug allows password theft 
Hotmail bug pops up with JavaScript code 
Malicious hacker steals Hotmail passwords 
New security glitch for Hotmail 
Hotmail bug fix not a cure-all
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Attack sampler #4: Yorktown
• 1998: “Smart Ship” USS Yorktown suffers 

propulsion system failure, is towed into 
Norfolk Naval Base

• Cause: computer operator accidentally types 
a zero, causing divide- by- zero error that 
overflows database and crashes all consoles

• Problem fixed two days later
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Attack sampler #5: insiders
• Average cost of an outsider penetration is $56,000; 

average insider attack cost a company $2.7 million 
(Computer Security Institute/FBI)

• 63 percent of the companies surveyed reported 
insider misuse of their organization's computer 
systems. (WarRoom Research)

• Some attacks:
– Backdoors
– “Logic bombs”
– Holding data hostage with encryption
– Reprogramming cash flows

• Attacks may use legitimately held privileges!
• Many attacks (90%?) go unreported
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Terminology
• Vulnerability

Weakness that can be exploited in a system

• Attack
Method for exploiting vulnerability

• Threat / Threat model
The power of the attacker (characterizes possible attacks)

• E.g., attacker can act as an ordinary user, read any data on 
disk, and monitor all network traffic.

• Trusted Computing Base
Set of system components that are depended on for security

• Usually includes hardware, OS, some software, …
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Who are the attackers?
• Operator/user blunders.

• Hackers driven by intellectual challenge (or boredom).

• Insiders: employees or customers seeking revenge or gain

• Criminals seeking financial gain.

• Organized crime seeking gain or hiding criminal activities.

• Organized terrorist groups or nation states trying to 
influence national policy.

• Foreign agents seeking information for economic, political, 
or military purposes.

• Tactical countermeasures intended to disrupt military 
capability.

• Large organized terrorist groups or nation-states intent on 
overthrowing the US government.
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What are the vulnerabilities?
• Poorly chosen passwords
• Software bugs 

– unchecked array access (buffer overflow attacks)
• Automatically running active content: macros, scripts, 

Java programs
• Open ports: telnet, mail
• Incorrect configuration

– file permissions
– administrative privileges

• Untrained users/system administrators
• Trap doors (intentional security holes)
• Unencrypted communication
• Limited Resources (i.e. TCP connections)
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What are the attacks?
• Password Crackers
• Viruses: 

– ILoveYou (VBscript virus), Melissa (Word macro virus)

• Worms
– Code Red: Port 80 (HTTP), Buffer overflow in IIS 

(Internet/Indexing Service)

• Trojan Horses
• Root kits, Back Orifice, SATAN
• Social Engineering: 

– “Hi, this is Joe from systems, I need your password to do an 
upgrade”

• Packet sniffers: Ethereal
• Denial of service: TCP SYN packet floods
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Social engineering attacks
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Security vs. fault tolerance
• Attacks vs. faults
• Reliability community often assumes benign, 

random faults
– Failstop failures = system halts
– Byzantine failure = system behaves arbitrarily 

badly (under control of adversary)
• Attackers go for the weakest link!

– It doesn’t help to have a $1000 lock on your door if 
the window is open.
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Assumptions and abstraction
• Arguments for security always rest on 

assumptions:
– “the attacker does not have physical access to the 

hardware”
– “the code of the program cannot be modified 

during execution”
• Assumptions are vulnerabilities

– Sometimes known, sometimes not
• Assumptions arise from abstraction

– security analysis only tractable on a simplification 
(abstraction) of actual system

– Abstraction hides details (assumption: 
unimportant)
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Risk management
• Cost- benefit: high security may be more 

expensive than benefits obtained
– Security measures interfere with intended use

• Preventing problems may be infeasible, 
unnecessary; deterrence may be sufficient
– Remove the incentive to attack
– Make it easier to attack someone else
– Make it too costly to attack

security
functionality

efficiency
cost
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When to enforce security
Possible times to respond to security violations:
• Before execution:

analyze, reject, rewrite
• During execution:

monitor, log, halt, change
• After execution:

roll back, restore, audit, sue, call police
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Policy vs. mechanism
• What is being protected (and from what) vs.
• How it is being protected

(access control, cryptography, …) 

• Want:
– To know what we need to be protected from
– Mechanisms that can implement many policies

20

What is being protected?
• Something with value
• Information with (usually indirect) impact on 

real world
• Different kinds of protection are needed for 

different information : ensure different 
security properties
– Confidentiality
– Integrity
– Availability
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Properties: Integrity
• No improper modification of data

Data

• E.g., account balance is updated only by authorized 
transactions, only you can change your password

• Integrity of security mechanisms is crucial
• Enforcement: access control, digital signatures,…
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Properties: Confidentiality
• Protect information from improper release

• Limit knowledge of data or actions
• E.g. D-Day attack date, contract bids
• Also: secrecy
• Enforcement: access control, encryption,…
• Hard to enforce after the fact…

Data
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Properties: Privacy, anonymity
• Related to confidentiality
• Privacy: prevent misuse of personal 

information
• Anonymity: prevent connection from being 

made between identity of actor and actions
– Keep identity secret
– Keep actions secret

24

Properties: Availability
• Easy way to ensure confidentiality, integrity: 

unplug computer

• Availability: system must respond to requests

Data
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Properties: Nonrepudiation
• Ability to convince a third party that an event 

occurred (e.g., sales receipt)
• Needed for external enforcement 

mechanisms (e.g., police)
• Related to integrity
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Is security just correctness?
• “System is secure” ≠ “System obeys 

specification”
• Specifications usually focus on functionality, 

not security
• Classic specification languages (e.g. Hoare

logic) don’t talk about security properties 
• Security is not preserved under refinement

public  ∈ Z looks secure
public := secret isn’t
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Safety properties
• “Nothing bad ever happens” (at a particular 

moment in time)
• A property that can be enforced using only 

history of program
• Amenable to purely run- time enforcement
• Examples:

– access control (e.g. checking file permissions on 
file open)

– memory safety (process does not read/write 
outside its own memory space)

– type safety (data accessed in accordance with 
type)

28

Liveness properties
• “Something good eventually happens”
• Example: availability

– “The email server will always respond to mail 
requests in less than one second”

• Violated by denial of service attacks
• Can’t enforce purely at run time – stopping 

the program violates the property!
• Tactic: restrict to a safety property

– “web server will respond to page requests in less 
than 10 sec or report that it is overloaded.”

29

Security Property Landscape

Memory safety
Type safety

Discretionary access control
Reference confinement

Availability

Fault Tolerance

Safety properties Liveness properties

Mandatory access control

Noninterference (confidentiality, integrity)

Privacy

“System does exactly what it should--and no more”

Memory protection

Digital rights

Byzantine Fault Tolerance
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Andrew Myers
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Topics

• Fundamental enforcement mechanisms 

• Design principles for secure systems

• Operating system security mechanisms

32

Mechanisms: Authentication
• If system attempts to perform action X, should 

it be allowed? (e.g., read a file)
– authentication + authorization

• Authentication: what principal p is system 
acting on behalf of? Is this an authentic 
request from p?
– Passwords, biometrics, certificates…

33

Principals
• A principal is an identity; an abstraction of 

privileges
– Process uid
– E.g., a user (Bob), a group of users (Model 

airplane club), a role (Bob acting as president)

34

Mechanisms: Authorization
• Authorization: is principal 

p authorized to perform 
action A?

• Access control mediates 
actions by principals

• Example: file permissions 
(ACLs)

35

Mechanisms: Auditing
• For after- the- fact enforcement, need to know 

what happened: auditing
• Audit log records security- relevant actions 

(who, what, when)
• Authorization + Authentication + Audit = “The 

gold (Au) standard” : classic systems security

• A fourth kind of mechanism:
program analysis and verification
– Needed for extensible systems and strong security 

properties… more later
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Principle: Complete Mediation
• Common requirement: system must have 

ability to mediate all security- relevant 
operations
– Dangerous to assume op is not security-relevant..
– Many places to mediate: hardware, compiler, …

• Assumption: mediation mechanism cannot be 
compromised (TCB)

• Example: operating system calls
– Kernel interface mediates access to files, memory 

pages, etc.
– No other way to create/manipulate resources
– One problem: covert timing channels
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Principle: Minimize TCB
• Observation: Complex things are more likely 

not to work correctly

Economy of Mechanism:  Make trusted 
computing base as small and simple as 
possible.
“Things should be made as simple as possible–but no simpler.”            

-- A. Einstein

• Fewer errors in implementation, easier to 
convince someone that it’s correct

• Corollary: Failsafe Defaults
– Access should be off by default, explicitly enabled

38

Principle: Least Privilege
• A principal should be given only those 

privileges needed to accomplish its tasks.
– No more, no less.

• What is the minimal set of privileges?
• What is the granularity of privileges?

– Separation of privileges (read vs. write access)
• How & when do the privileges change?

• Example violation: UNIX sendmail has root 
privilege
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Principle: Open Design
• Success of mechanism should not depend on 

it being secret
– “No security through obscurity”
– The only secrets are cryptographic keys
– Increased assurance if many critics.

• An age- old controversy:
– Open design makes critics’ jobs easier, but also 

attackers’ job.

– Analysis tends to concentrate on core 
functionality; vulnerabilities remain off the beaten 
path. (Ergo: small TCB)
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Principle: Security is a Process
• Every system has vulnerabilities

– Impossible to eliminate all of them
– Goal: assurance

• Systems change over time
– Security requirements change over time
– Context of mechanisms changes over time

• Secure systems require maintenance 
– Check for defunct users
– Update virus software
– Patch security holes
– Test firewalls

41

Conventional security mechanisms

• Access control, encryption, firewalls, memory 
protection, …

• What are they?
• What are they good for?
• Where do they fall short?

42

Operating system security
• Program is black box
• Program talks to OS via mediating interface 

(system calls)
– Multiplex hardware
– Isolate processes from each other
– Restrict access to persistent data (files)

+ Language- independent, simple

User-level Program

Operating System
Kernel

Hardware
memory

protection
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Weaknesses
• Treating the program as a black box

– Not fine-grained enough to enforce desired 
properties

– No help with validation
– Internal behavior of program is important!

User-level Program

Operating System
Kernel

Hardware
memory

protection
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Reference Monitor
Observes the execution of a program and halts 

the program if it’s going to violate the security 
policy

Common Examples:
– memory protection
– access control checks
– routers
– firewalls

Most current enforcement mechanisms are 
reference monitors

45

Access control
• A mechanism for controlling which actions 

are permitted
• Assumes a reference monitor
• Can enforce safety properties
• Local but not system- wide enforcement of 

confidentiality and integrity
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ACLs
• Access control list maps 

principals to their 
privileges

• Reference monitor 
checks relevant 
operations against ACL

• Works well if
– Privileges have right 

granularity
– System is not too 

complex
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Capabilities
• Capability is an object that confers privileges to the 

possessor
• Important property:

capabilities cannot be forged
• Different capability representations

– Cryptographically strong pseudorandom number
– Held by operating system ala file descriptors (Mach)
– Object reference (Java)

• Advantage: allows privileges to be delegated even 
outside local system
– Hard to keep capabilities from leaking out
– Revoking capabilities can be difficult, expensive
– E.g., X.509
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Java: objects as capabilities
• Single Java VM may contain processes with 

different levels of privilege (e.g. different 
applets)

• Some objects are capabilities to perform 
security- relevant operations:
FileReader f = new FileReader(“/etc/passwd”);
// now use “f” to read password file

• Original 1.0 security model: use type safety, 
encapsulation to prevent untrusted applets 
from accessing capabilities in same VM

• Problem: tricky to prevent capabilities from 
leaking (downcasts, reflection, …)
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Mandatory access control
• Ordinary access control only protects 

information at point of access
• Confidentiality: program may leak information 

after it reads
• Integrity: program may overwrite with data 

from untrustworthy sources

50

Mandatory access control
• Discretionary access control: no control of 

propagation (at discretion of reader)

A B
?

...

• Mandatory access control/multilevel security: attach 
security labels to data, processes

A B
?

L
top secret
secret
classified
unclassified

L

• Data from process with label L has label L

51

MAC Problems 

• Read from a location with higher security label either:
– Is rejected (no read-up / simple security property)
– Raises the label of the process

• Write to a location with a lower security label either:
– Is rejected (no write-down / *-property)
– Raises the label of the location

• No write-down is awkward
• Label creep makes data unusable
• Expensive
• Not used much!
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Cryptography (very briefly)

• Can construct algorithms that compute functions f 
such that x cannot be recovered from f(x)

• Keys k parameterize general algorithms (E,D)
• Shared-key cryptography: E(k) is inverse of D(k)

– D(k, E(k, m)) = m
– Example: DES
– Problem: distributing shared keys securely

• Public-key cryptography: E(ke) is inverse of D(kd), but 
cannot find kd even given ke
– D(kd, E(ke, m)) = m = E(ke, D(kd, m))
– ke is public key, kd is corresponding secret key
– Example: RSA
– Problem: expensive

• Secure hashing: m cannot be recovered from H(m)
– Example: MD5
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Using cryptography
• Encryption:

– E(k, m) keeps m from those who do not have key 
k : protects confidentiality

– E(k, m) or D(k,m) can convince that you have k
– E(ke, m) keeps m secret from those who do not 

have kd (and sender doesn’t need a secret)
• Makes key distribution much easier

• Digital signatures:
– D(kd,m) proves that message came from principal 

holding ke
– Anyone can check because m = E(ke, D(kd, m))
– Provides authentication, integrity, nonrepudation
– Public keys stand for principals

54

Intrusion detection?
• Monitor behavior of programs and take remedial 

action if behavior is malicious or suspicious (anomaly 
detection)
– Signal to operator, halt processes, roll back changes…
– Can monitor at any level supporting mediation

• Inspired by biological systems
• Problems:

– False alarms
– Run-time overhead
– Instability/autoimmune disease
– Argument for higher assurance?

• We do this anyway – but tools help!
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Virus scanning?
• Scan for suspicious code

– e.g., McAfee, Norton, etc.
– based largely on a lexical signature.
– the most effective commercial tool
– but only works for things you’ve seen

• Melissa spread in a matter of hours

– virus kits make it easy to disguise a virus
• “polymorphic” viruses

• Doesn’t help as much with worms
(some network-packet scanning tools)
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Distribution/partitioning
• Computation in general involves cooperation 

between mutually distrustful principals
• Securely place

computation,
data user

Amazon

Bank

User’s bank balance
Christmas gift list

Other bank balances
Employee salariesProduct catalog

User order history
Other corporate info

Corporate
partners

browser
Javascript

spreadsheet

servlets web server
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Replication
• Can improve integrity at the expense of 

availability:

• Can improve availability at the expense of 
integrity:

=?

Pick first

58

Replication
• Can improve both:

=?

=?

=?

Pick first

• Quorum systems, etc.

59

Rollback/Undo
• Many systems (esp. databases) have a that 

records all changes made during a 
transaction

• Used to make transactions appear atomic
• Idea: use log to roll back changes

60

Interposition
• Complete mediation: should be able to intercept 

security-relevant operations
• May not know what is security-relevant at design time

– Systems evolve and are used in unexpected ways
• Need general mechanisms for extensible mediation 

– Virtual machine monitors (e.g., VMware)
– Software virtual machines 
– Program transformation (sandboxing/SFI, inlined

reference monitors)
• Problem: recognizable operations may be at wrong 

level of abstraction
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End-to-end security
• Near- term problem: ensuring programs are 

memory- safe, type- safe so fine- grained 
access control policies can be enforced

• Long- term problem: ensuring that complex 
(distributed) computing systems enforce end-
to- end information security policies
– Confidentiality
– Integrity
– Availability

• Confidentiality, integrity: end- to- end, security 
described by information- flow policies

63

Information security: confidentiality

• Simple (access control) version:
– Only authorized processes can read a file
– But… when should a process be “authorized” ?
– Encryption provides end-to-end confidentiality—if 

no computation

• End- to- end version:
– Information should not be improperly released by 

a computation no matter how it is used
– Requires tracking information flow

64

Information security: integrity

• Simple (access control) version:
– Only authorized processes can write a file
– But… when should a process be 

“authorized” ?
– Digital signatures provide end- to- end 

integrity—if no computation

• End-to-end version:
– Information should not be updated on the 

basis of less trustworthy information

65

Intensional vs. extensional security

• Access control is intensional: security 
requirements expressed in terms of program 
artifacts
– Authority of processes and programs
– File permissions

• Information flow is (ideally) extensional –
regulates observable behavior of program 
rather than internals

66

Information channels
• End- to- end security requires controlling 

information channels [Lampson73]

• Storage channels: explicit information 
transmission (writes to sockets, files, variable 
assignments)

• Covert channels: transmit by mechanisms not 
intended for signaling information (system 
load, run time, locks)

• Timing channels: transmit information by 
when something happens (rather than what)
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Implicit flows
• Covert storage channels arising from 

control flow. Example:

boolean b := <some secret>
if (b) {

x = true; f();
}

• Creates information flow from b to x
• Run- time check requires whole process 

labeled secret after branch

68

Multilevel security (MLS)
• Originally, computers, networks 

segregated by security class of 
information used
– E.g., information could go from unclassified 

network to classified network but not vice 
versa

• Idea: build one system that can 
securely manipulate information of 
different classes
– Multilevel secure: goal is end-to-end 

secrecy
– Mandatory access control one possible

• One attempt: Multics/AIM ring model
– Protects kernel from users, but not users

top secret
secret
classified
unclassified

kernel

user

server
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Multilevel security policies
[Feiertag et al., 1977]
• Security level is a pair (A,C) where A is from 

a totally ordered set (unclassified, …) and C 
is a set of categories

• Example: data labeled (secret, {nuclear}) is
less confidential than (top secret, {nuclear, 
iraq}) but incomparable to (secret, {iraq})

(A1,C1)U(A2,C2) iff A1 ≤ A2 & C1 ⊆ C2
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Ordering security policies
[Denning, 1976]

• Information flow policies (security policies in 
general) are naturally partial orders
– If policy P2 is at least as strong as P1,

write P1 U P2
• P1 = “smoking is forbidden in restaurants”
• P2 = “smoking is forbidden in all public places”

– Some policies are incomparable:
P1 U/ P2 and P2 U/ P1 

• P2 = “keep off the grass”

P2

P1

71

Lattices
• Suppose there is always a least restrictive policy as 

least as strong as any two policies:
P1 S P2 = “join” or least upper bound of P1, P2 

• P1 S P2 = “smoking is forbidden in restaurants and keep off the 
grass”

• Simplest policy system is boolean lattice:
L U H,     H ⊔ H = H,    L ⊔ L = L,     L ⊔ H = H

• If have greatest lower bound too, policies form lattice.
Supports reasoning about information channels that 
merge and split
(S=LUB, T=GLB)

c := a + b La S Lb U Lc
a := c; b := c Lc U La T Lb

H

L

72

Generalizing levels to lattices
• Security levels may in general form a lattice 

(or just a partial order)
• L1 U L2 means information can flow from level 

L1 to level L2
– L2 describes greater confidentiality requirements
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Integrity
[Neumann et al., 1976; Biba, 1977]

• Integrity can also be described as a label
• Prevent: bad data from affecting good data
• L1 U L2 means information can flow from level L1 to 

level L2
– L2 describes lower integrity requirements
– Lower integrity means use of data is more restricted

• Integrity is dual to confidentiality
Given: LI , HI are low, high integrity

LC,HC are low, high confidentiality
LC U HC but   HI U LI

74

Combining properties
• Consider combined policy (C,I) governing 

both integrity and confidentiality:

label
lattice

Increasing
confidentiality

Decreasing
integrity

less readable

less writable

more
secure

less
secure

(LC,HI)

(HC,LI)

(HC,HI)(LC,LI)

75

Static analysis of information flow
[Denning & Denning, 1977]

• Inference algorithm for determining whether 
variables are high or low 

• Program- counter label tracks implicit flows
– Computed by dataflow analysis or type system

boolean b := <some secret>
if (b) {

x = true; f();
}

pc =  ⊥

pc =  ⊥

pc =  Lb

76

Noninterference
• Low-security behavior of the program is not affected 

by any high-security data.
[Cohen, 1977; Goguen & Meseguer 1982]

• An end-to-end, extensional definition of security

H1 L

L ʹH1ʹ

H2 L

LʹH2ʹ

≈L

Confidentiality: high = confidential, low = public
Integrity: low = trusted, high = untrusted

≈L

77

A formalization
• Key idea: behaviors of the system C don’t 

reveal more information than the low inputs
• Consider applying C to inputs s. Define:

• �C� s is the result of C applied to input s
• s1 =L s2 means inputs s1 and s2 are indistinguishable 

to the low user at level L. E.g., (H,L) ≈L (Hʹ,L)
• �C�s1 ≈L �C�s2 means results are indistinguishable :

low view relation captures observational power

Noninterference of C: s1 =L s2 ⇒ �C�s1 ≈L �C�s2

“Low observer doesn’t learn anything new from 
execution”

78

Downgrading & declassification
• Noninterference is too strong

– Programs release confidential information as part of proper 
function

• Idea: add escape hatch mechanism that allows 
system to move data labels downward

• Weakening confidentiality restrictions: 
declassification

• Example: logging in using a secure password
if (password == input) login();
else report_failure();

– Information about the password unavoidably leaks
– Solution: declassify result of comparison
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Decentralized Label Model
[ML97]
• Idea: use access control to control what 

declassifications are allowed
• Principals own parts of labels
• A principal can rewrite its part of the label

{O1: R1, R2; O2: R2}

{O1: R1, R2} {O1: R1, R2; O2: R2, R3}

O2

• Declassifying code must be trusted by owner
• Other owners’ policies still respected

80

Intransitive noninterference

• INI policy augments label lattice with special 
downgrading arcs

• Password example:
Password: label P
Other confidential data: label H
Public data: label L

• Declassification only allowed along arcs

H P

L

81

Endorsement
• Dual of declassification: upgrades integrity
• Example: averaging a lot of untrusted data 

may produce a more trusted result

• Problem: noninterference doesn’t hold in 
presence of downgrading; no equivalently 
compelling extensional property
– INI, selective declassification focus attention on 

security-relevant downgrading operations

82

Robust declassification [ZM01, MSZ04]

• What can we say about end- to- end behavior 
in presence of declassification?

• One desirable property: untrusted data 
should not affect what data is released
– otherwise attackers may be able to control what is 

released or whether something is released

83

Defining robustness
• Let C[a] be result of replacing low-integrity code in C

with attack code a,  �C�s is result of C applied to s
• Robustness:
∀s1, s2, a, aʹ.   s1 =L s2 ⇒
�C[a]�s1 ≈L �C[a]�s2 ⇒ �C[aʹ]�s1 ≈L �C[aʹ]�s2

“Attacker learns nothing more by changing attack”

• Can be enforced using static analysis: require inputs 
to declassification are high integrity

• Qualified robustness permits untrusted sources to 
affect declassification in limited ways; important for 
modeling real apps

84

Nondeterminism

• What if the system is nondeterministic?
– Concurrency   (s1 | s2) (s1ʹ | s2) or (s1 | s2ʹ)
– Nondeterministic choice (s1 □ s2) s1 or s2

– Lack of knowledge about inputs, environment 
read() ?

s1

s2

s2ʹ

Noninterference:   s1 =L s2 ⇒ �C�s1 ≈L �C�s2

What if there are multiple possible results?
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Possibilistic security
[Sutherland 1986, McCullough 1987]
• Result of a system �C�s is set of possible 

outcomes τ
– Outcome could be a trace τ = s → sʹ → sʹʹ → …

• Low view relation on traces is lifted to sets of 
traces:

�C�s1 ≈L �C�s2 if

∀τ1∈�C�s1 . ∃τ2∈�C�s2 . τ1 ≈L τ2 &
∀τ2∈�C�s2 . ∃τ1∈�C�s1 . τ2 ≈L τ1

“For any result produced by C1 there is an 
indistinguishable one produced by C2 (and vice-versa)”
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Example
l := true | l := false | l := h

h=true: possible results are
{h�true, l�false}, {h�true, l�true}

h = false:
{h�false, l�false}, {h�false, l�true}

• Program is possibilistically secure

=L =L
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What is wrong?
• Round-robin scheduler: program equiv. to l:=h
• Random scheduler: h most probable value of l
• System has a refinement with information leak

l:=h
l:=true

l:=false

l := true | l := false | l := h
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Low-view observational determinism

• Result of a system �C�s is set of possible 
outcomes τ
– Outcome could be a trace τ = s → sʹ → sʹʹ → …

• Low view relation on traces is lifted to sets of 
traces:

�C�s1 ≈L �C�s2 if
∀τ1∈�C�s1 . ∀τ2 ∈�C�s2 . τ1 ≈L τ2

“All results produced by C1 and C2 are indistinguishable”

• Can apply to concurrent systems [ZM03]
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Conclusions
• Information flow yields a way of talking about end-to-

end security properties
• Noninterference: an extensional property enforceable 

by static analysis
• Neat idea, still not used much in practice
• Some open areas:

– Dealing with information release
• Security in the presence of downgrading
• Connection to access control

– Information flow in concurrent and distributed systems
– Application to richer security policies (privacy, anonymity,…)


