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Abstract. There is great interest in applying nominal calculi—compu-
tational formalisms that include dynamic name generation—to the prob-
lems of programming, specifying, and verifying secure and mobile com-
putations. These notes introduce three nominal calculi—the pi calculus,
the spi calculus, and the ambient calculus. We describe some typical
techniques, and survey related work.

1 Introduction

Programming a concurrent application is difficult. Deadlocks and race conditions
are well known problems in multi-threaded applications on a single machine.

Programming a concurrent application running on a distributed network is
more difficult, as we must deal with additional problems such as partial failure of
one or more of the host machines. Moreover, if there are untrustworthy hosts on
the network, as on the internet, we may need to resort to cryptographic protocols
to achieve security, and such protocols are notoriously hard to get right.

Programming a concurrent application running on a network that includes
mobile hosts or mobile software is still more difficult. We need to solve the com-
munication problem of supporting reliable interaction between mobile devices or
between mobile software agents. We need to solve the security problems induced
by untrusted code and untrusted hosts.

These notes introduce an approach to these problems of security and mo-
bility based on three related calculi for concurrency, all of which stress the im-
portance of names. We call these nominal calculi. The three calculi are tiny
but extremely expressive languages for programming concurrent computations.
These calculi have well defined formal semantics upon which sophisticated se-
mantic theories have been constructed. The point of defining the calculi and
exploring their theories is to help shed light on the difficulties of programming
concurrent, distributed, and mobile computations. The ways in which these cal-
culi and their theories can help include the following. We can program intricate
computations—such as protocols for communications or security—within these
calculi, and apply their theories directly to try to prove properties or to expose
flaws. We can use these calculi as simple settings in which to prototype program-
ming models—such as communication or mobility primitives—that subsequently
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can be implemented as new libraries or language extensions in full programming
langauges. Similarly, we can develop static checks such as type systems or flow
analyses for these simple calculi and subsequently apply them to full languages.

In these notes on nominal calculi, we emphasise the application of equational
reasoning and type systems to reasoning about security and mobility. Moreover,
we survey other work on implementations and on other formal techniques such
as logics and flow analyses.

Pure Names and Nominal Calculi

In his 1989 lecture notes on naming and security in distributed systems, Need-
ham [Nee89] stresses the usefulness of pure names for referring to distributed
objects. Needham defines a pure name to be “nothing but a bit pattern that is an
identifier, and is only useful for comparing for identity with other bit patterns—
which includes looking up in tables in order to find other information”. An
example of a pure name is the 128-bit GUID (Globally Unique Identifier) that
uniquely identifies an interface or an implementation in the COM component
model [Box98]. A pure name is atomic. In contrast, an impure name is one with
some kind of recognisable structure, such as a file path or a URL containing a
path. An impure name does more than simply name a single object. For exam-
ple, the file name rmn/animals/pig may imply the presence of a directory rmn
and a subdirectory animals.

The idea of a pure name is a useful abstraction for referring to many kinds
of computational structures, not just distributed objects. All three formalisms
described in these notes include an abstract set of pure names and an operator
for local generation of fresh, unguessable names. This is what we mean when we
say that a formalism is a nominal calculus.

The Pi Calculus—Programming with Names

The pi calculus [MPW92,Mil99,SW01] is a small but extremely expressive pro-
gramming language. It is the original example of a nominal calculus, and is the
archetype for many others. It was originally designed to be a foundation for
concurrent computation, in the same way as the λ-calculus is a foundation for
sequential computation. First published in the same year as Needham’s lecture
notes, it places a still greater emphasis on pure names. The pi calculus embodies
the view that in principle most, if not all, distributed computation may usefully
be explained in terms of exchanges of names on named communication channels.

Programs in the pi calculus are systems of independent, parallel processes
that synchronise via message-passing handshakes on named channels. The chan-
nels a process knows about determine the communication possibilities of the
process. Channels may be restricted, so that only certain processes may commu-
nicate on them. In this respect the pi calculus is similar to earlier process calculi
such as CSP [Hoa85] and CCS [Mil89].

What sets the pi calculus apart from earlier calculi is that the scope of a
restriction—the program text in which a channel may be used—may change
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during computation. When a process sends a restricted name as a message to
a process outside the scope of the restriction, the scope is said to extrude, that
is, it enlarges to embrace the process receiving the channel. The communication
possibilities of a process may change over time; a process may learn the names
of new channels via scope extrusion. Thus, a channel is a transferable capability
for communication.

A central technical idea of these notes is to use the restriction operator and
scope extrusion from the pi calculus as a formal model of the possession and
communication of secrets, such as cryptographic keys. These features of the pi
calculus and other nominal calculi are essential in our descriptions of security
protocols. At the formal level, we can guarantee freshness absolutely by treating a
fresh name as a bound variable, distinct from all others. At the implementation
level, there are several strategies to guarantee freshness; a common one in a
distributed setting is to do so probabilistically by treating a fresh name as a
random bitstring of sufficiently many bits to make collisions implausible.

The pi calculus enjoys a broad mathematical theory—including observa-
tional equivalences, program logics, and type systems—that addresses the dif-
ficulty of programming concurrent applications. Remarkably, a wide variety of
data structures—from bits, tuples, and lists, through to objects—and procedural
abstractions—such as functions and methods—can all be reduced to interactions
on named channels. Hence, the pi calculus is a basis for semantic accounts of
functional, imperative, and object-oriented programming, and for the design of
several concurrent languages [FG96,PT00,Ode00], as well as other applications.
In Part I of these notes, we introduce the pi calculus informally, as a simple
programming notation for describing abstract versions of security protocols.

The Spi Calculus—Programming with Cryptography

Security protocols accomplish goals such as establishing the authenticity of one
principal to another or preserving the secrecy of information during an interac-
tion. Cryptographic protocols are security protocols implemented over a public
network using cryptographic primitives such as encryption, digital signatures,
and hashing. Widely-deployed examples include Kerberos and SSL. Designing
cryptographic protocols is difficult, in part because they must work correctly even
in the presence of an active adversary on the network, who may replay or mod-
ify messages. Even if we rule out cryptanalysis, that is, assume perfectly secure
cryptographic primitives, cryptographic protocols are notorious for containing
flaws, or being brittle in the sense that apparently innocuous changes in operat-
ing assumptions may cause failure. For example, Denning and Sacco [DS81] and
Lowe [Low96] point out such brittleness in protocols proposed by Needham and
Schroeder [NS78].

The spi calculus [AG99] is a version of the pi calculus equipped with abstract
cryptographic primitives, in particular, with primitives for perfect encryption
and decryption. In this nominal calculus, names represent encryption keys as
well as communication channels. The idea is that to analyse a protocol, we
begin by modelling it as a spi calculus program. We can then apply techniques
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from the theory of the pi calculus such as equational reasoning or type systems
to either show the protocol correct or identify a defect. In Part II of these notes,
we introduce the spi calculus and explain how to apply equational reasoning to
a series of example protocols.

The Ambient Calculus—Programming with Mobility

It is becoming more common for networks to include mobile devices or mobile
software. When programming such networks, one area of difficulty is mobility:
not so much how to move objects themselves, but how to specify which objects
to move. This is a lesson reported by pioneers of mobile computation such as the
designers of Telescript [Whi96] or Obliq [Car95]: in those systems, it is easy to
move a single object or the whole running computation, but harder to specify a
cluster of logically related objects that is to be moved. Another area of difficulty
is security: this arises not so much from mobility itself, but from the careless or
malicious crossing of administrative domains.

An ambient is an abstract collection or group of running processes and objects
that functions both as a unit of mobility—of either software and hardware—and
as a unit of security—an administrative domain or a security perimeter. An
ambient is a bounded place where computation happens, with an inside and
an outside. An ambient may contain other ambients, to model related clusters
of object or to model hierarchical administrative domains. An ambient has an
unforgeable name. An ambient’s security rests on the controlled distribution of
suitable credentials, or capabilities, derived from its name. A capability embodies
the right to move a whole running ambient inside another, or the right to move
one outside another, or the right to dissolve an ambient boundary.

The ambient calculus [CG00b,Car99] formalizes ambients by adopting the
extreme position that everything is an ambient. Its purpose is to provide a formal
model for describing mobility, and to be a prototypical programming language
for mobile applications. Processes have a spatial structure induced by ambient
nesting. Computations are series of re-arrangements of this spatial structures,
representing ambient mobility. In this nominal calculus, names are the names of
ambients rather than communication channels as in the pi calculus. Ambients are
explicit boundaries: in the pi calculus, interaction depends on shared names—
parties need to know the same communication channel to interact; in the ambient
calculus, interaction depends on shared position—parties need to be inside the
same ambient to interact. In this way, the ambient hierarchy regulates who may
communicate with who.

In Part III of these notes, we introduce the ambient calculus, show how it
can model a programming language for mobile computation with features akin
to Telescript, describe a series of type systems for ambients, and show how we
can type aspects of mobile computation.
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Scope of these Notes

The goal of these notes is to introduce nominal calculi and their applications
to security and mobility. The bulk of the notes consists of abridged versions
of earlier articles [AG99,CG00b,CG99,CGG00a] concerning aspects of the three
calculi we have discussed. Proof techniques and proofs omitted from these notes
may be found in the full versions of the original articles.

Many nominal calculi that have been applied to security or mobility are
of course not covered. Two prominent examples are the join calculus and the
seal calculus. The join calculus [FG96] is a variant of the pi calculus based
on asynchronous communications; a distributed implementation [FGL+96] has
been used to implement the ambient calculus [FLS00], amongst other things.
The seal calculus [VC99] is a calculus of mobile agents, akin to the ambient
calculus, but with a richer set of primitive operations; it forms the basis of the
JavaSeal platform for mobile agents [BV01].

Part I: The Pi Calculus

This part of the notes introduces the pi calculus as a programming notation
for studying security protocols. Section 2 introduces the syntax and informal
semantics of the pi calculus. In Section 3 we explain an application of the pi
calculus to the study of abstract security protocols. Section 4 ends this part
with pointers to some of the main works on the pi calculus.

Since the spi calculus of Part II is in fact an extension of the pi calculus of this
part, we postpone formal definitions of operational semantics and equivalence
until Part II.

2 Outline of the Pi Calculus

There are in fact several versions of the pi calculus. Here we review the syntax
and semantics of a particular version. The differences with other versions are
mostly orthogonal to our concerns.

We assume an infinite set of names, to be used for communication channels,
and an infinite set of variables. We let m, n, p, q, and r range over names, and let
x, y, and z range over variables. The set of terms is defined by the grammar:

Syntax of Terms:

L, M,N ::= terms
n name
(M,N) pair
0 zero
suc(M) successor
x variable
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In the standard pi calculus, names are the only terms. For convenience we
have added constructs for pairing and numbers, (M,N), 0, and suc(M). We have
also distinguished variables from names.

The set of processes is defined by the grammar:

Syntax of Processes:

P,Q,R ::= processes
M〈N〉.P output
M(x).P input
P | Q composition
(νn)P restriction
!P replication
[M is N ] P match
0 nil
let (x, y) = M in P pair splitting
case M of 0 : P suc(x) : Q integer case

In (νn)P , the name n is bound in P . In M(x).P , the variable x is bound in
P . In let (x, y) = M inP , the variables x and y are bound in P . In case M of 0 :
P suc(x) : Q, the variable x is bound in the second branch, Q. We write P{M}x
for the outcome of replacing each free occurrence of x in process P with the
term M , and identify processes up to renaming of bound variables and names.
We adopt the abbreviation M〈N〉 for M〈N〉.0.

Intuitively, the constructs of the pi calculus have the following meanings:

– The basic computation and synchronisation mechanism in the pi calculus is
interaction, in which a term N is communicated from an output process to
an input process via a named channel, m.
• An output process m〈N〉.P is ready to output on channel m. If an in-

teraction occurs, term N is communicated on m and then process P
runs.
• An input process m(x).P is ready to input from channel m. If an inter-

action occurs in which N is communicated on m, then process P{N}x
runs.

(The general forms M〈N〉.P and M(x).P of output and input allow for the
channel to be an arbitrary term M . The only useful cases are for M to be a
name, or a variable that gets instantiated to a name.)

– A composition P | Q behaves as processes P and Q running in parallel. Each
may interact with the other on channels known to both, or with the outside
world, independently of the other.

– A restriction (νn)P is a process that makes a new, private name n, which
may occur in P , and then behaves as P .

– A replication !P behaves as an infinite number of copies of P running in
parallel.

– A match [M is N ] P behaves as P provided that terms M and N are the
same; otherwise it is stuck, that is, it does nothing.
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– The nil process 0 does nothing.

Since we added pairs and integers, we have two new process forms:

– A pair splitting process let (x, y) = M in P behaves as P{N}x{L}y if term
M is the pair (N,L), and otherwise it is stuck.

– An integer case process case M of 0 : P suc(x) : Q behaves as P if term M
is 0, as Q{N}x if M is suc(N), and otherwise is stuck.

We write P ' Q to mean that the behaviours of the processes P and Q are
indistinguishable. In other words, a third process R cannot distinguish running
in parallel with P from running in parallel with Q; as far as R can tell, P and Q
have the same properties (more precisely, the same safety properties). We define
the relation ' in Part II as a form of testing equivalence. For now, it suffices to
understand ' informally.

3 Security Examples using Restricted Channels

Next we show how to express some abstract security protocols in the pi calculus.
In security protocols, it is common to find channels on which only a given set of
principals is allowed to send data or listen. The set of principals may expand in
the course of a protocol run, for example as the result of channel establishment.
Remarkably, it is easy to model this property of channels in the pi calculus, via
the restriction operation; the expansion of the set of principals that can access
a channel corresponds to scope extrusion.

3.1 A First Example

Our first example is extremely basic. In this example, there are two principals A
and B that share a channel, cAB ; only A and B can send data or listen on this
channel. The protocol is simply that A uses cAB for sending a single message M
to B. In informal notation, we may write this protocol as follows:

Message 1 A→ B : M on cAB

A first pi calculus description of this protocol is:

A(M) 4= cAB〈M〉
B

4= cAB(x).0

Inst(M) 4= (νcAB)(A(M) | B)

The processes A(M) and B describe the two principals, and Inst(M) describes
(one instance of) the whole protocol. The channel cAB is restricted; intuitively,
this achieves the effect that only A and B have access to cAB .

In these definitions, A(M) and Inst(M) are processes parameterised by M .
More formally, we view A and Inst as functions that map terms to processes,
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called abstractions, and treat the M ’s on the left of 4= as bound parameters.
Abstractions can of course be instantiated (applied); for example, the instantia-
tion A(0) yields cAB〈0〉. The standard rules of substitution govern application,
forbidding parameter captures; for example, expanding Inst(cAB) would require
a renaming of the bound occurrence of cAB in the definition of Inst .

The first pi calculus description of the protocol may seem a little futile be-
cause, according to it, B does nothing with its input. A more useful and general
description says that B runs a process F with its input. We revise our definitions
as follows:

A(M) 4= cAB〈M〉
B

4= cAB(x).F (x)

Inst(M) 4= (νcAB)(A(M) | B)

Informally, F (x) is simply the result of applying F to x. More formally, F is
an abstraction, and F (x) is an instantiation of the abstraction. We adopt the
convention that the bound parameters of the protocol (in this case, M , cAB , and
x) cannot occur free in F .

This protocol has two important properties:

– Authenticity (or integrity): B always applies F to the message M that A
sends; an attacker cannot cause B to apply F to some other message.

– Secrecy: The message M cannot be read in transit from A to B: if F does
not reveal M , then the whole protocol does not reveal M .

The secrecy property can be stated in terms of equivalences: if F (M) '
F (M ′), for any M , M ′, then Inst(M) ' Inst(M ′). This means that if F (M)
is indistinguishable from F (M ′), then the protocol with message M is indistin-
guishable from the protocol with message M ′.

There are many sensible ways of formalising the authenticity property. In
particular, it may be possible to use notions of refinement or a suitable program
logic. However, we choose to write authenticity as an equivalence, for economy.
This equivalence compares the protocol with another protocol. Our intent is that
the latter protocol serves as a specification. In this case, the specification is:

A(M) 4= cAB〈M〉
Bspec(M) 4= cAB(x).F (M)

Instspec(M) 4= (νcAB)(A(M) | Bspec(M))

The principal A is as usual, but the principal B is replaced with a variant
Bspec(M); this variant receives an input from A and then acts like B when B
receives M . We may say that Bspec(M) is a “magical” version of B that knows
the message M sent by A, and similarly Instspec is a “magical” version of Inst .

Although the specification and the protocol are similar in structure, the spec-
ification is more evidently “correct” than the protocol. Therefore, we take the
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Fig. 1. Structure of the Wide Mouthed Frog Protocol

following equivalence as our authenticity property: Inst(M) ' Instspec(M), for
any M .

In summary, we have:

Authenticity: Inst(M) ' Instspec(M),
for any M .

Secrecy: Inst(M) ' Inst(M ′) if F (M) ' F (M ′),
for any M , M ′.

Each of these equivalences means that two processes being equated are indistin-
guishable, even when an active attacker is their environment. Neither of these
equivalences would hold without the restriction of channel cAB .

3.2 An Example with Channel Establishment

A more interesting variant of our first example is obtained by adding a channel
establishment phase. In this phase, before communication of data, the principals
A and B obtain a new channel with the help of a server S.

There are many different ways of establishing a channel, even at the ab-
stract level at which we work here. The one we describe is inspired by the Wide
Mouthed Frog protocol [BAN89], which has the basic structure shown in Fig-
ure 1.

We consider an abstract and simplified version of the Wide Mouthed Frog
protocol. Our version is abstract in that we deal with channels instead of keys;
it is simplified in that channel establishment and data communication happen
only once (so there is no need for timestamps). In the next section we show how
to treat keys and how to allow many instances of the protocol, with an arbitrary
number of messages.
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Informally, our version is:

Message 1 A→ S : cAB on cAS

Message 2 S → B : cAB on cSB

Message 3 A→ B : M on cAB

Here cAS is a channel that A and S share initially, cSB is a channel that S and
B share initially, and cAB is a channel that A creates for communication with
B. After passing the channel cAB to B through S, A sends a message M on cAB .
Note that S does not use the channel, but only transmits it.

In the pi calculus, we formulate this protocol as follows:

A(M) 4= (νcAB)cAS〈cAB〉.cAB〈M〉
S

4= cAS(x).cSB〈x〉
B

4= cSB(x).x(y).F (y)

Inst(M) 4= (νcAS)(νcSB)(A(M) | S | B)

Here we write F (y) to represent what B does with the message y that it receives,
as in the previous example. The restrictions on the channels cAS , cSB , and cAB

reflect the expected privacy guarantees for these channels. The most salient new
feature of this specification is the use of scope extrusion: A generates a fresh
channel cAB , and then sends it out of scope to B via S. We could not have
written this description in formalisms such as CCS or CSP; the use of the pi
calculus is important.

For discussing authenticity, we introduce the following specification:

A(M) 4= (νcAB)cAS〈cAB〉.cAB〈M〉
S

4= cAS(x).cSB〈x〉
Bspec(M) 4= cSB(x).x(y).F (M)

Instspec(M) 4= (νcAS)(νcSB)(A(M) | S | Bspec(M))

According to this specification, the message M is communicated “magically”: the
process F is applied to the message M that A sends independently of whatever
happens during the rest of the protocol run.

We obtain the following authenticity and secrecy properties:

Authenticity: Inst(M) ' Instspec(M),
for any M .

Secrecy: Inst(M) ' Inst(M ′) if F (M) ' F (M ′),
for any M , M ′.

Again, these properties hold because of the scoping rules of the pi calculus.

4 Discussion: The Pi Calculus

In this part, we have briefly and informally introduced the pi calculus as a
notation for describing and specifying security protocols. In the next part, we
extend these ideas to apply to cryptographic protocols.
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Starting with the original presentation [MPW92] there is by now an extensive
literature on the pi calculus, covered, for instance, by introductory [Mil99] and
advanced [SW01] textbooks. A good deal of the theory of the pi calculus concerns
equational reasoning; two important works are on testing equivalence [BN95]
and barbed bisimulation [MS92]. There are several works on logic [MPW93] and
model checking [Dam96] for the pi calculus.

The study of type systems for the pi calculus is a booming research area.
We cite just three out of many papers. The simplest type system for the pi
calculus is a system of channel sorts proposed by Milner [Mil99]. Pierce and
Sangiorgi [PS96] develop a more advanced system supporting subtyping. Igarashi
and Kobayashi [IK01] propose a generic framework in which to understand a
variety of previous systems.

Most versions of the pi calculus allow only passive data such as names to
be transmitted on channels. Sangiorgi’s higher-order pi calculus [SW01] is a
variant in which processes may be transmitted on channels. Dam [Dam98] uses
a second-order pi calculus to study security protocols.

Part II: The Spi Calculus

The spi calculus is an extension of the pi calculus with cryptographic primitives.
It is designed for the description and analysis of security protocols, such as
those for authentication and for electronic commerce. These protocols rely on
cryptography and on communication channels with properties like authenticity
and privacy. Accordingly, cryptographic operations and communication through
channels are the main ingredients of the spi calculus.

In Part I of these notes, we used the pi calculus (without extension) for
describing protocols at an abstract level. The pi calculus primitives for channels
are simple but powerful. Channels can be created and passed, for example from
authentication servers to clients. The scoping rules of the pi calculus guarantee
that the environment of a protocol (the attacker) cannot access a channel that it
is not explicitly given; scoping is thus the basis of security. In sum, the pi calculus
appears as a fairly convenient calculus of protocols for secure communication.

However, the pi calculus does not express the cryptographic operations that
are commonly used for implementing channels in distributed systems: it does not
include any constructs for encryption and decryption, and these do not seem easy
to represent. Since the use of cryptography is notoriously error-prone, we prefer
not to abstract it away. We define the spi calculus in order to permit an explicit
representation of the use of cryptography in protocols.

There are many other notations for describing security protocols. Some,
which have long been used in the authentication literature, have a fairly clear con-
nection to the intended implementations of those protocols (e.g., [NS78,Lie93]).
Their main shortcoming is that they do not provide a precise and solid basis
for reasoning about protocols. Other notations (e.g., [BAN89]) are more for-
mal, but their relation to implementations may be more tenuous or subtle. The
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spi calculus is a middle ground: it is directly executable and it has a precise
semantics.

Because the semantics of the spi calculus is not only precise but intelligible,
the spi calculus provides a setting for analysing protocols. Specifically, we can
express security guarantees as equivalences between spi calculus processes. For
example, we can say that a protocol keeps secret a piece of data X by stating
that the protocol with X is equivalent to the protocol with X ′, for any X ′. Here,
equivalence means equivalence in the eyes of an arbitrary environment. The envi-
ronment can interact with the protocol, perhaps attempting to create confusion
between different messages or sessions. This definition of equivalence yields the
desired properties for our security applications. Moreover, in our experience,
equivalence is not too hard to prove.

Although the definition of equivalence makes reference to the environment,
we do not need to give a model of the environment explicitly. This is one of the
main advantages of our approach. Writing such a model can be tedious and can
lead to new arbitrariness and error. In particular, it is always difficult to express
that the environment can invent random numbers but is not lucky enough to
guess the random secrets on which a protocol depends. We resolve this conflict
by letting the environment be an arbitrary spi calculus process.

Our approach has some similarities with other recent approaches for reason-
ing about protocols. Like work based on temporal logics or process algebras (e.g.,
[FG94,GM95,Low96,Sch96a]), our method builds on a standard concurrency for-
malism; this has obvious advantages but it also implies that our method is less
intuitive than some based on ad hoc formalisms (e.g., [BAN89]). As in some
modal logics (e.g., [ABLP93,LABW92]), we emphasise reasoning about chan-
nels. As in state-transition models (e.g., [DY83,MCF87,Kem89,Mea92]), we are
interested in characterising the knowledge of an environment. The unique fea-
tures of our approach are its reliance on the powerful scoping constructs of the
pi calculus; the radical definition of the environment as an arbitrary spi calculus
process; and the representation of security properties, both integrity and secrecy,
as equivalences.

Our model of protocols is simpler, but poorer, than some models developed
for informal mathematical arguments because the spi calculus does not include
any notion of probability or complexity (cf. [BR95]). It would be interesting to
bridge the gap between the spi calculus and those models, perhaps by giving a
probabilistic interpretation for our results. Recent work [LMMS98,AR00] makes
progress in this direction.

Remainder of Part II

The remainder of this part is organised as follows. Section 5 extends the pi
calculus with primitives for shared-key cryptography. Section 6 describes a series
of protocol examples in the spi calculus. Sections 7 defines the formal semantics of
the spi calculus. Section 8 discusses how to add primitives for hashing and public-
key cryptography to the pi calculus. Finally, Section 9 offers some conclusions
and discusses related work.
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5 The Spi Calculus with Shared-Key Cryptography

Just as there are several versions of the pi calculus, there are several versions of
the spi calculus. These differ in particular in what cryptographic constructs they
include. In this section we introduce a relatively simple spi calculus, namely the
pi calculus extended with primitives for shared-key cryptography. We then write
several protocols that use shared-key cryptography in this calculus.

Throughout these notes, we often refer to the calculus presented in this sec-
tion as “the” spi calculus; but we define other versions of the spi calculus in
Section 8.

The syntax of the spi calculus is an extension of that of the pi calculus. In
order to represent encrypted messages, we add a clause to the syntax of terms:

Syntax of Terms:

L, M,N ::= terms
. . . as in Section 2
{M}N shared-key encryption

In order to represent decryption, we add a clause to the syntax of processes:

Syntax of Processes:

P,Q ::= processes
. . . as in Section 2
case L of {x}N in P shared-key decryption

The variable x is bound in P .
Intuitively, the meaning of the new constructs is as follows:

– The term {M}N represents the ciphertext obtained by encrypting the term
M under the key N using a shared-key cryptosystem such as DES [DES77].

– The process case L of {x}N in P attempts to decrypt the term L with the
key N . If L is a ciphertext of the form {M}N , then the process behaves as
P{M}x. Otherwise the process is stuck.

Implicit in this definition are some standard but significant assumptions
about cryptography:

– The only way to decrypt an encrypted packet is to know the corresponding
key.

– An encrypted packet does not reveal the key that was used to encrypt it.
– There is sufficient redundancy in messages so that the decryption algorithm

can detect whether a ciphertext was encrypted with the expected key.

It is not assumed that all messages contain information that allows each principal
to recognise its own messages (cf. [BAN89]).

The semantics of the spi calculus can be formalised in much the same way
as the semantics of the pi calculus. We carry out this formalisation in Section 7.
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Again, we write P ' Q to mean that the behaviours of the processes P and Q
are indistinguishable. The notion of indistinguishability is complicated by the
presence of cryptography. As an example of these complications, consider the
following process:

P (M) 4= (νK)c〈{M}K〉

This process simply sends M under a new key K on a public channel c; the key
K is not transmitted. Intuitively, we would like to equate P (M) and P (M ′), for
any M and M ′, because an observer cannot discover K and hence cannot tell
whether M or M ′ is sent under K. On the other hand, P (M) and P (M ′) are
clearly different, since they transmit different messages on c. Our equivalence '
is coarse-grained enough to equate P (M) and P (M ′).

6 Security Examples using Shared-Key Cryptography

The spi calculus enables more detailed descriptions of security protocols than
the pi calculus. While the pi calculus enables the representation of channels,
the spi calculus also enables the representation of the channel implementations
in terms of cryptography. In this section we show a few example cryptographic
protocols.

As in the pi calculus, scoping is the basis of security in the spi calculus. In
particular, restriction can be used to model the creation of fresh, unguessable
cryptographic keys. Restriction can also be used to model the creation of fresh
nonces of the sort used in challenge-response exchanges.

Security properties can still be expressed as equivalences, although the notion
of equivalence is more delicate, as we have discussed.

6.1 A First Cryptographic Example

Our first example is a cryptographic version of the example of Section 3.1. We
consider two principals A and B that share a key KAB ; in addition, we assume
there is a public channel cAB that A and B can use for communication, but
which is in no way secure. The protocol is simply that A sends a message M
under KAB to B, on cAB .

Informally, we write this protocol as follows:

Message 1 A→ B : {M}KAB
on cAB

In the spi calculus, we write:

A(M) 4= cAB〈{M}KAB
〉

B
4= cAB(x).case x of {y}KAB

in F (y)

Inst(M) 4= (νKAB)(A(M) | B)
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According to this definition, A sends {M}KAB
on cAB while B listens for a

message on cAB . Given such a message, B attempts to decrypt it using KAB ; if
this decryption succeeds, B applies F to the result. The assumption that A and
B share KAB gives rise to the restriction on KAB , which is syntactically legal
and meaningful although KAB is not used as a channel. On the other hand,
cAB is not restricted, since it is a public channel. Other principals may send
messages on cAB , so B may attempt to decrypt a message not encrypted under
KAB ; in that case, the protocol will get stuck. We are not concerned about this
possibility, but it would be easy enough to avoid it by writing a slightly more
elaborate program for B.

We use the following specification:

A(M) 4= cAB〈{M}KAB
〉

Bspec(M) 4= cAB(x).case x of {y}KAB
in F (M)

Instspec(M) 4= (νKAB)(A(M) | Bspec(M))

and we obtain the properties:

Authenticity: Inst(M) ' Instspec(M),
for any M .

Secrecy: Inst(M) ' Inst(M ′) if F (M) ' F (M ′),
for any M , M ′.

Intuitively, authenticity holds even if the key KAB is somehow compromised
after its use. Many factors can contribute to key compromise, for example incom-
petence on the part of protocol participants, and malice and brute force on the
part of attackers. We cannot model all these factors, but we can model deliberate
key publication, which is in a sense the most extreme of them. It suffices to make
a small change in the definitions of B and Bspec , so that they send KAB on a
public channel after receiving {M}KAB

. This change preserves the authenticity
equation, but clearly not the secrecy equation.

6.2 An Example with Key Establishment

In cryptographic protocols, the establishment of new channels often means the
exchange of new keys. There are many methods (most of them flawed) for key
exchange. The following example is the cryptographic version of that of Sec-
tion 3.2; it uses a simplified (one-shot) form of the Wide Mouthed Frog key
exchange.

In the Wide Mouthed Frog protocol, the principals A and B share keys KAS

and KSB respectively with a server S. When A and B want to communicate
securely, A creates a new key KAB , sends it to the server under KAS , and
the server forwards it to B under KSB . All communication being protected by
encryption, it can happen through public channels, which we write cAS , cSB ,
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and cAB . Informally, a simplified version of this protocol is:

Message 1 A→ S : {KAB}KAS
on cAS

Message 2 S → B : {KAB}KSB
on cSB

Message 3 A→ B : {M}KAB
on cAB

In the spi calculus, we can express this message sequence as follows:

A(M) 4= (νKAB)(cAS〈{KAB}KAS
〉.cAB〈{M}KAB

〉)
S

4= cAS(x).case x of {y}KAS
in cSB〈{y}KSB

〉
B

4= cSB(x).case x of {y}KSB
in

cAB(z).case z of {w}y in F (w)

Inst(M) 4= (νKAS)(νKSB)(A(M) | S | B)

where F (w) is a process representing the rest of the behaviour of B upon re-
ceiving a message w. Notice the essential use of scope extrusion: A generates the
key KAB and sends it out of scope to B via S.

In the usual pattern, we introduce a specification for discussing authenticity:

A(M) 4= (νKAB)(cAS〈{KAB}KAS
〉.cAB〈{M}KAB

〉)
S

4= cAS(x).case x of {y}KAS
in cSB〈{y}KSB

〉
Bspec(M) 4= cSB(x).case x of {y}KSB

in
cAB(z).case z of {w}y in F (M)

Instspec(M) 4= (νKAS)(νKSB)(A(M) | S | Bspec(M))

One may be concerned about the apparent complexity of this specification.
On the other hand, despite its complexity, the specification is still more evidently
“correct” than the protocol. In particular, it is still evident that Bspec(M) applies
F to the data M from A, rather than to some other message chosen as the result
of error or attack.

We obtain the usual properties of authenticity and secrecy:

Authenticity: Inst(M) ' Instspec(M),
for any M .

Secrecy: Inst(M) ' Inst(M ′) if F (M) ' F (M ′),
for any M , M ′.

6.3 A Complete Authentication Example (with a Flaw)

In the examples discussed so far, channel establishment and data communication
happen only once. As we demonstrate now, it is a simple matter of program-
ming to remove this restriction and to represent more sophisticated examples
with many sessions between many principals. However, as the intricacy of our
examples increases, so does the opportunity for error. This should not be con-
strued as a limitation of our approach, but rather as the sign of an intrinsic
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difficulty: many of the mistakes in authentication protocols arise from confusion
between sessions.

We consider a system with a server S and n other principals. We use the
terms suc(0), suc(suc(0)), . . . , which we abbreviate to 1, 2, . . . , as the names
of these other principals. We assume that each principal has an input channel;
these input channels are public and have the names c1, c2, . . . , cn and cS . We
also assume that the server shares a pair of keys with each other principal, one
key for each direction: principal i uses key KiS to send to S and key KSi to
receive from S, for 1 ≤ i ≤ n.

We extend our standard example to this system of n + 1 principals, with the
following message sequence:

Message 1 A→ S : A, {B,KAB}KAS
on cS

Message 2 S → B : {A,KAB}KSB
on cB

Message 3 A→ B : A, {M}KAB
on cB

Here A and B range over the n principals. The names A and B appear in
messages in order to avoid ambiguity; when these names appear in clear, they
function as hints that help the recipient choose the appropriate key for decryption
of the rest of the message. The intent is that the protocol can be used by any
pair of principals, arbitrarily often; concurrent runs are allowed. As it stands,
the protocol has obvious flaws; we discuss it in order to explain our method for
representing it in the spi calculus.

In our spi calculus representation, we use several convenient abbreviations.
Firstly, we rely on pair splitting on input and on decryption:

c(x1, x2).P
4= c(y).let (x1, x2) = y in P

case L of {x1, x2}N in P
4= case L of {y}N in

let (x1, x2) = y in P

where variable y is fresh. Secondly, we need the standard notation for the com-
position of a finite set of processes. Given a finite family of processes P1, . . . , Pk,
we let

∏
i∈1..k Pi be their k-way composition P1 | · · · | Pk. Finally, we omit the

inner parentheses from an encrypted pair of the form {(N,N ′)}N ′′ , and simply
write {N,N ′}N ′′ , as is common in informal descriptions.

Informally, an instance of the protocol is determined by a choice of parties
(who is A and who is B) and by the message sent after key establishment. More
formally, an instance I is a triple (i, j, M) such that i and j are principals and M
is a message. We say that i is the source address and j the destination address
of the instance. Moreover, we assume that there is an abstraction F representing
the behaviour of any principal after receipt of Message 3 of the protocol. For an
instance (i, j, M) that runs as intended, the argument to F is the triple (i, j,M).

Given an instance (i, j, M), the following process corresponds to the role of
A:

Send(i, j, M) 4= (νK)(cS〈(i, {j,K}KiS
)〉 | cj〈(i, {M}K)〉)
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The sending process creates a key K and sends it to the server, along with
the names i and j of the principals of the instance. The sending process also
sends M under K, along with its name i. We have put the two messages in
parallel, somewhat arbitrarily; putting them in sequence would have much the
same effect.

The following process corresponds to the role of B for principal j:

Recv(j) 4= cj(ycipher ).case ycipher of {xA, xkey}KSj
in

cj(zA, zcipher ).[xA is zA]
case zcipher of {zplain}xkey

in F (xA, j, zplain)

The receiving process waits for a message ycipher from the server, extracts a key
xkey from this message, then waits for a message zcipher under this key, and
finally applies F to the name xA of the presumed sender, to its own name j, and
to the contents zplain of the message. The variables xA and zA are both intended
as the name of the sending process, so they are expected to match.

The server S is the same for all instances:

S
4= cS(xA, xcipher ).∏

i∈1..n[xA is i] case xcipher of {xB , xkey}KiS
in∏

j∈1..n[xB is j] cj〈{xA, xkey}KSj
〉

The variable xA is intended as the name of the sending process, xB as the name
of the receiving process, xkey as the new key, and xcipher as the encrypted part
of the first message of the protocol. In the code for the server, we program an n-
way branch on the name xA by using a parallel composition of processes indexed
by i ∈ 1..n. We also program an n-way branch on the name xB , similarly. (This
casual use of multiple threads is characteristic of the pi calculus; in practice the
branch could be implemented more efficiently, but here we are interested only in
the behaviour of the server, not in its efficient implementation.)

Finally we define a whole system, parameterised on a list of instances:

Sys(I1, . . . , Im) 4= (ν ~KiS)(ν ~KSj)
(Send(I1) | · · · | Send(Im) |
!S |
!Recv(1) | · · · | !Recv(n))

where (ν ~KiS)(ν ~KSj) stands for:

(νK1S) . . . (νKnS)(νKS1) . . . (νKSn)

The expression Sys(I1, . . . , Im) represents a system with m instances of the pro-
tocol. The server is replicated; in addition, the replication of the receiving pro-
cesses means that each principal is willing to play the role of receiver in any
number of runs of the protocol in parallel. Thus, any two runs of the protocol
can be simultaneous, even if they involve the same principals.
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As before, we write a specification by modifying the protocol. For this spec-
ification, we revise the sending and the receiving processes, but not the server:

Send spec(i, j, M) 4= (νp)(Send(i, j, p) | p(x).F (i, j,M))

Recv spec(j)
4= cj(ycipher ).

case ycipher of {xA, xkey}KSj
in

cj(zA, zcipher ).[xA is zA]
case zcipher of {zplain}xkey

in
zplain〈∗〉

Sysspec(I1, . . . , Im) 4= (ν ~KiS)(ν ~KSj)
(Send spec(I1) | · · · | Send spec(Im) |
!S |
!Recv spec(1) | · · · | !Recv spec(n))

In this specification, the sending process for instance (i, j, M) is as in the imple-
mentation, except that it sends a fresh channel name p instead of M , and runs
F (i, j,M) when it receives any message on p. The receiving process in the spec-
ification is identical to that in the implementation, except that F (yA, j, zplain)
is replaced with zplain〈∗〉, where the symbol ∗ represents a fixed but arbitrary
message. The variable zplain will be bound to the fresh name p for the corre-
sponding instance of the protocol. Thus, the receiving process will signal on p,
triggering the execution of the appropriate process F (i, j,M).

A crucial property of this specification is that the only occurrences of F are
bundled into the description of the sending process. There, F is applied to the
desired parameters, (i, j,M). Hence it is obvious that an instance (i, j, M) will
cause the execution of F (i′, j′,M ′) only if i′ is i, j′ is j, and M ′ is M . Therefore,
despite its complexity, the specification is more obviously “correct” than the
implementation.

Much as in previous examples, we would like the protocol to have the follow-
ing authenticity property:

Sys(I1, . . . , Im) ' Sysspec(I1, . . . , Im),
for any instances I1, . . . , Im.

Unfortunately, the protocol is vulnerable to a replay attack that invalidates the
authenticity equation. Consider the system Sys(I, I ′) where I = (i, j, M) and
I ′ = (i, j, M ′). An attacker can replay messages of one instance and get them
mistaken for messages of the other instance, causing M to be passed twice to F .
Thus, Sys(I, I ′) can be made to execute two copies of F (i, j,M). In contrast,
no matter what an attacker does, Sysspec(I, I ′) will run each of F (i, j,M) and
F (i, j,M ′) at most once. The authenticity equation therefore does not hold. (We
can disprove it formally by defining an attacker that distinguishes Sys(I, I ′) and
Sysspec(I, I ′), within the spi calculus.)
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Send(i, j, M)
4
= cS〈i〉 |

ci(xnonce).(νK)(cS〈(i, {i, i, j, K, xnonce}KiS )〉 | cj〈(i, {M}K)〉)

S
4
= cS(xA).

∏
i∈1..n[xA is i] (νNS)(ci〈NS〉 |

cS(x′A, xcipher ).[x
′
A is i]

case xcipher of {yA, zA, xB , xkey , xnonce}KiS in∏
j∈1..n[yA is i] [zA is i] [xB is j] [xnonce is NS ]

(cj〈∗〉 | cS(ynonce).cj〈{S, i, j, xkey , ynonce}KSj 〉))

Recv(j)
4
= cj(w).(νNB)(cS〈NB〉 |

cj(ycipher ).
case ycipher of {xS , xA, xB , xkey , ynonce}KSj in∏

i∈1..n[xS is S] [xA is i] [xB is j] [ynonce is NB ]

cj(zA, zcipher ).[zA is xA]
case zcipher of {zplain}xkey in F (i, j, zplain))

Sys(I1, . . . , Im)
4
= (ν ~KiS)(ν ~KSj)

(Send(I1) | · · · | Send(Im) |
!S |
!Recv(1) | · · · | !Recv(n))

Fig. 2. Formalisation of the Seven-Message Protocol

6.4 A Complete Authentication Example (Repaired)

Now we improve the protocol of the previous section by adding nonce hand-
shakes as protection against replay attacks. The Wide Mouthed Frog protocol
uses timestamps instead of handshakes. The treatment of timestamps in the spi
calculus is possible, but it requires additional elements, including at least a rudi-
mentary account of clock synchronisation. Protocols that use handshakes are
fundamentally more self-contained than protocols that use timestamps; there-
fore, handshakes make for clearer examples.

Informally, our new protocol is:

Message 1 A→ S : A on cS

Message 2 S → A : NS on cA

Message 3 A→ S : A, {A,A, B, KAB , NS}KAS
on cS

Message 4 S → B : ∗ on cB

Message 5 B → S : NB on cS

Message 6 S → B : {S, A,B,KAB , NB}KSB
on cB

Message 7 A→ B : A, {M}KAB
on cB

Messages 1 and 2 are the request for a challenge and the challenge, respectively.
The challenge is NS , a nonce created by S; the nonce must not have been used
before for this purpose. Obviously the nonce is not secret, but it must be unpre-
dictable (for otherwise an attacker could simulate a challenge and later replay the
response [AN96]). In Message 3, A says that A and B can communicate under
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KAB , sometime after receipt of NS . All the components A, B, KAB , NS appear
explicitly in the message, for safety [AN96], but A could perhaps be elided. The
presence of NS in Message 3 proves the freshness of the message. In Message 4,
∗ represents a fixed but arbitrary message; S uses ∗ to signal that it is ready
for a nonce challenge NB from B. In Message 6, S says that A says that A and
B can communicate under KAB , sometime after receipt of NB . The first field
of the encrypted portions of Messages 3 and 6 (A or S) is included in order to
distinguish these messages; it serves as a “direction bit”. Finally, Message 7 is
the transmission of data under KAB .

The messages of this protocol have many components. For the spi calculus
representation it is therefore convenient to generalise our syntax of pairs and
pair splitting to arbitrary tuples. We use the following standard abbreviations:

(N1, . . . , Nk+1)
4= ((N1, . . . , Nk), Nk+1)

let (x1, . . . , xk+1) = N in P
4= let (y, xk+1) = N in

let (x1, . . . , xk) = y in P

where variable y is fresh.
In the spi calculus, we represent the nonces of this protocol as newly created

names. We obtain the spi calculus expressions given in Figure 2. In those ex-
pressions, the names NS and NB represent the nonces. The variable subscripts
are hints that indicate what the corresponding variables should represent; for
example, xA, x′A, yA, and zA are all expected to be the name of the sending
process, and xnonce and ynonce are expected to be the nonces generated by S
and B, respectively.

The definition of Sysspec is exactly analogous to that of the previous section,
so we omit it. We obtain the authenticity property:

Sys(I1, . . . , Im) ' Sysspec(I1, . . . , Im),
for any instances I1, . . . , Im.

This property holds because of the use of nonces. In particular, the replay attack
of Section 6.3 can no longer distinguish Sys(I1, . . . , Im) and Sysspec(I1, . . . , Im).

As a secrecy property, we would like to express that there is no way for an
external observer to tell apart two executions of the system with identical partic-
ipants but different messages. The secrecy property should therefore assert that
the protocol does not reveal any information about the contents of exchanged
messages if none is revealed after the key exchange.

In order to express that no information is revealed after the key exchange,
we introduce the following definition. We say that a pair of instances (i, j, M)
and (i′, j′,M ′) is indistinguishable if the two instances have the same source and
destination addresses (i = i′ and j = j′) and if F (i, j,M) ' F (i, j,M ′).

Our definition of secrecy is that, if each pair (I1, J1), . . . , (Im, Jm) is indistin-
guishable, then Sys(I1, . . . , Im) ' Sys(J1, . . . , Jm). This means that an observer
cannot distinguish two systems parameterised by two sets of indistinguishable
instances. This property holds for our protocol.

In summary, we have:
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Authenticity: Sys(I1, . . . , Im) ' Sysspec(I1, . . . , Im),
for any instances I1, . . . , Im.

Secrecy: Sys(I1, . . . , Im) ' Sys(J1, . . . , Jm),
if each pair (I1, J1), . . . , (Im, Jm)
is indistinguishable.

We could ask for a further property of anonymity, namely that the source
and the destination addresses of instances be protected from eavesdroppers. How-
ever, anonymity holds neither for our protocol nor for most current, practical
protocols. It would be easy enough to specify anonymity, should it be relevant.

6.5 Discussion of the Examples

As these examples show, writing a protocol in the spi calculus is essentially anal-
ogous to writing it in any programming language with suitable communication
and encryption libraries. The main advantage of the spi calculus is its formal
precision.

Writing a protocol in the spi calculus may be a little harder than writing it
in some of the notations common in the literature. On the other hand, the spi
calculus versions are more detailed. They make clear not only what messages
are sent but how the messages are generated and how they are checked. These
aspects of the spi calculus descriptions add complexity, but they enable finer
analysis.

7 Formal Semantics of the Spi Calculus

In this section we give a brief formal treatment of the spi calculus. In Section 7.1
we introduce the reaction relation; P → Q means there is a reaction amongst
the subprocesses of P such that the whole can take a step to process Q. Reaction
is the basic notion of computation in both the pi calculus and the spi calculus.
In Section 7.2 we give a precise definition of the equivalence relation ', which
we have used for expressing security properties.

Syntactic Conventions

We write fn(M) and fn(P ) for the sets of names free in term M and process P
respectively. Similarly, we write fv(M) and fv(P ) for the sets of variables free
in M and P respectively. We say that a term or process is closed to mean that
it has no free variables. (To be able to communicate externally, a process must
have free names.) The set Proc = {P | fv(P ) = ∅} is the set of closed processes.

7.1 The Reaction Relation

The reaction relation is a concise account of computation in the pi calculus
introduced by Milner [Mil92], inspired by the Chemical Abstract Machine of
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Berry and Boudol [BB90]. One thinks of a process as consisting of a chemical
solution of molecules waiting to react. A reaction step arises from the interaction
of the adjacent molecules m〈N〉.P and m(x).Q, as follows:

(React Inter) m〈N〉.P | m(x).Q → P | Q{N}x

Just as one might stir a chemical solution to allow non-adjacent molecules
to react, we define a relation, structural equivalence, that allows processes to be
rearranged so that the rule above is applicable. We first define the reduction
relation > on closed processes:

Reduction:

(Red Repl) !P > P | !P
(Red Match) [M is M ] P > P
(Red Let) let (x, y) = (M,N) in P > P{M}x{N}y
(Red Zero) case 0 of 0 : P suc(x) : Q > P
(Red Suc) case suc(M) of 0 : P suc(x) : Q > Q{M}x
(Red Decrypt) case {M}N of {x}N in P > P{M}x

We let structural equivalence, ≡, be the least relation on closed processes that
satisfies the following equations and rules:

Structural Congruence:

(Struct Nil) P | 0 ≡ P
(Struct Comm) P | Q ≡ Q | P
(Struct Assoc) P | (Q | R) ≡ (P | Q) | R
(Struct Switch) (νm)(νn)P ≡ (νn)(νm)P
(Struct Drop) (νn)0 ≡ 0
(Struct Extrusion) (νn)(P | Q) ≡ P | (νn)Q if n /∈ fn(P )

(Struct Red)
P > Q

P ≡ Q

(Struct Refl)

P ≡ P

(Struct Symm)
P ≡ Q

Q ≡ P

(Struct Trans)
P ≡ Q Q ≡ R

P ≡ R

(Struct Par)
P ≡ P ′

P | Q ≡ P ′ | Q

(Struct Res)
P ≡ P ′

(νm)P ≡ (νm)P ′

Now we can complete the formal description of the reaction relation. We let
the reaction relation, →, be the least relation on closed processes that satisfies
the rule (React Inter) displayed above and the following rules:

Reaction:

(React Struct)
P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

(React Par)
P → P ′

P | Q→ P ′ | Q

(React Res)
P → P ′

(νn)P → (νn)P ′



24 A.D. Gordon

This definition of the reaction relation corresponds to the informal description
of process behaviour given in Sections 2 and 5.

As an example, we can use the definition of the reaction relation to show the
behaviour of the protocol of Section 6.2:

Inst(M) ≡ (νKAS)(νKSB)(A(M) | S | B)
→ (νKAS)(νKSB)(νKAB)

(cAB〈{M}KAB
〉 | cSB〈{KAB}KSB

〉 | B)
→ (νKAS)(νKSB)(νKAB)

(cAB〈{M}KAB
〉 |

cAB(z).case z of {w}KAB
in F (w))

→ (νKAS)(νKSB)(νKAB)F (M)
≡ F (M)

The last step in this calculation is justified by our general convention that none
of the bound parameters of the protocol (including, in this case, KAS , KSB , and
KAB) occurs free in F .

7.2 Testing Equivalence

In order to define equivalence, we first define a predicate that describes the
channels on which a process can communicate. We let a barb, β, be an input or
output channel, that is, either a name m (representing input) or a co-name m
(representing output). For a closed process P , we define the predicate P exhibits
barb β, written P ↓ β, by the following rules:

Exhibition of a Barb:

(Barb In)

m(x).P ↓ m

(Barb Out)

m〈M〉.P ↓ m

(Barb Par)
P ↓ β

P | Q ↓ β

(Barb Res)
P ↓ β β /∈ {m,m}

(νm)P ↓ β

(Barb Struct)
P ≡ Q Q ↓ β

P ↓ β

Intuitively, P ↓ β holds just if P is a closed process that may input or output
immediately on barb β. The convergence predicate P⇓β holds if P is a closed
process that exhibits β after some reactions:

Convergence to a Barb:

(Conv Barb)
P ↓ β

P⇓β

(Conv React)
P → Q Q⇓β

P⇓β
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We let a test consist of any closed process R and any barb β. A closed process
P passes the test if and only if (P | R)⇓β. The notion of testing gives rise to a
testing equivalence on the set Proc of closed processes:

P ' Q
4= for any test (R, β),

(P | R)⇓β if and only if (Q | R)⇓β

The idea of testing equivalence comes from the work of De Nicola and Hen-
nessy [DH84]. Despite superficial differences, we can show that our relation '
is a version of De Nicola and Hennessy’s may-testing equivalence. As De Nicola
and Hennessy have explained, may-testing corresponds to partial correctness (or
safety), while must-testing corresponds to total correctness. Like much of the
security literature, our work focuses on safety properties, hence our definitions.

A test neatly formalises the idea of a generic experiment or observation an-
other process (such as an attacker) might perform on a process, so testing equiv-
alence captures the concept of equivalence in an arbitrary environment. One
possible drawback of testing equivalence is that it is sensitive to the choice of
language [BN95]. However, our results appear fairly robust in that they carry
over smoothly to some extensions of our calculus.

8 Further Cryptographic Primitives

Although so far we have discussed only shared-key cryptography, other kinds of
cryptography are also easy to treat within the spi calculus. In this section we
show how to handle cryptographic hashing, public-key encryption, and digital
signatures. We add syntax for these operations to the spi calculus and give their
semantics. We thus provide evidence that our ideas are applicable to a wide
range of security protocols, beyond those that rely on shared-key encryption.
We believe that we may be able to deal similarly with Diffie-Hellman techniques
and with secret sharing. However, protocols for oblivious transfer and for zero-
knowledge proofs, for example, are probably beyond the scope of our approach.

8.1 Hashing

A cryptographic hash function has the properties that it is very expensive to
recover an input from its image or to find two inputs with the same image.
Functions such as SHA and RIPE-MD are generally believed to have these prop-
erties [Sch96b].

When we represent hash functions in the spi calculus, we pretend that op-
erations that are very expensive are altogether impossible. We simply add a
construct to the syntax of terms of the spi calculus:

Extension for Hashing:

L, M,N ::= terms
. . . as in Section 5
H(M) hashing



26 A.D. Gordon

The syntax of processes is unchanged. Intuitively, H(M) represents the hash
of M . The absence of a construct for recovering M from H(M) corresponds to
the assumption that H cannot be inverted. The lack of any equations H(M) =
H(M ′) corresponds to the assumption that H is free of collisions.

8.2 Public-Key Encryption and Digital Signatures

Traditional public-key encryption systems are based on key pairs. Normally, one
of the keys in each pair is private to one principal, while the other key is public.
Any principal can encrypt a message using the public key; only a principal that
has the private key can then decrypt the message [DH76,RSA78].

We assume that neither key can be recovered from the other. We could just
as easily deal with the case where the public key can be derived from the private
one. Much as in Section 5, we also assume that the only way to decrypt an
encrypted packet is to know the corresponding private key; that an encrypted
packet does not reveal the public key that was used to encrypt it; and that there
is sufficient redundancy in messages so that the decryption algorithm can detect
whether a ciphertext was encrypted with the expected public key.

We arrive at the following syntax for the spi calculus with public-key encryp-
tion. (This syntax is concise, rather than memorable.)

Extensions for Public-Key Cryptography:

L, M,N ::= terms
. . . as in Section 5
M+ public part
M− private part
{[M ]}N public-key encryption

P,Q ::= processes
. . . as in Section 5
case L of {[x]}N in P decryption

If M represents a key pair, then M+ represents its public half and M− represents
its private half. Given a public key N , the term {[M ]}N represents the result of
the public-key encryption of M with N . In case L of {[x]}N in P , the variable
x is bound in P . This construct is useful when N is a private key K−; then it
binds x to the M such that {[M ]}K+ is L, if such an M exists.

It is also common to use key pairs for digital signatures. Private keys are used
for signing, while public keys are used for checking signatures. We can represent
digital signatures through the following extended syntax:

Extensions for Digital Signatures:

L,M,N ::= terms
. . . as above
[{M}]N private-key signature
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P,Q ::= processes
. . . as above
case N of [{x}]M in P signature check

Given a private key N , the term [{M}]N represents the result of the signature of
M with N . Again, variable x is bound in P in the syntax case N of [{x}]M in P .
This construct is dual to case L of {[x]}N inP . The new construct is useful when
N is a public key K+; then it binds x to the M such that [{M}]K− is L, if such
an M exists. (Thus, we are assuming that M can be recovered from the result
of signing it; but there is no difficulty in dropping this assumption.)

Formally, the semantics of the new constructs is captured with two new rules
for the reduction relation:

(Red Public Decrypt) case {[M ]}N+ of {[x]}N− in P > P{M}x
(Red Signature Check) case [{M}]N− of [{x}]N+ in P > P{M}x

As a small example, we can write the following public-key analogue for the
protocol of Section 6.1:

A(M) 4= cAB〈{[M, [{H(M)}]K−
A

]}K+
B
〉

B
4= cAB(x).case x of {[y]}K−

B
in

let (y1, y2) = y in
case y2 of [{z}]K+

A
in

[H(y1) is z] F (y1)

Inst(M) 4= (νKA)(νKB)(A(M) | B)

In this protocol, A sends M on the channel cAB , signed with A’s private key and
encrypted under B’s public key; the signature is applied to a hash of M rather
than to M itself. On receipt of a message on cAB , B decrypts using its private
key, checks A’s signature using A’s public key, checks the hash, and applies F to
the body of the message (to M). The key pairs KA and KB are restricted; but
there would be no harm in sending their public parts K+

A and K+
B on a public

channel.
Other formalisations of public-key cryptography are possible, perhaps even

desirable. In particular, we have represented cryptographic operations at an ab-
stract level, and do not attempt to model closely the properties of any one
algorithm. We are concerned with public-key encryption and digital signatures
in general rather than with their RSA implementations, say. The RSA system
satisfies equations that our formalisation does not capture. For example, in the
RSA system, [{{[M ]}K+}]K− equals M . Abadi and Fournet [AF01] investigate a
pi calculus in which such equations may be imposed on terms.

9 Discussion: The Spi Calculus

In this part, we have applied the spi calculus to the description and analysis
of security protocols. We showed how to represent protocols and how to ex-
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press their security properties. Our model of protocols takes into account the
possibility of attacks, but does not require writing explicit specifications for an
attacker. In particular, we express secrecy properties as simple equations that
mean indistinguishability from the point of view of an arbitrary attacker. To our
knowledge, this sharp treatment of attacks has not been previously possible.

As examples, we chose protocols of the sort commonly found in the authenti-
cation literature. Although our examples are small, we have found them instruc-
tive and encouraging. In particular, there seems to be no fundamental difficulty
in writing other kinds of examples, such as protocols for electronic commerce.
Unfortunately, the specifications for those protocols do not yet seem to be fully
understood, even in informal terms [Mao96].

Several proof techniques for the spi calculus have been developed since the
work reported in this part of the notes was completed. Several researchers
have devised proof techniques for equational reasoning in spi and its general-
isations [AG98,BNP99,AF01]. A type system due to Abadi [Aba99] can prove
equationally-specified secrecy properties including the one stated in Section 6.4.
There is no comparable type system for proving equationally-specified authen-
ticity properties. Still, recent work on type systems for the spi calculus [GJ01]
allow the proof by type-checking of authenticity properties specified using the
correspondence assertions of Woo and Lam [WL93].

Apart from the spi calculus, other nominal calculi to have been applied to
cryptographic protocols include the sjoin calculus [AFG98], a version of the
join calculus equipped with abstract cryptographic primitives. It is surprisingly
difficult to encode encryption within the pi calculus; Amadio and Prasad [AP99]
investigate one such encoding.

Part III: The Ambient Calculus

The ambient calculus is a nominal calculus whose basic abstraction, the ambient,
represents mobile, nested, computational environments, with local communica-
tions. Ambients can represent the standard components of distributed systems,
such as nodes, channels, messages, and mobile code. They can also represent sit-
uations where entire active computational environments are moved, as happens
with mobile computing devices, and with multi-threaded mobile agents.

This part of the notes introduces the ambient calculus, and explains how we
can regulate aspects of mobility by typing. It is organised as follows. In Sec-
tion 10, we informally motivate the ambient abstraction, and then in Section 11
we present the basic untyped ambient calculus. Next, in Section 12, we motivate
the development of type systems for the ambient calculus. In Section 13 we in-
formally introduce a type system that only tracks communications. In Section 14
we give a precise definition of the same system, and a subject reduction result.
Section 15 and 16 enrich this system to regulate the mobility of ambients. In
Section 17, to illustrate the expressiveness of the ambient calculus and its type
system, we present a typed encoding of a distributed programming language.
Section 18 concludes.
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10 Motivation for Ambients

There are two distinct areas of work in mobility: mobile computing, concern-
ing computation that is carried out in mobile devices (laptops, personal digital
assistants, etc.), and mobile computation, concerning mobile code that moves
between devices (applets, agents, etc.). We aim to describe all these aspects of
mobility within a single framework that encompasses mobile agents, the ambi-
ents where agents interact and the mobility of the ambients themselves.

The inspiration for this work comes from the potential for mobile computa-
tion over the World-Wide Web. The geographic distribution of the Web natu-
rally calls for mobility of computation, as a way of flexibly managing latency and
bandwidth. Because of recent advances in networking and language technology,
the basic tenets of mobile computation are now technologically realizable. The
high-level software architecture potential, however, is still largely unexplored,
although it is being actively investigated in the coordination and agents com-
munities.

The main difficulty with mobile computation on the Web is not in mobility
per se, but in the handling of administrative domains. In the early days of the
internet one could rely on a flat name space given by IP addresses; knowing the
IP address of a computer would very likely allow one to talk to that computer in
some way. This is no longer the case: firewalls partition the internet into admin-
istrative domains that are isolated from each other except for rigidly controlled
pathways. System administrators enforce policies about what can move through
firewalls and how.

Mobility requires more than the traditional notion of authorization to run or
to access information in certain domains: it involves the authorization to enter or
exit certain domains. In particular, as far as mobile computation is concerned,
it is not realistic to imagine that an agent can migrate from any point A to
any point B on the internet. Rather, an agent must first exit its administrative
domain (obtaining permission to do so), enter someone else’s administrative
domain (again, obtaining permission to do so) and then enter a protected area
of some machine where it is allowed to run (after obtaining permission to do
so). Access to information is controlled at many levels, thus multiple levels of
authorization may be involved. Among these levels we have: local computer, local
area network, regional area network, wide-area intranet and internet. Mobile
programs must be equipped to navigate this hierarchy of administrative domains,
at every step obtaining authorization to move further. Similarly, laptops must be
equipped to access resources depending on their location in the administrative
hierarchy. Therefore, at the most fundamental level we need to capture notions
of locations, of mobility and of authorization to move.

Today, it is very difficult to transport a working environment between two
computers, for example, between a laptop and a desktop, or between home and
work computers. The working environment might consist of data that has to
be copied, and of running programs in various stages of active or suspended
communication with the network that have to be shut down and restarted. Why
can’t we just say “move this (part of the) environment to that computer” and
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carry on? When on a trip, why couldn’t we transfer a piece of the desktop
environment (for example, a forgotten open document along with its editor) to
the laptop over a phone line? We would like to discover techniques to achieve all
this easily and reliably.

With these motivations, we adopt a paradigm of mobility where compu-
tational ambients are hierarchically structured, where agents are confined to
ambients and where ambients move under the control of agents. A novelty of
this approach is in allowing the movement of self-contained nested environments
that include data and live computation, as opposed to the more common tech-
niques that move single agents or individual objects. Our goal is to make mobile
computation scale-up to widely distributed, intermittently connected and well
administered computational environments.

10.1 Ambients

An ambient, in the sense in which we are going to use this word, has the following
main characteristics:

– An ambient is a bounded place where computation happens. The interest-
ing property here is the existence of a boundary around an ambient. If we
want to move computations easily we must be able to determine what should
move; a boundary determines what is inside and what is outside an ambient.
Examples of ambients, in this sense, are: a web page (bounded by a file),
a virtual address space (bounded by an addressing range), a Unix file sys-
tem (bounded within a physical volume), a single data object (bounded by
“self”) and a laptop (bounded by its case and data ports). Non-examples are:
threads (where the boundary of what is “reachable” is difficult to determine)
and logically related collections of objects. We can already see that a bound-
ary implies some flexible addressing scheme that can denote entities across
the boundary; examples are symbolic links, Uniform Resource Locators and
Remote Procedure Call proxies. Flexible addressing is what enables, or at
least facilitates, mobility. It is also, of course, a cause of problems when the
addressing links are “broken”.

– An ambient is something that can be nested within other ambients. As we
discussed, administrative domains are (often) organized hierarchically. If we
want to move a running application from work to home, the application must
be removed from an enclosing (work) ambient and inserted in a different
enclosing (home) ambient. A laptop may need a removal pass to leave a
workplace, and a government pass to leave or enter a country.

– An ambient is something that can be moved as a whole. If we reconnect a
laptop to a different network, all the address spaces and file systems within it
move accordingly and automatically. If we move an agent from one computer
to another, its local data should move accordingly and automatically.

More precisely, we investigate ambients that have the following structure:
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– Each ambient has a name. The name of an ambient is used to control access
(entry, exit, communication, etc.). In a realistic situation the true name of an
ambient would be guarded very closely, and only specific capabilities would
be handed out about how to use the name. In our examples we are usually
more liberal in the handling of names, for the sake of simplicity.

– Each ambient has a collection of local agents (also known as threads, pro-
cesses, etc.). These are the computations that run directly within the ambi-
ent and, in a sense, control the ambient. For example, they can instruct the
ambient to move.

– Each ambient has a collection of subambients. Each subambient has its own
name, agents, subambients, etc.

10.2 Technical Context: Systems

Many software systems have explored and are exploring notions of mobility.
Among these are:

– Obliq [Car95]. The Obliq project attacked the problems of distribution and
mobility for intranet computing. It was carried out largely before the Web
became popular. Within its scope, Obliq works quite well, but is not really
suitable for computation and mobility over the Web, just like most other
distributed paradigms developed in pre-Web days.

– Telescript [Whi96]. Our ambient model is partially inspired by Telescript,
but is almost dual to it. In Telescript, agents move whereas places stay put.
Ambients, instead, move whereas agents are confined to ambients. A Tele-
script agent, however, is itself a little ambient, since it contains a “suitcase”
of data. Some nesting of places is allowed in Telescript.

– Java [GJS96]. Java provides a working paradigm for mobile computation, as
well as a huge amount of available and expected infrastructure on which to
base more ambitious mobility efforts.

– Linda [CG89]. Linda is a “coordination language” where multiple processes
interact in a common space (called a tuple space) by dropping and pick-
ing up tokens asynchronously. Distributed versions of Linda exist that use
multiple tuple spaces and allow remote operations over those. A dialect of
Linda [CGZ95] allows nested tuple spaces, but not mobility of the tuple
spaces.

10.3 Technical Context: Formalisms

Many existing calculi have provided inspiration for our work. In particular:

– Enrichments of the pi calculus with locations have been studied, with the
aim of capturing notions of distributed computation. In the simplest form, a
flat space of locations is added, and operations can be indexed by the loca-
tion where they are executed. Riely and Hennessy [RH98] and Sewell [Sew98]
propose versions of the pi calculus extended with primitives to allow com-
putations to migrate between named locations. The emphasis in this work
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is on developing type systems for mobile computation based on existing
type systems for the pi calculus. Riely and Hennessy’s type system regulates
the usage of channel names according to permissions represented by types.
Sewell’s type system differentiates between local and remote channels for the
sake of efficient implementation of communication.

– The join calculus [FG96] is a reformulation of the pi calculus with a more
explicit notion of places of interaction; this greatly helps in building dis-
tributed implementations of channel mechanisms. The distributed join cal-
culus [FGL+96] adds a notion of named locations, with essentially the same
aims as ours, and a notion of distributed failure. Locations in the distributed
join calculus form a tree, and subtrees can migrate from one part of the tree
to another. A significant difference from our ambients is that movement may
happen directly from any active location to any other known location.

– LLinda [NFP97] is a formalization of Linda using process calculi techniques.
As in distributed versions of Linda, LLinda has multiple distributed tuple
spaces. Multiple tuple spaces are very similar in spirit to multiple ambients,
but Linda’s tuple spaces do not nest, and there are no restrictions about
accessing a tuple space from any other tuple space.

– A growing body of literature is concentrating on the idea of adding dis-
crete locations to a process calculus and considering failure of those loca-
tions [Ama97,FGL+96]. This approach aims to model traditional distributed
environments, along with algorithms that tolerate node failures. However,
on the internet, node failure is almost irrelevant compared with inability to
reach nodes. Web servers do not often fail forever, but they frequently dis-
appear from sight because of network or node overload, and then they come
back. Sometimes they come back in a different place, for example, when a
Web site changes its internet Service Provider. Moreover, inability to reach
a Web site only implies that a certain path is unavailable; it implies nei-
ther failure of that site nor global unreachability. In this sense, an observed
node failure cannot simply be associated with the node itself, but instead
is a property of the whole network, a property that changes over time. Our
notion of locality is induced by a non-trivial and dynamic topology of loca-
tions. Failure is only represented, in a weak but realistic sense, as becoming
forever unreachable.

10.4 Summary of our Approach

With respect to previous work on process calculi, we can characterize the main
differences in the ambient calculus approach as follows. In each of the following
points, our emphasis is on boundaries and their effect on computation. The
existence of separate locations is represented by a topology of boundaries. This
topology induces an abstract notion of distance between locations. Locations
are not uniformly accessible, and are not identified by globally unique names.
Process mobility is represented as crossing of boundaries. In particular, process
mobility is not represented as communication of processes or process names over
channels. Security is represented as the ability or inability to cross boundaries.
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In particular, security is not directly represented by cryptographic primitives or
access control lists. Interaction between processes is by shared location within
a common boundary. In particular, interaction cannot happen without proper
consideration of boundaries and their topology.

11 A Polyadic Ambient Calculus

The ambient calculus of this section is a slight extension of the original untyped
ambient calculus [CG00b]. In that calculus, communication is based on the ex-
change of single values. Here we extend the calculus with communication based
on tuples of values (polyadic communication), since this simple extension greatly
facilitates the task of providing an expressive type system. We also add objective
moves and we annotate bound variables with type information.

The ambient calculus is a derivative of the pi calculus. Four of its process
constructions (restriction, inactivity, composition, and replication) are exactly
as in the pi calculus. To these we add ambients, capabilities, and a simple form of
communication. We briefly discuss these constructions; see [CG00b] for a more
detailed introduction.

The restriction operator, (νn:W )P , creates a new (unique) name n of type W
within a scope P . The new name can be used to name ambients and to operate on
ambients by name. The inactive process, 0, does nothing. Parallel composition
is denoted by a binary operator, P | Q, that is commutative and associative.
As in the pi calculus, replication is a technically convenient way of representing
iteration and recursion: the process !P denotes the unbounded replication of the
process P and is equivalent to P | !P .

An ambient is written M [P ], where M is the name of the ambient, and P is
the process running inside the ambient.

The process M.P executes an action regulated by the capability M , and
then continues as the process P . We consider three kinds of capabilities: one
for entering an ambient, one for exiting an ambient, and one for opening up an
ambient. (The latter requires special care in the type system.) Capabilities are
obtained from names; given a name n, the capability inn allows entry into n, the
capability out n allows exit out of n and the capability open n allows the opening
of n. Implicitly, the possession of one or all of these capabilities is insufficient
to reconstruct the original name n from which they were extracted. Capabilities
can also be composed into paths, M.M ′, with ε for the empty path.

Communication is asynchronous and local to an ambient. It is similar to
channel communication in the pi calculus, except that the channel has no name:
the surrounding ambient provides the context where the communication hap-
pens. The process 〈M1, . . . ,Mk〉 represents the output of a tuple of values, with
no continuation. The process (x1:W1, . . . , xk:Wk).P represents the input of a
tuple of values, whose components are bound to x1, . . . , xk, with continuation
P .

Communication is used to exchange both names and capabilities, which share
the same syntactic class M of messages. The first task of our type system is to
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distinguish the messages that are names from the messages that are capabilities,
so that each is guaranteed to be used in an appropriate context. In general, the
type system might distinguish other kinds of expressions, such as integer and
boolean expressions, but we do not include those in our basic calculus.

The process go N.M [P ] moves the ambient M [P ] as specified by the N capa-
bility, and has M [P ] as its continuation. It is called an objective move since the
ambient M [P ] is moved from the outside, while a movement caused by a process
N.P which runs inside an ambient is called a subjective move. In the untyped
calculus, we can define an objective move go N.M [P ] to be short for the process
(νk)k[N.M [out k.P ]] where k is not free in P . As we will show in Section 16.2,
a primitive typing rule for objective moves allows more refined typings than are
possible with only subjective moves.

Messages and Processes:

M ::= message
n name
in M can enter into M
out M can exit out of M
open M can open M

ε null
M.M ′ path

P,Q,R ::= process
(νn:W )P restriction
0 inactivity
P | Q composition
!P replication
M [P ] ambient
M.P action
(x1:W1, . . . , xk:Wk).P input action
〈M1, . . . ,Mk〉 output action
go N.M [P ] objective move

The following table displays the main reduction rules of the calculus (the full
set is presented in Section 14). The notation P{x1←M1} · · · {xk←Mk} in rule
(Red I/O) denotes the outcome of a capture-avoiding simultaneous substitution
of message Mi for each free occurrence of the corresponding name xi in the
process P , for i ∈ 1..k.

Reduction:

n[in m.P | Q] | m[R]→ m[n[P | Q] | R] (Red In)
m[n[out m.P | Q] | R]→ n[P | Q] | m[R] (Red Out)
open n.P | n[Q]→ P | Q (Red Open)
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〈M1, . . . ,Mk〉 | (x1:W1, . . . , xk:Wk).P →
P{x1←M1} · · · {xk←Mk}

(Red I/O)

go(in m.N).n[P ] | m[Q]→ m[go N.n[P ] | Q] (Red Go In)
m[go(out m.N).n[P ] | Q]→ go N.n[P ] | m[Q] (Red Go Out)

We will use the following syntactic conventions:

– parentheses may be used for precedence
– (νn:W )P | Q is read ((νn:W )P ) | Q
– !P | Q is read (!P ) | Q
– M.P | Q is read (M.P ) | Q
– (n1:W1, . . . , nk:Wk).P | Q is read ((n1:W1, . . . , nk:Wk).P ) | Q
– n[] 4= n[0]
– M

4= M.0 (where appropriate)

As an example, consider the following process:

a[p[out a.in b.〈c〉]] | b[open p.(x).x[]]

Intuitively, this example represents a packet named p being sent from a ma-
chine a to a machine b. The process p[out a.in b.〈c〉] represents the packet, as a
subambient of ambient a. The name of the packet ambient is p, and its interior
is the process out a.in b.〈c〉. This process consists of three sequential actions:
exercise the capability out a, exercise the capability in b, and then output the
name c. The effect of the two capabilities on the enclosing ambient p is to move
p out of a and into b (rules (Red Out), (Red In)), to reach the state:

a[] | b[p[〈c〉] | open p.(x).x[]]

In this state, the interior of a is empty but the interior of b consists of
two running processes, the subambient p[〈c〉] and the process open p.(x).x[].
This process is attempting to exercise the open p capability. Previously it was
blocked. Now that the p ambient is present, the capability’s effect is to dissolve
the ambient’s boundary; hence, the interior of b becomes the process 〈c〉 | (x).x[]
(Red Open). This is a composition of an output 〈c〉 with an input (x).x[]. The
input consumes the output, leaving c[] as the interior of b (Red I/O). Hence, the
final state of the whole example is a[] | b[c[]].

As an example of objective moves, consider the following variation of the
previous process:

a[go(out a.in b).p[〈c〉]] | b[open p.(x).x[]]

In this case, the ambient p[〈c〉] is moved from the outside, out of a and into
b (rules (Red Go Out), (Red Go In)), to reach the same state that was reached
in the previous version after the (Red Out), (Red In) subjective moves:

a[] | b[p[〈c〉] | open p.(x).x[]]
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See the original paper on the ambient calculus [CG00b] for many more ex-
amples, including locks, data structures such as booleans and numerals, Turing
Machines, routable packets and active networks, and encodings of the lambda
calculus and the pi calculus.

12 Types for the Ambient Calculus

Type systems are, today, a widely applied technique allowing programmers to de-
scribe the key properties of their code, and to have these properties mechanically
and efficiently checked. Mobile code makes types, and machine-checkable prop-
erties in general, useful for security reasons too, as has been demonstrated by
the checking performed on Java applets [LY97] and on other mobile code [GS01].

In standard languages, the key invariants that are maintained by type systems
have mainly to do with the contents of variables and with the interfaces of
functions, procedures, or methods. In the ambient calculus, the basic properties
of a piece of code are those related to its mobility, to the possibility of opening
an ambient and exposing its content, and to the type of data which may be
exchanged inside an ambient. To understand how groups arise in this context,
consider a typical static property we may want to express in a type system for
the ambient calculus; informally:

The ambient named n can enter the ambient named m.

This could be expressed as a typing n : CanEnter(m) stating that n is a member
of the collection CanEnter(m) of names that can enter m. However, this would
bring us straight into the domain of dependent types [CH88], since the type
CanEnter(m) depends on the name m. Instead, we introduce type-level groups
of names, G, H, and restate our property as:

The name m belongs to group G.
The ambient named n can enter any ambient of group G.

This idea leads to typings of the form: m : G, n : CanEnter(G) which are
akin to standard typings such as x : Int , y : Channel(Int).

To appreciate the relevance of groups in the description of distributed sys-
tems, consider a programmer coding a typical distributed system composed of
nodes and mobile threads moving from one node to another, and where threads
communicate by sending input and output packets through typed channels. In
these notes, we define a type system where a programmer can:

– define groups such as Node, Thread, Channel, and Packet, which match the
system structure;

– declare properties such as: this ambient is a Thread and it may only cross
ambients which are Nodes; this ambient is a Packet and can enter Channels;
this ambient is a Channel of type T , and it cannot move or be opened, but
it may open Packets containing data of type T ; this ambient is a Node and
it cannot move or be opened;
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– have the system statically verify all these properties.

Our groups are similar to sorts used in typed versions of the pi calculus
[Mil99], but we introduce an operation, (νG)P , for creating a new group G,
which can be used within the process P .

The binders for new groups, (νG), can float outward as long as this adjust-
ment, extrusion, does not introduce name clashes. Because of extrusion, group
binders do not impede the mobility of ambients that are enclosed in the initial
scope of fresh groups but later move away. On the other hand, even though ex-
trusion enlarges scopes, simple scoping restrictions in the typing rules prevent
names belonging to a fresh group from ever being received by a process which
has been defined outside the initial scope of the group.

Therefore, we obtain a flexible way of protecting the propagation of names.
This is to be contrasted with the situation in most untyped nominal calculi,
where names can (intentionally, accidentally, or maliciously) be extruded arbi-
trarily far, by the automatic and unrestricted application of extrusion rules, and
communicated to other parties.

13 Introduction to Exchange Types

An ambient is a place where processes can exchange messages and where other
ambients can enter and exit. We introduce here a type system which regulates
communication, while mobility will be tackled in the following sections. This
system generalizes the one presented in [CG99] by allowing the partitioning of
ambients into groups.

13.1 Topics of Conversation

Within an ambient, multiple processes can freely execute input and output ac-
tions. Since the messages are undirected, it is easily possible for a process to
utter a message that is not appropriate for some receiver. The main idea of the
exchange type system is to keep track of the topic of conversation that is per-
mitted within a given ambient, so that talkers and listeners can be certain of
exchanging appropriate messages.

The range of topics is described in the following table by message types,
W , and exchange types, T . The message types are G[T ], the type of names of
ambients which belong to the group G and that allow exchanges of type T ,
and Cap[T ], the type of capabilities that when used may cause the unleashing
of T exchanges (as a consequence of opening ambients that exchange T ). The
exchange types are Shh, the absence of exchanges, and W1 × . . . × Wk, the
exchange of a tuple of messages with elements of the respective message types.
For k = 0, the empty tuple type is called 1; it allows the exchange of empty
tuples, that is, it allows pure synchronization. The case k = 1 allows any message
type to be an exchange type.
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Types:

W ::= message type
G[T ] name in group G for ambients allowing T exchanges
Cap[T ] capability unleashing T exchanges

S, T ::= exchange type
Shh no exchange
W1 × · · · ×Wk tuple exchange (1 is the null product)

For example, in a scope where the Agent and Place groups have been defined,
we can express the following types:

– An ambient of the Agent group where no exchange is allowed (a quiet Agent):
Agent [Shh]

– A harmless capability: Cap[Shh]
– A Place where names of quiet Agents may be exchanged:

Place[Agent [Shh]]

– A Place where harmless capabilities may be exchanged:

Place[Cap[Shh]]

– A capability that may unleash the exchange of names of quiet Agents:

Cap[Agent [Shh]]

13.2 Intuitions

Before presenting the formal type rules (in Section 14), we discuss the intuitions
that lead to them.

Typing of Processes If a message M has message type W , then 〈M〉 is a
process that outputs (exchanges) W messages. Therefore, we will have a rule
stating that:

M : W implies 〈M〉 : W

If P is a process that may exchange W messages, then (x:W ).P is also a
process that may exchange W messages. Therefore:

P : W implies (x:W ).P : W

The process 0 exchanges nothing, so it naturally has exchange type Shh.
However, we may also consider 0 as a process that may exchange any type.
This is useful when we need to place 0 in a context that is already expected to
exchange some type:
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0 : T for any T

Alternatively, we may add a subtype relation among types, give 0 a minimal
type, and add a rule which allows processes with a type to appear where processes
with a supertype are required [Zim00]. We reject this approach here only because
we want to explore the ideas of group-based exchange and mobility types in the
simplest possible setting.

If P and Q are processes that may exchange T , then P | Q is also such a
process. Similarly for !P :

P : T,Q : T implies P | Q : T
P : T implies !P : T

Therefore, by keeping track of the exchange type of a process, T -inputs and
T -outputs are tracked so that they match correctly when placed in parallel.

Typing of Ambients An ambient n[P ] is a process that exchanges nothing at
the current level, so, like 0, it can be placed in parallel with any process, hence
we allow it to have any exchange type:

n[P ] : T for any T

There needs to be, however, a connection between the type of n and the type
of P . We give to each ambient name n a type G[T ], meaning that n belongs
to the group G and that only T exchanges are allowed in any ambient of that
name. Hence, a process P can be placed inside an ambient with that name n
only if the type of P is T :

n : G[T ], P : T implies n[P ] is well-formed (and can have any type)

By tagging the name of an ambient with the type of exchanges, we know
what kind of exchanges to expect in any ambient we enter. Moreover, we can
tell what happens when we open an ambient of a given name.

Typing of Open Tracking the type of I/O exchanges is not enough by itself.
We also need to worry about open, which might open an ambient and unleash
its exchanges inside the surrounding ambient.

If ambients named n permit T exchanges, then the capability open n may
unleash those T exchanges. We then say that openn has a capability type Cap[T ],
meaning that it may unleash T exchanges when used:

n : G[T ] implies open n : Cap[T ]

As a consequence, any process that uses a Cap[T ] must be a process that is al-
ready willing to participate in exchanges of type T , because further T exchanges
may be unleashed:

M : Cap[T ], P : T implies M.P : T
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Typing of In and Out The exercise of an in or out capability cannot cause any
exchange, hence such capabilities can be prepended to any process. Following the
same pattern we used with 0 and ambients, the silent nature of these capabilities
is formalized by allowing them to acquire any capability type:

in n : Cap[T ] for any T
out n : Cap[T ] for any T

Groups Groups are used in the exchange system to specify which kinds of
messages can be exchanged inside an ambient. We add a process construct to
create a new group G with scope P :

(νG)P

The type rule of this construct specifies that the process P should have an
exchange type T that does not contain G. Then, (νG)P can be given type T as
well. That is, G is never be allowed to “escape” into the type of (νG)P :

P : T, G does not occur in T implies (νG)P : T

14 Typed Ambient Calculus

We are now ready for a formal presentation of the typed calculus which has been
informally introduced in the previous section. We first present its syntax, then
its typing rules, and finally a subject reduction theorem, which states that types
are preserved during computation.

14.1 Types and Processes

We first recall the definition of the types of the exchange system.

Types:

W ::= message type
G[T ] name in group G for ambients allowing T exchanges
Cap[T ] capability unleashing T exchanges

S, T ::= exchange type
Shh no exchange
W1 × · · · ×Wk tuple exchange (1 is the null product)

Messages and processes are the same as in the untyped calculus of Section 11.

Messages and Processes:

M ::= message
n name
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in M can enter into M
out M can exit out of M
open M can open M

ε null
M.M ′ path

P,Q,R ::= process
(νG)P group creation
(νn:W )P restriction
0 inactivity
P | Q composition
!P replication
M [P ] ambient
M.P action
(x1:W1, . . . , xk:Wk).P input action
〈M1, . . . ,Mk〉 output action
go N.M [P ] objective move

We identify processes up to consistent renaming of bound names and groups.
In the processes (νG)P and (νn:W )P , the group G and the name n, respectively,
are bound, with scope P . In the process (x1:W1, . . . , xk:Wk).P , the names x1,
. . . , xk are bound, with scope P .

The following table defines the free names of processes and messages, and
the free groups of processes and types.

Free Names and Free Groups:

fn((νG)P ) 4= fn(P ) fn(n) 4= {n}
fn((νn:W )P ) 4= fn(P )− {n} fn(in M) 4= fn(M)
fn(0) 4= ∅ fn(out M) 4= fn(M)
fn(P | Q) 4= fn(P ) ∪ fn(Q) fn(open M) 4= fn(M)
fn(!P ) 4= fn(P ) fn(ε) 4= ∅
fn(M [P ]) 4= fn(M) ∪ fn(P ) fn(M.N) 4= fn(M) ∪ fn(N)
fn(M.P ) 4= fn(M) ∪ fn(P )
fn((x1:W1, . . . , xk:Wk).P ) 4= fn(P )− {x1, . . . , xk}
fn(〈M1, . . . ,Mk〉)

4= fn(M1) ∪ · · · ∪ fn(Mk)
fn(go N.M [P ]) 4= fn(N) ∪ fn(M) ∪ fn(P )

fg((νG)P ) 4= fg(P )− {G} fg(G[T ]) 4= {G} ∪ fg(T )
fg((νn:W )P ) 4= fg(W ) ∪ fg(P ) fg(Cap[T ]) 4= fg(T )
fg(0) 4= ∅ fg(Shh) 4= ∅
fg(P | Q) 4= fg(P ) ∪ fg(Q) fg(W1 × · · · ×Wk) 4=
fg(!P ) 4= fg(P ) fg(W1) ∪ · · · ∪ fg(Wk)
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fg(M [P ]) 4= fg(P )
fg(M.P ) 4= fg(P )
fg((x1:W1, . . . , xk:Wk).P ) 4= fg(W1) ∪ · · · ∪ fg(Wk) ∪ fg(P )
fg(〈M1, . . . ,Mk〉)

4= ∅
fg(go N.M [P ]) 4= fg(P )

The following tables describe the operational semantics of the calculus. The
type annotations present in the syntax do not play a role in reduction; they are
simply carried along by the reductions.

Processes are identified up to an equivalence relation, ≡, called structural
congruence. As in the pi calculus, this relation provides a way of rearranging
processes so that interacting parts can be brought together. Then, a reduction
relation,→, acts on the interacting parts to produce computation steps. The core
of the calculus is given by the reduction rules (Red In), (Red Out), (Red Go In),
(Red Go Out), and (Red Open), for mobility, and (Red I/O), for communication.

The rules of structural congruence are similar to the rules for the pi calculus.
The rules (Struct GRes . . . ) describe the extrusion behaviour of the (νG) binders.
Note that (νG) extrudes exactly as (νn) does, hence it does not pose any dynamic
restriction on the movement of ambients or messages.

Reduction:

n[in m.P | Q] | m[R]→ m[n[P | Q] | R] (Red In)
m[n[out m.P | Q] | R]→ n[P | Q] | m[R] (Red Out)
open n.P | n[Q]→ P | Q (Red Open)
〈M1, . . . ,Mk〉 | (x1:W1, . . . , xk:Wk).P →

P{x1←M1} · · · {xk←Mk}
(Red I/O)

go(in m.N).n[P ] | m[Q]→ m[go N.n[P ] | Q] (Red Go In)
m[go(out m.N).n[P ] | Q]→ go N.n[P ] | m[Q] (Red Go Out)

P → Q⇒ P | R→ Q | R (Red Par)
P → Q⇒ (νn:W )P → (νn:W )Q (Red Res)
P → Q⇒ (νG)P → (νG)Q (Red GRes)
P → Q⇒ n[P ]→ n[Q] (Red Amb)
P ′ ≡ P, P → Q,Q ≡ Q′ ⇒ P ′ → Q′ (Red ≡)

Structural Congruence:

P ≡ P (Struct Refl)
Q ≡ P ⇒ P ≡ Q (Struct Symm)
P ≡ Q,Q ≡ R⇒ P ≡ R (Struct Trans)

P ≡ Q⇒ (νn:W )P ≡ (νn:W )Q (Struct Res)
P ≡ Q⇒ (νG)P ≡ (νG)Q (Struct GRes)
P ≡ Q⇒ P | R ≡ Q | R (Struct Par)
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P ≡ Q⇒ !P ≡ !Q (Struct Repl)
P ≡ Q⇒M [P ] ≡M [Q] (Struct Amb)
P ≡ Q⇒M.P ≡M.Q (Struct Action)
P ≡ Q⇒

(x1:W1, . . . , xk:Wk).P ≡ (x1:W1, . . . , xk:Wk).Q
(Struct Input)

P ≡ Q⇒ go N.M [P ] ≡ go N.M [Q] (Struct Go)

P | Q ≡ Q | P (Struct Par Comm)
(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)
!P ≡ P | !P (Struct Repl Par)

n1 6= n2 ⇒
(νn1:W1)(νn2:W2)P ≡ (νn2:W2)(νn1:W1)P

(Struct Res Res)

n /∈ fn(P )⇒ (νn:W )(P | Q) ≡ P | (νn:W )Q (Struct Res Par)
n 6= m⇒ (νn:W )m[P ] ≡ m[(νn:W )P ] (Struct Res Amb)

(νG1)(νG2)P ≡ (νG2)(νG1)P (Struct GRes GRes)
G /∈ fg(W )⇒ (νG)(νn:W )P ≡ (νn:W )(νG)P (Struct GRes Res)
G /∈ fg(P )⇒ (νG)(P | Q) ≡ P | (νG)Q (Struct GRes Par)
(νG)m[P ] ≡ m[(νG)P ] (Struct GRes Amb)

P | 0 ≡ P (Struct Zero Par)
(νn:W )0 ≡ 0 (Struct Zero Res)
(νG)0 ≡ 0 (Struct Zero GRes)
!0 ≡ 0 (Struct Zero Repl)

ε.P ≡ P (Struct ε)
(M.M ′).P ≡M.M ′.P (Struct .)
go ε.M [P ] ≡M [P ] (Struct Go ε)

14.2 Typing Rules

In the tables below, we introduce typing environments, E, the five basic judg-
ments, and the typing rules.

Environments, E, and the Domain, dom(E), of an Environment:

E ::= ∅ | E,G | E,n:W environment

dom(∅) 4= ∅
dom(E,G) 4= dom(E) ∪ {G}
dom(E,n:W ) 4= dom(E) ∪ {n}

Judgments:

E ` � good environment
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E `W good message type W

E ` T good exchange type T

E `M : W good message M of message type W

E ` P : T good process P with exchange type T

Good Environments:

(Env ∅)

∅ ` �

(Env n)
E `W n /∈ dom(E)

E,n:W ` �

(Env G)
E ` � G /∈ dom(E)

E,G ` �

Good Types:

(Type Amb)
G ∈ dom(E) E ` T

E ` G[T ]

(Type Cap)
E ` T

E ` Cap[T ]

(Type Shh)
E ` �

E ` Shh

(Type Prod)
E `W1 · · · E `Wk

E `W1 × · · · ×Wk

Good Messages:

(Exp n)
E′, n:W,E′′ ` �

E′, n:W,E′′ ` n : W

(Exp .)
E `M : Cap[T ] E `M ′ : Cap[T ]

E `M.M ′ : Cap[T ]

(Exp ε)
E ` Cap[T ]

E ` ε : Cap[T ]

(Exp In)
E ` n : G[S] E ` T

E ` in n : Cap[T ]

(Exp Out)
E ` n : G[S] E ` T

E ` out n : Cap[T ]

(Exp Open)
E ` n : G[T ]

E ` open n : Cap[T ]

Good Processes:

(Proc Action)
E `M : Cap[T ] E ` P : T

E `M.P : T

(Proc Amb)
E `M : G[S] E ` P : S E ` T

E `M [P ] : T

(Proc Res)
E,n:G[S] ` P : T

E ` (νn:G[S])P : T

(Proc GRes)
E,G ` P : T G /∈ fg(T )

E ` (νG)P : T

(Proc Zero)
E ` T

E ` 0 : T

(Proc Par)
E ` P : T E ` Q : T

E ` P | Q : T

(Proc Repl)
E ` P : T

E ` !P : T
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(Proc Input)
E,n1:W1, . . . , nk:Wk ` P : W1 × · · · ×Wk

E ` (n1:W1, . . . , nk:Wk).P : W1 × · · · ×Wk

(Proc Output)
E `M1 : W1 · · · E `Mk : Wk

E ` 〈M1, . . . ,Mk〉 : W1 × · · · ×Wk

(Proc Go)
E ` N : Cap[S′] E `M : G[S] E ` P : S E ` T

E ` go N.M [P ] : T

14.3 Subject Reduction

We obtain a standard subject reduction result. A subtle point, though, is the
need to account for the appearance of new groups (G1, . . . , Gk, below) during
reduction. This is because reduction is defined up to structural congruence, and
structural congruence does not preserve the set of free groups of a process. The
culprit is the rule (νn:W )0 ≡ 0, in which groups free in W are not free in 0.

Lemma 1 (Subject Congruence). If E ` P : T and P ≡ Q then there are
G1, . . . , Gk such that G1, . . . , Gk, E ` Q : T .

Theorem 1 (Subject Reduction). If E ` P : T and P → Q then there are
G1, . . . , Gk such that G1, . . . , Gk, E ` Q : T .

Subject reduction specifies that, if P is well-typed, it will only reduce to
well-typed terms. This fact has some practical consequences:

– P will never reduce to meaningless processes allowed by the syntax like
(in n)[P ];

– no process deriving from P will contain an ambient where a process attempts
an input or output operation which does not match the ambient type.

Subject reduction has also interesting and subtle connections with secrecy of
names. Consider a well-typed process ((νG).P ) | O, where O is a type-checked
“opponent”, and a name n is declared inside P with a type G[T ]. Although
(νG) can be extruded arbitrarily far, according to the extrusion rules, no process
which derives from the opponent O will ever be able to read n through an input
(x:W ).Q. Any process 〈n〉 | (x:W ).Q which derives from ((νG).P ) | O is well-
typed, hence W = G[T ], but the opponent was not, by assumption, in the initial
scope of G, and therefore cannot even mention the type G[T ]. Therefore, we
can guarantee that names of group G can never be communicated to processes
outside of the initial scope of G, simply because those processes cannot name G
to receive the message.

This situation is in sharp contrast with ordinary name restriction, where a
name that is initially held secret (e.g., a key) may accidentally be given away
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and misused (e.g., to decrypt current or old messages). This is because scoping of
names can be extruded too far, inadvertently. Scoping of groups can be extruded
as well, but still offers protection against accidental or even malicious leakage.

Of course, we would have even stronger protection if we did not allow (νG)
binders to extrude at all. But this would be too rigid. Since (νG) binders can be
extruded, they do not impede the mobility of ambients that carry secrets. They
just prevent those ambients from giving the secrets away. Consider the following
example of travelling agents sharing secrets.

a[(νG)(νk′ : G[Shh])(νk′′ : G[Shh])(
k′[out a.in b.out b.in c] |
k′′[out a.in c.in k′])

] | b[] | c[]

Within an ambient a, two agents share a secret group G and two names k′

and k′′ belonging to that group. The two agents adopt the names k′ and k′′

as their respective names, knowing that those names cannot be leaked even by
themselves. This way, as they travel, nobody else can interfere with them. If
somebody interferes with them, or demonstrates knowledge of the names k′ or
k′′, the agents know that the other party must be (a descendant of) the other
agent. In this example, the first agent travels to ambient b and then to c, and
the second agent goes to ambient c directly. The scope extrusion rules for groups
and names allow this to happen. Inside c, out of the initial scope of (νG), the
second agent then interacts with the first by entering it. It can do so because it
still holds the shared secret k′.

We omit the proof that structural congruence preserves typing, but we com-
ment here on the crucial case: the preservation of typing by the extrusion rule
(Struct GRes Amb). For a well-typed P , (νG)P is well-typed if and only if P
does not communicate a tuple which names G in its type (rule (Proc GRes)):
(νG) must not “see” G-typed names communicated at its own level. This intu-
ition suggests that, referring to the following table, P ′ should be typeable ((νG)
cannot “see” the output 〈n〉) while P ′′ should be not (〈n〉 is at the same level
as (νG)). However, the two processes are equivalent, modulo extrusion of (νG)
(rule (Struct GRes Amb)):

P ′ = (νG)m[(νn:G[Shh])〈n〉]
P ′′ = m[(νG)(νn:G[Shh])〈n〉]

We go through the example step by step, to solve the apparent paradox. First
consider the term

(νG)(νn:G[Shh])〈n〉

This term cannot be typed, because G attempts to escape the scope of
(νG)(νn:G[Shh]) as the type of the message n. An attempted typing derivation
fails at the last step below:
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. . .
⇒ G, n:G[Shh] ` n : G[Shh]
⇒ G, n:G[Shh] ` 〈n〉 : G[Shh]
⇒ G ` (νn:G[Shh])〈n〉 : G[Shh]
6⇒ ` (νG)(νn:G[Shh])〈n〉 : G[Shh] (because G ∈ fn(G[Shh]))

Similarly, the term

(νm:W )m[(νG)(νn:G[Shh])〈n〉]

cannot be typed, because it contains the previous untypeable term. But now
consider the following term, which is equivalent to the one above up to structural
congruence, by extrusion of (νG) across an ambient boundary:

(νm:W )(νG)m[(νn:G[Shh])〈n〉]

This term might appear typeable (contradicting the subject congruence prop-
erty) because the message 〈n〉:G[Shh] is confined to the ambient m, and m[. . .]
can be given an arbitrary type, e.g., Shh, which does not contain G. Therefore
(νG) would not “see” any occurrence of G escaping from its scope. However, con-
sider the type of m in this term. It must have the form H[T ], where H is some
group, and T is the type of messages exchanged inside m. But that’s G[Shh]. So
we would have

(νm:H[G[Shh]])(νG)m[(νn:G[Shh])〈n〉]

which is not typeable because the first occurrence of G is out of scope.
This example tells us why (νG) intrusion (floating inwards) into ambients

is not going to break good typing: (νG) cannot enter the scope of the (νm:W )
restriction which creates the name m of an ambient where messages with a G-
named type are exchanged. This prevents (νG) from entering such ambients.

Indeed, the following variation (not equivalent to the previous one) is ty-
peable, but (νG) cannot intrude any more:

(νG)(νm:H[G[Shh]])m[(νn:G[Shh])〈n〉]

15 Opening Control

Ambient opening is a prerequisite for any communication to happen between
processes which did not originate in the same ambient. On the other hand,
opening is one of the most delicate operations in the ambient calculus, since the
contents of the guest spill inside the host, with two different classes of possible
consequences:

– the content of the guest acquires the possibility of performing communica-
tions inside the hosts, and of moving the host around;
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– the host is now able to examine the content of the guest, mainly in terms of
receiving messages sent by the processes inside the guest, and of opening its
subambients.

For these reasons, a type system for ambients should support a careful control
of the usage of the open capability.

15.1 The System

In this section, we enrich the ambient types, G[T ], and the capability types,
Cap[T ], of the previous type system to control usage of the open capability.

To control the opening of ambients, we formalize the constraint that the name
of any ambient opened by a process is in one of the groups G1, . . . , Gk, but in no
others. To do so, we add an attribute ◦{G1, . . . , Gk} to ambient types, which now
take the form G[◦{G1, . . . , Gk}, T ]. A name of this type is in group G, and names
ambients within which processes may exchange messages of type T and may only
open ambients in the groups G1, . . . , Gk. We need to add the same attribute to
capability types, which now take the form Cap[◦{G1, . . . , Gk}, T ]. Exercising a
capability of this type may unleash exchanges of type T and openings of ambi-
ents in groups G1, . . . , Gk. The typing judgment for processes acquires the form
E ` P : ◦{G1, . . . , Gk}, T . The pair ◦{G1, . . . , Gk}, T constrains both the open-
ing effects (what ambients the process opens) and the exchange effects (what
messages the process exchanges). We call such a pair an effect, and introduce the
metavariable F to range over effects. It is also convenient to introduce metavari-
ables G, H to range over finite sets of groups. The following tables summarize
these metavariable conventions and our enhanced syntax for types:

Group Sets:

G,H ::= {G1, . . . , Gk} finite set of groups

Types:

W ::= message type
G[F ] name in group G for ambients which contain

processes with F effects
Cap[F ] capability (unleashes F effects)

F ::= effect
◦H, T may open H, may exchange T

S, T ::= exchange type
Shh no exchange
W1 × · · · ×Wk tuple exchange

The definition of free groups is the same as in Section 14 except that we
redefine fg(W ) by the equations fg(G[F ]) = {G}∪fg(F ) and fg(Cap[F ]) = fg(F ),
and we define fg(F ) = H ∪ fg(T ) where F = ◦H, T .
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The following tables define the type system in detail. There are five basic
judgments as before. They have the same format except that the judgment E `
F , meaning that the effect F is good given environment E, replaces the previous
judgment E ` T . We omit the three rules for deriving good environments; they
are exactly as in the previous section. There are two main differences between the
other rules below and the rules of the previous section. First, effects, F , replace
exchange types, T , throughout. Second, in the rule (Exp Open), the condition
G ∈ H constrains the opening effect H of a capability open n to include the
group G, the group of the name n.

Judgments:

E ` � good environment
E `W good message type W

E ` F good effect F

E `M : W good message M of message type W

E ` P : F good process P with F effects

Good Types:

(Type Amb)
G ∈ dom(E) E ` F

E ` G[F ]

(Type Cap)
E ` F

E ` Cap[F ]

(Effect Shh)
H ⊆ dom(E) E ` �

E ` ◦H,Shh

(Effect Prod)
H ⊆ dom(E) E `W1 · · · E `Wk

E ` ◦H,W1 × · · · ×Wk

Good Messages:

(Exp n)
E′, n:W,E′′ ` �

E′, n:W,E′′ ` n : W

(Exp ε)
E ` Cap[F ]

E ` ε : Cap[F ]

(Exp .)
E `M : Cap[F ] E `M ′ : Cap[F ]

E `M.M ′ : Cap[F ]

(Exp In)
E ` n : G[F ] E ` ◦H, T

E ` in n : Cap[◦H, T ]

(Exp Out)
E ` n : G[F ] E ` ◦H, T

E ` out n : Cap[◦H, T ]

(Exp Open)
E ` n : G[◦H, T ] G ∈ H
E ` open n : Cap[◦H, T ]

Good Processes:

(Proc Action)
E `M : Cap[F ] E ` P : F

E `M.P : F

(Proc Amb)
E `M : G[F ] E ` P : F E ` F ′

E `M [P ] : F ′
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(Proc Res)
E,n:G[F ] ` P : F ′

E ` (νn:G[F ])P : F ′

(Proc GRes)
E,G ` P : F G /∈ fg(F )

E ` (νG)P : F

(Proc Zero)
E ` F

E ` 0 : F

(Proc Par)
E ` P : F E ` Q : F

E ` P | Q : F

(Proc Repl)
E ` P : F

E ` !P : F

(Proc Input)
E,n1:W1, . . . , nk:Wk ` P : ◦H,W1 × · · · ×Wk

E ` (n1:W1, . . . , nk:Wk).P : ◦H,W1 × · · · ×Wk

(Proc Output)
E `M1 : W1 · · · E `Mk : Wk H ⊆ dom(E)

E ` 〈M1, . . . ,Mk〉 : ◦H,W1 × · · · ×Wk

(Proc Go)
E ` N : Cap[◦H, T ] E `M : G[F ] E ` P : F E ` F ′

E ` go N.M [P ] : F ′

15.2 Subject Reduction

We obtain a subject reduction result.

Theorem 2. If E ` P : F and P → Q then there are G1, . . . , Gk such that
G1, . . . , Gk, E ` Q : F .

Here is a simple example of a typing derivable in this system:

G, n:G[◦{G},Shh] ` n[0] | open n.0 : ◦{G},Shh

This asserts that the whole process n[0] | open n.0 is well-typed and opens only
ambients in the group G.

On the other hand, one might expect the following variant to be derivable,
but it is not:

G, n:G[◦{},Shh] ` n[0] | open n.0 : ◦{G},Shh

This is because the typing rule (Exp Open) requires the effect unleashed by the
open n capability to be the same as the effect contained within the ambient n.
But the opening effect ◦{} specified by the type G[◦{},Shh] of n cannot be the
same as the effect unleashed by open n, because (Exp Open) also requires the
latter to at least include the group G of n.

This feature of (Exp Open) has a positive side-effect: the type G[◦G, T ] of
an ambient name n not only tells which opening effects may happen inside the
ambient, but also tells whether n may be opened from outside: it is openable
only if G ∈ G, since this is the only case when openn.0 | n[P ] may be well-typed.
Hence, the presence of G in the set G may either mean that n is meant to be
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an ambient within which other ambients in group G may be opened, or that it
is meant to be an openable ambient.

More generally, because of the shape of the open rule, the opening effects in
the ambient type of n not only record the openings that may take place inside
the ambient, but also the opening effects of any ambient m which is going to
open n, and, recursively, of any ambient which is going to open m as well. A
similar phenomenon occurs with exchange types and with the subjective-crossing
effects of the next section.

While this turns out to be unproblematic for the examples we consider in
these notes, one may prefer to avoid this “inward propagation” of effects by
replacing (Exp Open) with the following rule:

E ` n : G[◦H, T ]
E ` open n : Cap[◦({G} ∪H), T ]

With this rule, we could derive that the example process above, n[0] |
open n.0, has effect ◦{G},Shh, with no need to attribute this effect to pro-
cesses running inside n itself, but unfortunately, subject reduction fails. To see
this, consider the process open n | n[open m], which can be assigned the effect
◦{G, H},Shh:

G, H,m:G[◦{},Shh], n:H[◦{G},Shh] ` open n |n[open m] : ◦{G, H},Shh

The process reduces in one step to open m, but we cannot derive the following:

G, H,m:G[◦{},Shh], n:H[◦{G},Shh] ` open m : ◦{G, H},Shh

To obtain a subject reduction property in the presence of the rule displayed
above, we should introduce a notion of subtyping, such that if G ⊆ H and a pro-
cess has type ◦G, T , then the process has type ◦H, T too. This would complicate
the type system, as shown in [Zim00]. Moreover, we would lose the indirect way
of declaring ambient openability, so we prefer to stick to the basic approach.

16 Crossing Control

This section presents the third and final type system of these notes. We obtain
it by enriching the type system of the previous section with attributes to control
the mobility of ambients.

16.1 The System

Movement operators enable an ambient n to cross the boundary of another
ambient m either by entering it via an inm capability or by exiting it via an outm
capability. In the type system of this section, the type of n lists those groups that
may be crossed; the ambient n may only cross the boundary of another ambient
m if the group of m is included in this list. In our typed calculus, there are two
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kinds of movement, subjective moves and objective moves, for reasons explained
in Section 16.2. Therefore, we separately list those groups that may be crossed
by objective moves and those groups that may be crossed by subjective moves.

We add new attributes to the syntax of ambient types, effects, and capability
types. An ambient type acquires the form G yG′[yG,◦H, T ]. An ambient of this
type is in group G, may cross ambients in groups G′ by objective moves, may
cross ambients in groups G by subjective moves, may open ambients in groups
H, and may contain exchanges of type T . An effect, F , of a process is now of the
form yG,◦H, T . It asserts that the process may exercise in and out capabilities
to accomplish subjective moves across ambients in groups G, that the process
may open ambients in groups H, and that the process may exchange messages
of type T . Finally, a capability type retains the form Cap[F ], but with the new
interpretation of F . Exercising a capability of this type may unleash F effects.

Types:

W ::= message type
G yG[F ] name in group G for ambients which cross G

objectively and contain processes with F effects
Cap[F ] capability (unleashes F effects)

F ::= effect
yG,◦H, T crosses G, opens H, exchanges T

S, T ::= exchange type
Shh no exchange
W1 × · · · ×Wk tuple exchange

The definition of free groups is the same as in Section 14 except that we rede-
fine fg(W ) by the equations fg(G yG[F ]) = {G} ∪G ∪ fg(F ) and fg(Cap[F ]) =
fg(F ), and we define fg(F ) = G ∪H ∪ fg(T ) where F = yG,◦H, T .

The format of the five judgments making up the system is the same as in
Section 15. We omit the three rules defining good environments; they are as
in Section 14. There are two main changes to the previous system to control
mobility. First, (Exp In) and (Exp Out) change to assign a type Cap[yG,◦H, T ]
to capabilities in n and out n only if G ∈ G where G is the group of n. Second,
(Proc Go) changes to allow an objective move of an ambient of type G yG′[F ]
by a capability of type Cap[yG,◦H, T ] only if G = G′.

Good Types:

(Type Amb)
G ∈ dom(E) G ⊆ dom(E) E ` F

E ` G yG[F ]

(Type Cap)
E ` F

E ` Cap[F ]

(Effect Shh)
G ⊆ dom(E) H ⊆ dom(E) E ` �

E ` yG,◦H,Shh
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(Effect Prod)
G ⊆ dom(E) H ⊆ dom(E) E `W1 · · · E `Wk

E ` yG,◦H,W1 × · · · ×Wk

Good Messages:

(Exp n)
E′, n:W,E′′ ` �

E′, n:W,E′′ ` n : W

(Exp ε)
E ` Cap[F ]

E ` ε : Cap[F ]

(Exp .)
E `M : Cap[F ] E `M ′ : Cap[F ]

E `M.M ′ : Cap[F ]

(Exp In)
E ` n : G yG′[F ] E ` yG,◦H, T G ∈ G

E ` in n : Cap[yG,◦H, T ]

(Exp Out)
E ` n : G yG′[F ] E ` yG,◦H, T G ∈ G

E ` out n : Cap[yG,◦H, T ]

(Exp Open)
E ` n : G yG′[yG,◦H, T ] G ∈ H

E ` open n : Cap[yG,◦H, T ]

Good Processes:

(Proc Action)
E `M : Cap[F ] E ` P : F

E `M.P : F

(Proc Amb)
E `M : G yG[F ] E ` P : F E ` F ′

E `M [P ] : F ′

(Proc Res)
E,n:G yG[F ] ` P : F ′

E ` (νn:G yG[F ])P : F ′

(Proc GRes)
E,G ` P : F G /∈ fg(F )

E ` (νG)P : F

(Proc Zero)
E ` F

E ` 0 : F

(Proc Par)
E ` P : F E ` Q : F

E ` P | Q : F

(Proc Repl)
E ` P : F

E ` !P : F

(Proc Input)
E,n1:W1, . . . , nk:Wk ` P : yG,◦H,W1 × · · · ×Wk

E ` (n1:W1, . . . , nk:Wk).P : yG,◦H,W1 × · · · ×Wk
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(Proc Output)
E `M1 : W1 · · · E `Mk : Wk G ⊆ dom(E) H ⊆ dom(E)

E ` 〈M1, . . . ,Mk〉 : yG,◦H,W1 × · · · ×Wk

(Proc Go)
E ` N : Cap[yG,◦H, T ] E `M : G yG[F ] E ` P : F E ` F ′

E ` go N.M [P ] : F ′

Theorem 3. If E ` P : F and P → Q then there are G1, . . . , Gk such that
G1, . . . , Gk, E ` Q : F .

16.2 The Need for Objective Moves

We can now show how primitive typing rules for objective moves allow us to
assign better types in some crucial situations. Recall the untyped example from
Section 11. Suppose we have two groups Ch and Pk (for channels and packets).
Let W be any well-formed type (where Ch and Pk may appear), and set P to
be the example process:

P = a[p[out a.in b.〈c〉]] | b[open p.(x:W ).x[]]

Let
E = Ch,Pk ,

a:Ch y{}[y{},◦{},Shh],
b:Ch y{}[y{Ch},◦{Pk},W ],
c:W,
p:Pk y{}[y{Ch},◦{Pk},W ]

and we can derive the typings:

E ` out a.in b.〈c〉 : y{Ch},◦{Pk},W
E ` open p.(x:W ).x[] : y{Ch},◦{Pk},W
E ` P : y{},◦{},Shh

From the typing a : Ch y{}[y{},◦{},Shh], we can tell that a is an immo-
bile ambient in which nothing is exchanged and that cannot be opened. From
the typings p:Pk y{}[y{Ch},◦{Pk},W ], b:Ch y{}[y{Ch},◦{Pk},W ], we can tell
that the ambients b and p cross only Ch ambients, open only Pk ambients, and
contain W exchanges; the typing of p also tells us it can be opened. This is not
fully satisfactory, since, if b were meant to be immobile, we would like to express
this immobility invariant in its type. However, since b opens a subjectively mo-
bile ambient, then b must be typed as if it were subjectively mobile itself. The
problem is quite general, as it applies to any immobile ambient wishing to open
a subjectively mobile one.

This problem can be solved by replacing the subjective moves by objective
moves, since objective moves are less expressive than subjective moves, but they
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cannot be inherited by opening another ambient. Let Q be the example process
with objective instead of subjective moves:

Q = a[go(out a.in b).p[〈c〉]] | b[open p.(x:W ).x[]]

Let

E = Ch,Pk ,
a:Ch y{}[y{},◦{},Shh],
b:Ch y{}[y{},◦{Pk},W ],
c:W,
p:Pk y{Ch}[y{},◦{Pk},W ]

and we can derive:

E ` out a.in b : Cap[y{Ch},◦{},Shh]
E ` go(out a.in b).p[〈c〉] : y{},◦{},Shh
E ` open p.(x:W ).x[] : y{},◦{Pk},W
E ` Q : y{},◦{},Shh

The typings of a and c are unchanged, but the new typings of p and b are
more informative. We can tell from the typing p:Pk y{Ch}[y{},◦{Pk},W ] that
movement of p is due to objective rather than subjective moves. Moreover, as
desired, we can tell from the typing b:Ch y{}[y{},◦{Pk},W ] that the ambient b
is immobile.

This example suggests that in some situations objective moves lead to more
informative typings than subjective moves. Still, subjective moves are essential
for moving ambients containing running processes. An extended example in the
next section illustrates the type system of this section; the treatment of thread
mobility makes essential use of subjective moves.

17 Encoding a Distributed Language

In this section, we consider a fragment of a typed, distributed language in which
mobile threads can migrate between immobile network nodes. We obtain a se-
mantics for this form of thread mobility via a translation into the ambient cal-
culus. In the translation, ambients model both threads and nodes. The encoding
can be typed in all three of the systems presented in these notes; for the sake of
brevity we describe the encoding only for the full system of Section 16. The en-
coding illustrates how groups can be used to partition the set of ambient names
according to their intended usage, and how opening and crossing control allows
the programmer to state interesting invariants. In particular, the typing of the
translation guarantees that an ambient modelling a node moves neither subjec-
tively nor objectively. On the other hand, an ambient modelling a thread is free
to move subjectively, but is guaranteed not to move objectively.
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17.1 The Distributed Language

The computational model is that there is an unstructured collection of named
network nodes, each of which hosts a collection of named communication chan-
nels and anonymous threads. This is similar to the computational models un-
derlying various distributed variants of the pi calculus, such as those proposed
by Amadio and Prasad [AP94], Riely and Hennessy [RH98], and Sewell [Sew98].
In another paper [CG99], we show how to mimic Telescript’s computational
model by translation into the ambient calculus. In the language fragment we
describe here, communication is based on named communication channels (as
in the pi calculus) rather than by direct agent-to-agent communication (as in
our stripped down version of Telescript). As in our previous paper, we focus on
language constructs for mobility, synchronization, and communication. We omit
standard constructs for data processing and control flow. They could easily be
added.

To introduce the syntax of our language fragment, here is a simple example:

node a [channel ac | thread [ac〈b, bc〉]] | node b [channel bc] |
node c [thread [go a.ac(x:Node, y:Ch[Node]).go x.y〈a〉]

This program describes a network consisting of three network nodes, named
a, b, and c. Node a hosts a channel ac and a thread running the code ac〈b, bc〉,
which simply sends the pair 〈b, bc〉 on the channel ac. Node b hosts a channel bc.
Finally, node c hosts a single thread, running the code:

go a.ac(x:Node, y:Ch[Node]).go x.y〈a〉

The effect of this is to move the thread from node c to node a. There it awaits a
message sent on the communication channel ac. We may assume that it receives
the message 〈b, bc〉 being sent by the thread already at a. (If there were another
thread at node a sending another message, the receiver thread would end up
receiving one or other of the messages.) The thread then migrates to node b,
where it transmits a message a on the channel bc.

Messages on communication channels are assigned types, ranged over by Ty .
The type Node is the type of names of network nodes. The type Ch[Ty1, . . . ,Tyk]
is the type of a polyadic communication channel. The messages communicated
on such a channel are k-tuples whose components have types Ty1, . . . , Tyk. In
the setting of the example above, channel ac has type Ch[Node,Ch[Node]], and
channel bc has type Ch[Node].

Next, we describe the formal grammar of our language fragment. A network,
Net , is a collection of nodes, built up using composition Net | Net and restric-
tions (νn:Ty)Net . A crowd, Cro, is the group of threads and channels hosted by
a node. Like networks, crowds are built up using composition Cro | Cro and re-
striction (νn:Ty)Cro. A thread, Th, is a mobile thread of control. As well as the
constructs illustrated above, a thread may include the constructs fork(Cro).Th
and spawn n [Cro].Th. The first forks a new crowd Cro inside the current node,
and continues with Th. The second spawns a new node node n [Cro] outside the
current node, at the network level, and continues with Th.
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A Fragment of a Typed, Distributed Programming Language:

Ty ::= type
Node name of a node
Ch[Ty1, . . . ,Tyk] name of a channel

Net ::= network
(νn:Ty)Net restriction
Net | Net network composition
node n [Cro] node

Cro ::= crowd of channels and threads
(νn:Ty)Cro restriction
Cro | Cro crowd composition
channel c channel
thread [Th] thread

Th ::= thread
go n.Th migration
c〈n1, . . . , nk〉 output to a channel
c(x1:Ty1, . . . , xk:Tyk).Th input from a channel
fork(Cro).Th fork a crowd
spawn n [Cro].Th spawn a new node

In the phrases (νn:Ty)Net and (νn:Ty)Cro, the name n is bound; its scope
is Net and Cro, respectively. In the phrase c(x1:Ty1, . . . , xk:Tyk).Th, the names
x1, . . . , xk are bound; their scope is the phrase Th.

The type system of our language controls the typing of messages on commu-
nication channels, much as in previous schemes for the pi calculus [Mil99]. We
formalize the type system using five judgments, defined by the following rules.

Judgments:

E ` � good environment
E ` n : Ty name n has type Ty
E ` Net good network
E ` Cro good crowd
E ` Th good thread

Typing Rules:

∅ ` �
E ` � n /∈ dom(E)

E,n:Ty ` �
E,n:Ty , E′ ` �

E,n:Ty , E′ ` n : Ty
E,n:Ty ` Net

E ` (νn:Ty)Net

E ` Net E ` Net ′

E ` Net | Net ′
E ` n : Node E ` Cro

E ` node n [Cro]
E,n:Ty ` Cro

E ` (νn:Ty)Cro

E ` Cro E ` Cro′

E ` Cro | Cro′
E ` c : Ch[Ty1, . . . ,Tyk]

E ` channel c

E ` Th
E ` thread [Th]
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E ` n : Node E ` Th
E ` go n.Th

E ` c : Ch[Ty1, . . . ,Tyk] E ` ni : Ty i ∀i ∈ 1..k

E ` c〈n1, . . . , nk〉

E ` c : Ch[Ty1, . . . ,Tyk] E, x1:Ty1, . . . , xk:Tyk ` Th
E ` c(x1:Ty1, . . . , xk:Tyk).Th

E ` Cro E ` Th
E ` fork(Cro).Th

E ` n : Node E ` Cro E ` Th
E ` spawn n [Cro].Th

17.2 Typed Translation to the Ambient Calculus

In this section, we translate our distributed language to the typed ambient cal-
culus of Section 16.

The basic idea of the translation is that ambients model nodes, channels,
and threads. For each channel, there is a name for a buffer ambient, of group
Chb, and there is a second name, of group Chp, for packets exchanged within the
channel buffer. Similarly, for each node, there is a name, of group Nodeb, for the
node itself, and a second name, of group Nodep, for short-lived ambients that
help fork crowds within the node, or to spawn other nodes. Finally, there is a
group Thr to classify the names of ambients that model threads. The following
table summarizes these five groups:

Global Groups Used in the Translation:

Nodeb ambients that model nodes
Nodep ambients to help fork crowds or spawn nodes
Chb ambients that model channel buffers
Chp ambients that model packets on a channel
Thr ambients that model threads

We begin the translation by giving types in the ambient calculus correspond-
ing to types in the distributed language. Each type Ty gets translated to a pair
[[Ty ]]b, [[Ty ]]p of ambient calculus types. Throughout this section, we omit the
curly braces when writing singleton group sets; for example, we write yNodeb

as a shorthand for y{Nodeb}.
First, if Ty is a node type, [[Ty ]]b is the type of an ambient (of group Nodeb)

modelling a node, and [[Ty ]]p is the type of helper ambients (of group Nodep).
Second, if Ty is a channel type, [[Ty ]]b is the type of an ambient (of group Chb)
modelling a channel buffer, and [[Ty ]]p is the type of a packet ambient (of group
Chp).

Translations [[Ty ]]b, [[Ty ]]p of a Type Ty:

[[Node]]b 4=
Nodeb yNodeb[y{},◦Nodep,Shh]
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[[Node]]p 4=
Nodep yThr [y{},◦Nodep,Shh]

[[Ch[Ty1, . . . ,Tyk]]]b 4=
Chb y{}[y{},◦Chp, [[Ty1]]b × [[Ty1]]p × · · · × [[Tyk]]b × [[Tyk]]p]

[[Ch[Ty1, . . . ,Tyk]]]p 4=
Chp y{Thr ,Ch}[y{},◦Chp, [[Ty1]]b × [[Ty1]]p × · · · × [[Tyk]]b × [[Tyk]]p]

These typings say a lot about the rest of the translation, because of the
presence of five different groups. Nodes and helpers are silent ambients, whereas
tuples of ambient names are exchanged within both channel buffers and packets.
None of these ambients is subjectively mobile—in this translation only threads
are subjectively mobile. On the other hand, nodes and helpers may both objec-
tively cross nodes, while buffers are objectively immobile, and packets objectively
cross both threads and buffers. Finally, both nodes and helpers may open only
helpers, and both buffers and packets may open only packets (actually, the ◦Chp

annotation inside the type of a packet cp of group Chp means that cp can be
opened, and similarly for helpers).

Next, we translate networks to typed processes. A restriction of a single
name is sent to restrictions of a couple of names: either names for a node and
helpers, if the name is a node, or names for a buffer and packets, if the name
is a channel. A composition is simply translated to a composition. A network
node n is translated to an ambient named nb representing the node, containing
a replicated open np, where np is the name of helper ambients for that node.

Translation [[Net ]] of a Network Net:

[[(νn:Ty)Net ]] 4= (νnb:[[Ty ]]b)(νnp:[[Ty ]]p)[[Net ]]
[[Net | Net ]] 4= [[Net ]] | [[Net ]]
[[node n [Cro]]] 4= nb[!open np | [[Cro]]n]

The translation [[Cro]]n of a crowd is indexed by the name n of the node in
which the crowd is located. Restrictions and compositions in crowds are trans-
lated like their counterparts at the network level. A channel c is represented by a
buffer ambient cb of group Chb. It is initially empty but for a replicated open cp,
where cp is the name, of group Chp, of packets on the channel. The replication
allows inputs and outputs on the channel to meet and exchange messages.

An ambient of the following type models each thread:

Thr y{}[yNodeb,◦Sync,Shh]

From the type, we know that a thread ambient is silent, that it crosses node
boundaries by subjective moves but crosses nothing by objective moves, and
that it may only open ambients in the Sync group. Such ambients help syn-
chronize parallel processes in thread constructs such as receiving on a channel.
A fresh group named Sync is created by a (νSync) in the translation of each
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thread. The existence of a separate lexical scope for Sync in each thread implies
there can be no accidental transmission between threads of the names of private
synchronization ambients.

Translation [[Cro]]n of a Crowd Cro Located at Node n:

[[(νm:Ty)Cro]]n
4= (νmb:[[Ty ]]b)(νmp:[[Ty ]]p)[[Cro]]n

[[Cro | Cro]]n
4= [[Cro]]n | [[Cro]]n

[[channel c]]n
4= cb[!open cp]

[[thread Th]]n
4=

(νSync)(νt:Thr y{}[yNodeb,◦Sync,Shh])t[[[Th]]tn] for t /∈ fn([[Th]]tn)

The translation [[Th]]tn of a thread is indexed by the name t of the thread
and by the name n of the node in which the thread is enclosed.

A migration go m.Th is translated to subjective moves taking the thread t
out of the current node n and into the target node m.

An output c〈n1, . . . , nk〉 is translated to a packet ambient cp that travels to
the channel buffer cb, where it is opened, and outputs a tuple of names.

An input c(x1:Ty1, . . . , xk:Tyk).Th is translated to a packet ambient cp that
travels to the channel buffer cb, where it is opened, and inputs a tuple of names;
the tuple is returned to the host thread t by way of a synchronization ambient
s, that exits the buffer and then returns to the thread.

A fork fork(Cro).Th is translated to a helper ambient np that exits the thread
t and gets opened within the enclosing node n. This unleashes the crowd Cro and
allows a synchronization ambient s to return to the thread t, where it triggers
the continuation Th.

A spawn spawn m [Cro].Th is translated to a helper ambient np that exits
the thread t and gets opened within the enclosing node nb. This unleashes an
objective move go(out nb).mb[!open mp | [[Cro]]m]] that travels out of the node
to the top, network level, where it starts the fresh node mb[!open mp | [[Cro]]m]].
Concurrently, a synchronization ambient s returns to the thread t, where it
triggers the continuation Th.

Translation [[Th]]tn of a Thread Th Named t Located at Node n:

[[go m.Th]]tn
4= out n.in m.[[Th]]tm

[[c〈n1, . . . , nk〉]]tn
4= go(out t.in cb).cp[〈n1, n

p
1, . . . , nk, np

k〉]
[[c(x1:Ty1, . . . , xk:Tyk).Th]]tn

4=
(νs:Sync y{Thr ,Ch}[yNodeb,◦Sync,Shh])

(go(out t.in cb).
cp[(xb

1:[[Ty1]]b, x
p
1:[[Ty1]]p, . . . , xb

k:[[Tyk]]b, xp
k:[[Tyk]]p).

go(out cb.in t).s[open s.[[Th]]tn]] |
open s.s[])

for s /∈ {t, cb, cp} ∪ fn([[Th]]tn)
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[[fork(Cro).Th]]tn
4=

(νs:Sync yThr [yNodeb,◦Sync,Shh])
(go out t.np[go in t.s[] | [[Cro]]n] |open s.[[Th]]tn)

for s /∈ {t, np} ∪ [[Cro]]n ∪ [[Th]]tn
[[spawn m [Cro].Th]]tn

4=
(νs:Sync yThr [yNodeb,◦Sync,Shh])

(go out t.np[go in t.s[] | go out nb.mb[!open mp | [[Cro]]m]] |
open s.[[Th]]tn)

for s /∈ {t, nb, np,mb,mp} ∪ fn([[Cro]]m) ∪ fn([[Th]]tn)

Finally, we translate typing environments as follows.

Translation [[E]] of an Environment E:

[[∅]] 4= Nodeb,Nodep,Chb,Chp,Thr
[[E, c:Ty ]] 4= [[E]], cb:[[Ty ]]b, cp:[[Ty ]]p

Our translation preserves typing judgments:

Proposition 1.

(1) If E ` Net then [[E]] ` [[Net ]] : y{},◦{},Shh.
(2) If E ` Cro and E ` n : Node then [[E]] ` [[Cro]]n : y{},◦{},Shh.
(3) If E ` Th, E ` n : Node, t /∈ dom(E) then

[[E]],Sync, t:Thr y{}[yNodeb,◦Sync,Shh] ` [[Th]]tn : yNodeb,◦Sync,Shh.

Apart from having more refined types, this translation is the same as a trans-
lation to the type system with binary annotations of [CGG99]. The translation
shows that ambients can model a variety of concepts arising in mobile compu-
tation: nodes, threads, communication packets and buffers. Groups admit more
precise typings for this translation than were possible in the system with binary
annotations. For example, here we can tell that a thread ambient subjectively
crosses only node ambients, but never crosses helpers, buffers, or packets, and
that it is objectively immobile; in the binary system, all we could say was that
a thread ambient was subjectively mobile and objectively immobile.

18 Discussion: The Ambient Calculus

In this part, we introduced the ambient calculus as an abstract model for the
mobility of hardware and software. We explained some of the type systems that
have been proposed for ambients. We gave an application of the calculus as a
semantic metalanguage for describing distributed computation. Our full type
system tracks the communication, mobility, and opening behaviour of ambients,
which are classified by groups. A group represents a collection of ambient names;
ambient names belong to groups in the same sense that values belong to types.
We studied the properties of a new process operator (νG)P that lexically scopes
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groups. Using groups, our type system can impose behavioural constraints like
“this ambient crosses only ambients in one set of groups, and only dissolves
ambients in another set of groups”.

18.1 Related Work on Types

The ambient calculus is related to earlier distributed variants of the pi calculus,
some of which have been equipped with type systems. The type system of Ama-
dio [Ama97] prevents a channel from being defined at more than one location.
Sewell’s system [Sew98] tracks whether communications are local or non-local,
so as to allow efficient implementation of local communication. In Riely and
Hennessy’s calculus [RH98], processes need appropriate permissions to perform
actions such as migration; a well-typed process is guaranteed to possess the
appropriate permission for any action it attempts. Other work on typing for mo-
bile agents includes a type system by De Nicola, Ferrari, and Pugliese [DFP99]
that tracks the access rights an agent enjoys at different localities; type-checking
ensures that an agent complies with its access rights.

Our groups are similar to the sorts used as static classifications of names in
the pi calculus [Mil99]. Our basic system of Section 14 is comparable to Milner’s
sort system, except that sorts in the pi calculus are mutually recursive; we would
have to add a recursion operator to achieve a similar effect. Another difference
is that an operator for sort creation does not seem to have been considered
in the pi calculus literature. Our operator for group creation can guarantee
secrecy properties, as we show in the setting of a typed pi calculus equipped
with groups [CGG00b]. Our systems of Sections 15 and 16 depend on groups to
constrain the opening and crossing behaviour of processes. We are not aware of
any uses of Milner’s sorts to control process behaviour beyond controlling the
sorts of communicated names.

Apart from Milner’s sorts, other static classifications of names occur in
derivatives of the pi calculus. We mention two examples. In the type system
of Abadi [Aba99] for the spi calculus, names are classified by three static se-
curity levels—Public, Secret, and Any—to prevent insecure information flows.
In the flow analysis of Bodei, Degano, Nielson, and Nielson [BDNN98] for the
pi calculus, names are classified by static channels and binders, again with the
purpose of establishing security properties. (Similar flow analyses now exist for
the ambient calculus [NNHJ99,HJNN99].) Although there is a similarity between
these notions and groups, and indeed to sorts, nothing akin to our (νG) operator
appears to have been studied.

There is a connection between groups and the region variables in the work
of Tofte and Talpin [TT97] on region-based implementation of the λ-calculus.
The store is split into a set of stack-allocated regions, and the type of each
stored value is labelled with the region in which the value is stored. The scoping
construct letregion ρ in e allocates a fresh region, binds it to the region variable ρ,
evaluates e, and on completion, deallocates the region bound to ρ. The constructs
letregion ρ in e and (νG)P are similar in that they confer static scopes on
the region variable ρ and the group G, respectively. One difference is that in



Notes on Nominal Calculi for Security and Mobility 63

our operational semantics (νG)P is simply a scoping construct; it allocates no
storage. Another is that scope extrusion laws do not seem to have been explicitly
investigated for letregion. Still, we can interpret letregion in terms of (νG), as is
reported elsewhere [DG00].

18.2 Related Work on Ambients

The introduction to this part, Section 10, is extracted from the original article
on the ambient calculus [CG00b]; more motivations may be found in another
paper [Car99], which develops a graphical metaphor for ambients, the folder
calculus.

The rest of this part reports research into type systems for the ambient calcu-
lus, some parts of which have been described in conference papers. In [CG99] we
have investigated exchange types, which subsume standard type systems for pro-
cesses and functions, but do not impose restrictions on mobility; no groups were
present in that system. In [CGG99] we have reported on immobility and locking
annotations, which are basic predicates about mobility, still with no notion of
groups; Zimmer [Zim00] proposes inference algorithms for a generalization of
this type system. In [CGG00a] we introduce the notion of groups; much of this
part of the notes is drawn from that paper.

As well as work on types, there has been work on a variety of other tech-
niques for reasoning about the ambient calculus. In [GC99], we define a form of
testing equivalence for the ambient calculus, akin to the testing equivalence we
introduced in Part II for the spi calculus; we develop some techniques for prov-
ing testing equivalence including a context lemma. Several papers investigate
program logics for the ambient calculus; in [CG00a] we introduce a logic with
both spatial modalities—for talking about the structure of ambient processes—
and temporal modalities—for talking about their evolution over time. A recent
paper extends the first with modal operators to express properties of restricted
names [CG01]. Two other papers investigate the equivalence induced by the
logic [San01] and the complexity of the model checking problem [CDG+01].

Levi and Sangiorgi [LS00] propose a variant of the calculus called Safe Am-
bients. As well as the original in, out , and open capabilities, they introduce
three dual capabilities, written in, out , and open, respectively. To enter a sib-
ling named n, an ambient needs to exercise the out n capability, as before, but
additionally, the sibling needs to exercise the out n capability. Similarly, to exit
its parent named n, an ambient needs to exercise the out n capability, as before,
but additionally, the parent needs to exercise the out n capability. To dissolve
an ambient named n, its environment needs to exercise the open n capability,
as before, but additionally, the ambient itself needs to exercise the open n capa-
bility. The resulting ambient calculus is a little more complicated than the one
described here, but the advantages shown by Levi and Sangiorgi are that certain
race conditions may be avoided, and in some ways more accurate typings are
possible. Bugliese and Castagna [BC01] investigate an extension of Safe Ambi-
ents intended to describe security properties; their notion of ambient domain is
akin to the notion of group discussed in these notes.
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The first implementation of the ambient calculus was a Java applet [Car97].
More recent implementations support mobility between machines distributed
on a network; they include an implementation of the original calculus using
Jocaml [FLS00], and of Safe Ambients using Java RMI [SV01].

Acknowledgement C.A.R. Hoare and G. Castagna commented on a draft of these
notes.
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