001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
// Exercise 2.3.22 (Solution published at http://algs4.cs.princeton.edu/)
package algs23;
import stdlib.*;
/* ***********************************************************************
 *  Compilation:  javac QuickX.java
 *  Execution:    java QuickX N
 *
 *  Uses the Bentley-McIlroy 3-way partitioning scheme,
 *  chooses the partitioning element using Tukey's ninther,
 *  and cuts off to insertion sort.
 *
 *  Reference: Engineering a Sort Function by Jon L. Bentley
 *  and M. Douglas McIlroy. Softwae-Practice and Experience,
 *  Vol. 23 (11), 1249-1265 (November 1993).
 *
 *************************************************************************/

public class XQuickX {
  private static final int CUTOFF = 8;  // cutoff to insertion sort, must be >= 1

  public static <T extends Comparable<? super T>> void sort(T[] a) {
    sort(a, 0, a.length - 1);
  }

  private static <T extends Comparable<? super T>> void sort(T[] a, int lo, int hi) {
    int N = hi - lo + 1;

    // cutoff to insertion sort
    if (N <= CUTOFF) {
      insertionSort(a, lo, hi);
      return;
    }

    // use median-of-3 as partitioning element
    else if (N <= 40) {
      int m = median3(a, lo, lo + N/2, hi);
      exch(a, m, lo);
    }

    // use Tukey ninther as partitioning element
    else  {
      int eps = N/8;
      int mid = lo + N/2;
      int m1 = median3(a, lo, lo + eps, lo + eps + eps);
      int m2 = median3(a, mid - eps, mid, mid + eps);
      int m3 = median3(a, hi - eps - eps, hi - eps, hi);
      int ninther = median3(a, m1, m2, m3);
      exch(a, ninther, lo);
    }

    // Bentley-McIlroy 3-way partitioning
    int i = lo, j = hi+1;
    int p = lo, q = hi+1;
    while (true) {
      T v = a[lo];
      while (less(a[++i], v))
        if (i == hi) break;
      while (less(v, a[--j]))
        if (j == lo) break;
      if (i >= j) break;
      exch(a, i, j);
      if (eq(a[i], v)) exch(a, ++p, i);
      if (eq(a[j], v)) exch(a, --q, j);
    }
    exch(a, lo, j);

    i = j + 1;
    j = j - 1;
    for (int k = lo+1; k <= p; k++) exch(a, k, j--);
    for (int k = hi  ; k >= q; k--) exch(a, k, i++);

    sort(a, lo, j);
    sort(a, i, hi);
  }


  // sort from a[lo] to a[hi] using insertion sort
  private static <T extends Comparable<? super T>> void insertionSort(T[] a, int lo, int hi) {
    for (int i = lo; i <= hi; i++)
      for (int j = i; j > lo && less(a[j], a[j-1]); j--)
        exch(a, j, j-1);
  }


  // return the index of the median element among a[i], a[j], and a[k]
  private static <T extends Comparable<? super T>> int median3(T[] a, int i, int j, int k) {
    return (less(a[i], a[j]) ?
        (less(a[j], a[k]) ? j : less(a[i], a[k]) ? k : i) :
          (less(a[k], a[j]) ? j : less(a[k], a[i]) ? k : i));
  }

  /* *********************************************************************
   *  Helper sorting functions
   ***********************************************************************/

  // is v < w ?
  private static <T extends Comparable<? super T>> boolean less(T v, T w) {
    if (COUNT_OPS) DoublingTest.incOps ();
    return (v.compareTo(w) < 0);
  }

  // does v == w ?
  private static <T extends Comparable<? super T>> boolean eq(T v, T w) {
    if (COUNT_OPS) DoublingTest.incOps ();
    return (v.compareTo(w) == 0);
  }

  // exchange a[i] and a[j]
  private static void exch(Object[] a, int i, int j) {
    Object swap = a[i];
    a[i] = a[j];
    a[j] = swap;
  }


  /* *********************************************************************
   *  Check if array is sorted - useful for debugging
   ***********************************************************************/
  private static <T extends Comparable<? super T>> boolean isSorted(T[] a) {
    for (int i = 1; i < a.length; i++)
      if (less(a[i], a[i-1])) return false;
    return true;
  }


  // test code
  private static boolean COUNT_OPS = false;
  public static void main(String[] args) {

    StdIn.fromFile ("data/words3.txt");

    String[] a = StdIn.readAllStrings();
    sort(a);

    // display results
    for (int i = 0; i < a.length; i++) {
      StdOut.println(a[i]);
    }
    StdOut.println("isSorted = " + isSorted(a));

    COUNT_OPS = true;
    DoublingTest.run (20000, 5, N -> ArrayGenerator.integerRandomUnique (N),          (Integer[] x) -> sort (x));
    DoublingTest.run (20000, 5, N -> ArrayGenerator.integerRandom (N, 2),             (Integer[] x) -> sort (x));
    DoublingTest.run (20000, 5, N -> ArrayGenerator.integerPartiallySortedUnique (N), (Integer[] x) -> sort (x));
  }

}