01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
package algs11;
import stdlib.*;
public class MyFibonacci {
/*
Assignment1:
-----------------------------------------------------------------------
1.1.16 Give the value of exR1(6):
public static String exR1(int n)
{
if (n <= 0) return "";
return exR1(n-3) + n + exR1(n-2) + n;
}
ANSWER:
-----------------------------------------------------------------------
1.1.18 Consider the following recursive function:
public static int mystery(int a, int b)
{
if (b == 0) return 0;
if (b % 2 == 0) return mystery(a+a, b/2);
return mystery(a+a, b/2) + a;
}
What are the values of mystery(2, 25) and mystery(3, 11)?
ANSWER:
Given positive integers a and b, describe what value mystery(a, b) computes.
ANSWER:
Answer the same question, but replace + with * and replace return 0 with return 1.
ANSWER:
-----------------------------------------------------------------------
1.1.19 Run the function runF, below, on your computer. Let it run for one hour.
You will get the printout for the first few values of N very quickly, but it
will slow down after a while. What is the largest value of N that is printed
after one hour?
ANSWER:
Develop a better implementation of F(N) that saves computed values in an array of type "long[]".
ANSWER THIS PROBLEM BY COMPLETING THE FUNCTION myF, BELOW.
*/
public static long F(int N) {
if (N == 0) return 0;
if (N == 1) return 1;
return F(N-1) + F(N-2);
}
public static void runF() {
for (int N = 0; N < 100; N++)
StdOut.println(N + " " + F(N));
}
public static long myF(int N) {
// TODO
return 0;
}
public static void runMyF() {
for (int N = 0; N < 100; N++)
StdOut.println(N + " " + myF(N));
}
// to run a single function, just comment out the others using two slashes
public static void main(String[] args) {
runF ();
// runMyF ();
}
}
|