001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
// Exercise 2.2.9 2.2.20 (Solution published at http://algs4.cs.princeton.edu/)
package algs22;
import stdlib.*;
/* ***********************************************************************
* Compilation: javac Merge.java
* Execution: java Merge < input.txt
* Dependencies: StdOut.java StdIn.java
* Data files: http://algs4.cs.princeton.edu/22merge/tiny.txt
* http://algs4.cs.princeton.edu/22merge/words3.txt
*
* Sorts a sequence of strings from standard input using mergesort.
*
* % more tiny.txt
* S O R T E X A M P L E
*
* % java Merge < tiny.txt
* A E E L M O P R S T X [ one string per line ]
*
* % more words3.txt
* bed bug dad yes zoo ... all bad yet
*
* % java Merge < words3.txt
* all bad bed bug dad ... yes yet zoo [ one string per line ]
*
*************************************************************************/
public class Merge {
// stably merge a[lo .. mid] with a[mid+1 .. hi] using aux[lo .. hi]
public static <T extends Comparable<? super T>> void merge(T[] a, T[] aux, int lo, int mid, int hi) {
// precondition: a[lo .. mid] and a[mid+1 .. hi] are sorted subarrays
assert isSorted(a, lo, mid);
assert isSorted(a, mid+1, hi);
// copy to aux[]
for (int k = lo; k <= hi; k++) {
aux[k] = a[k];
}
// merge back to a[]
int i = lo, j = mid+1;
for (int k = lo; k <= hi; k++) {
if (i > mid) a[k] = aux[j++];
else if (j > hi) a[k] = aux[i++];
else if (less(aux[j], aux[i])) a[k] = aux[j++];
else a[k] = aux[i++];
}
if (COUNT_OPS) DoublingTest.addOps (hi-lo);
// postcondition: a[lo .. hi] is sorted
assert isSorted(a, lo, hi);
}
// mergesort a[lo..hi] using auxiliary array aux[lo..hi]
private static <T extends Comparable<? super T>> void sort(T[] a, T[] aux, int lo, int hi) {
if (hi <= lo) return;
int mid = lo + (hi - lo) / 2;
sort(a, aux, lo, mid);
sort(a, aux, mid + 1, hi);
merge(a, aux, lo, mid, hi);
}
@SuppressWarnings("unchecked")
public static <T extends Comparable<? super T>> void sort(T[] a) {
T[] aux = (T[]) new Comparable[a.length];
sort(a, aux, 0, a.length-1);
assert isSorted(a);
}
/* *********************************************************************
* Helper sorting functions
***********************************************************************/
// is v < w ?
private static <T extends Comparable<? super T>> boolean less(T v, T w) {
if (COUNT_OPS) DoublingTest.incOps ();
return (v.compareTo(w) < 0);
}
/* *********************************************************************
* Check if array is sorted - useful for debugging
***********************************************************************/
private static <T extends Comparable<? super T>> boolean isSorted(T[] a) {
return isSorted(a, 0, a.length - 1);
}
private static <T extends Comparable<? super T>> boolean isSorted(T[] a, int lo, int hi) {
for (int i = lo + 1; i <= hi; i++)
if (less(a[i], a[i-1])) return false;
return true;
}
/* *********************************************************************
* Index mergesort
***********************************************************************/
// stably merge a[lo .. mid] with a[mid+1 .. hi] using aux[lo .. hi]
private static <T extends Comparable<? super T>> void merge(T[] a, int[] index, int[] aux, int lo, int mid, int hi) {
// copy to aux[]
for (int k = lo; k <= hi; k++) {
aux[k] = index[k];
}
// merge back to a[]
int i = lo, j = mid+1;
for (int k = lo; k <= hi; k++) {
if (i > mid) index[k] = aux[j++];
else if (j > hi) index[k] = aux[i++];
else if (less(a[aux[j]], a[aux[i]])) index[k] = aux[j++];
else index[k] = aux[i++];
}
}
// return a permutation that gives the elements in a[] in ascending order
// do not change the original array a[]
public static <T extends Comparable<? super T>> int[] indexSort(T[] a) {
int N = a.length;
int[] index = new int[N];
for (int i = 0; i < N; i++)
index[i] = i;
int[] aux = new int[N];
indexSort(a, index, aux, 0, N-1);
return index;
}
// mergesort a[lo..hi] using auxiliary array aux[lo..hi]
private static <T extends Comparable<? super T>> void indexSort(T[] a, int[] index, int[] aux, int lo, int hi) {
if (hi <= lo) return;
int mid = lo + (hi - lo) / 2;
indexSort(a, index, aux, lo, mid);
indexSort(a, index, aux, mid + 1, hi);
merge(a, index, aux, lo, mid, hi);
}
// print array to standard output
private static <T> void show(T[] a) {
for (T element : a) {
StdOut.println(element);
}
}
// test code
private static boolean COUNT_OPS = false;
public static void main(String[] args) {
//String[] cards = In.readStrings ("data/cards.txt");
//StdRandom.shuffle (cards);
//StdIn.fromFile ("data/tiny.txt");
//StdIn.fromFile ("data/cards.txt");
StdIn.fromFile ("data/words3.txt");
String[] a = StdIn.readAllStrings();
sort(a);
show(a);
COUNT_OPS = true;
DoublingTest.run (20000, 5, N -> ArrayGenerator.integerRandomUnique (N), (Integer[] x) -> sort (x));
DoublingTest.run (20000, 5, N -> ArrayGenerator.integerRandom (N, 2), (Integer[] x) -> sort (x));
DoublingTest.run (20000, 5, N -> ArrayGenerator.integerPartiallySortedUnique (N), (Integer[] x) -> sort (x));
}
}
|