001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
|
package algs32;
import algs13.Queue;
import stdlib.*;
/* ***********************************************************************
* A simple BST with int keys
*
* Recall that:
* Depth of root==0.
* Height of leaf==0.
* Size of empty tree==0.
* Height of empty tree=-1.
*
* TODO: complete the functions in this file.
*
* Restrictions:
* - DO NOT change the Node class.
* - DO NOT change the first line of any function: name, parameters, types.
* - you may add new functions, but don't delete anything
* - functions must be recursive, except printLeftI
* - no loops, except in printLeftI (you cannot use "while" "for" etc...)
* - no fields (variables declared outside of a function)
* - each function must have exactly one recursive helper function, which you add
* - each function must be independent --- do not call any function other than the helper
* (But you may use Math.max)
*
* See the method testAll for examples that explain the expected behavior
*************************************************************************/
public class MyIntSET {
private Node root;
private static class Node {
public final int key;
public Node left, right;
public Node(int key) { this.key = key; }
}
// Print only the elements going down the left side of the tree
// in the BST with level order traversal "41 21 61 11 31", this should print "41 21 11"
public void printLeftI () {
// TODO
}
// the number of nodes in the tree
// in the BST with level order traversal "41 21 61 11 31", the size is 5
public int size() {
// TODO
return 0;
}
// Recall the definitions of height and depth.
// in the BST with level order traversal "41 21 61 11 31",
// node 41 has depth 0, height 2
// node 21 has depth 1, height 1
// node 61 has depth 1, height 0
// node 11 has depth 2, height 0
// node 31 has depth 2, height 0
// height of the whole tree is the height of the root
// the height of the tree
public int height() {
// TODO
return 0;
}
// the number of nodes with odd keys
public int sizeOdd() {
// TODO
return 0;
}
// The next three functions compute the size of the tree at depth k.
// It should be the case that for any given k,
//
// sizeAbove(k) + sizeAt(k) + sizeBelow(k) = size()
//
// The words "above" and "below" assume that the root is at the "top".
//
// Suppose we have with size N and height H (so max depth also H).
// For such a tree, we expect
//
// sizeAboveDepth (-1) = 0
// sizeAtDepth (-1) = 0
// sizeBelowDepth (-1) = N
//
// sizeAboveDepth (0) = 0
// sizeAtDepth (0) = 1
// sizeBelowDepth (0) = N-1
//
// sizeAboveDepth (H+1) = N
// sizeAtDepth (H+1) = 0
// sizeBelowDepth (H+1) = 0
//
// the number of nodes in the tree, at exactly depth k
// include node n if depth(n) == k
public int sizeAtDepth(int k) {
// TODO
return 0;
}
// the number of nodes in the tree, "above" depth k (not including k)
// include node n if depth(n) < k
public int sizeAboveDepth(int k) {
// TODO
return 0;
}
// the number of nodes in the tree, "below" depth k (not including k)
// include node n if depth(n) > k
public int sizeBelowDepth(int k) {
// TODO
return 0;
}
// tree is perfect if for every node, size of left == size of right
// hint: in the helper, return -1 if the tree is not perfect, otherwise return the size
public boolean isPerfectlyBalancedS() {
// TODO
return false;
}
// tree is perfect if for every node, height of left == height of right
// hint: in the helper, return -2 if the tree is not perfect, otherwise return the height
public boolean isPerfectlyBalancedH() {
// TODO
return false;
}
// tree is odd-perfect if for every node, #odd descendant on left == # odd descendants on right
// A node is odd if it has an odd key
// hint: in the helper, return -1 if the tree is not odd-perfect, otherwise return the odd size
public boolean isOddBalanced() {
// TODO
return false;
}
// tree is semi-perfect if every node is semi-perfect
// A node with 0 children is semi-perfect.
// A node with 1 child is NOT semi-perfect.
// A node with 2 children is semi-perfect if (size-of-larger-sized-child <= size-of-smaller-sized-child * 3)
// Here, larger and smaller have to do with the SIZE of the children, not the key values.
// hint: in the helper, return -1 if the tree is not semi-perfect, otherwise return the size
public boolean isSemiBalanced() {
// TODO
return false;
}
/*
* Mutator functions
* HINT: all of these are easier to write if the helper function returns Node, rather than void.
*/
// remove all subtrees with odd roots (if node is odd, remove it and its descendants)
// A node is odd if it has an odd key
// If the root is odd, then you should end up with the empty tree
public void removeOddSubtrees () {
// TODO
}
// remove all subtrees below depth k from the original tree
public void removeBelowDepth(int k) {
// TODO
}
// add a child with key=0 to all nodes that have only one child
// (you do not need to retain symmetric order or uniqueness of keys, obviously)
public void addZeroToSingles() {
// TODO
}
// remove all leaves from the original tree
// if you start with "41", then the result is the empty tree.
// if you start with "41 21 61", then the result is the tree "41"
// if you start with the BST "41 21 11 1", then the result is the tree "41 21 11"
// if you start with the BST "41 21 61 11", then the result is the tree "41 21"
// Hint: This requires that you check for "leafiness" before the recursive calls
public void removeLeaves() {
// TODO
}
// remove all nodes that have only one child by "promoting" that child
// repeat this recursively as you go up, so the final result should have no nodes with only one child
// if you start with "41", the tree is unchanged.
// if you start with "41 21 61", the tree is unchanged.
// if you start with the BST "41 21 11 1", then the result is the tree "1"
// if you start with the BST "41 21 61 11", then the result is the tree "41 11 61"
// Hint: This requires that you check for "singleness" after the recursive calls
public void removeSingles() {
// TODO
}
/* ***************************************************************************
* Test client
* You can modify any of these methods, if you wish
*****************************************************************************/
public static void main(String[] args) {
testOne ();
testAccessors ();
testMutators ();
StdOut.println ("Finished Tests");
}
private static void testOne () {
Trace.drawStepsOfMethod ("printLeftI");
Trace.run ();
MyIntSET set1 = MyIntSET.fromString("41 21 61 11 31");
set1.printLeftI ();
//MyIntSET set2 = MyIntSET.fromString ("41 21 61 11 31 51 71 111");
//show (set1, "set1");
//show (set2, "set2");
}
private static void testAccessors () {
testSize (5, "41 21 61 11 31");
testSize (8, "41 21 61 11 31 51 71 111");
testSize (9, "101 41 21 61 11 31 51 71 111");
testSize (15, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
testSize (11, "101 41 21 61 11 31 51 71 141 121 161");
testSize (9, "101 41 21 61 11 31 51 71 141");
testSize (15, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
testSize (13, "90 30 100 10 81 20 40 60 50 70 62 63 64");
testSize (7, "40 20 61 10 30 50 70");
testSize (7, "41 21 61 11 30 51 70");
testSize (0, "");
testSize (1, "1");
testSize (35, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
testHeight (2, "41 21 61 11 31");
testHeight (3, "41 21 61 11 31 51 71 111");
testHeight (3, "101 41 21 61 11 31 51 71 111");
testHeight (3, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
testHeight (3, "101 41 21 61 11 31 51 71 141 121 161");
testHeight (3, "101 41 21 61 11 31 51 71 141");
testHeight (3, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
testHeight (8, "90 30 100 10 81 20 40 60 50 70 62 63 64");
testHeight (2, "40 20 61 10 30 50 70");
testHeight (2, "41 21 61 11 30 51 70");
testHeight (-1, "");
testHeight (0, "1");
testHeight (5, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
testSizeOdd (5, "41 21 61 11 31");
testSizeOdd (8, "41 21 61 11 31 51 71 111");
testSizeOdd (9, "101 41 21 61 11 31 51 71 111");
testSizeOdd (15, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
testSizeOdd (11, "101 41 21 61 11 31 51 71 141 121 161");
testSizeOdd (9, "101 41 21 61 11 31 51 71 141");
testSizeOdd (11, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
testSizeOdd (2, "90 30 100 10 81 20 40 60 50 70 62 63 64");
testSizeOdd (1, "40 20 61 10 30 50 70");
testSizeOdd (5, "41 21 61 11 30 51 70");
testSizeOdd (0, "");
testSizeOdd (1, "1");
testSizeOdd (0, "2");
testSizeOdd (11, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
testSizeAtDepth (2, 2, "41 21 61 11 31");
testSizeAtDepth (4, 2, "41 21 61 11 31 51 71 111");
testSizeAtDepth (2, 2, "101 41 21 61 11 31 51 71 111");
testSizeAtDepth (8, 3, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
testSizeAtDepth (0, 4, "101 41 21 61 11 31 51 71 141 121 161");
testSizeAtDepth (2, 2, "101 41 21 61 11 31 51 71 141");
testSizeAtDepth (4, 2, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
testSizeAtDepth (2, 3, "90 30 100 10 81 20 40 60 50 70 62 63 64");
testSizeAtDepth (4, 2, "40 20 61 10 30 50 70");
testSizeAtDepth (2, 1, "41 21 61 11 30 51 70");
testSizeAtDepth (0, 2, "");
testSizeAtDepth (0, 2, "1");
testSizeAtDepth (4, 5, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
testSizeAboveDepth (3, 2, "41 21 61 11 31");
testSizeAboveDepth (3, 2, "41 21 61 11 31 51 71 111");
testSizeAboveDepth (3, 2, "101 41 21 61 11 31 51 71 111");
testSizeAboveDepth (7, 3, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
testSizeAboveDepth (11, 4, "101 41 21 61 11 31 51 71 141 121 161");
testSizeAboveDepth (3, 2, "101 41 21 61 11 31 51 71 141");
testSizeAboveDepth (3, 2, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
testSizeAboveDepth (5, 3, "90 30 100 10 81 20 40 60 50 70 62 63 64");
testSizeAboveDepth (3, 2, "40 20 61 10 30 50 70");
testSizeAboveDepth (1, 1, "41 21 61 11 30 51 70");
testSizeAboveDepth (0, 2, "");
testSizeAboveDepth (1, 2, "1");
testSizeAboveDepth (31, 5, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
testSizeBelowDepth (0, 2, "41 21 61 11 31");
testSizeBelowDepth (1, 2, "41 21 61 11 31 51 71 111");
testSizeBelowDepth (4, 2, "101 41 21 61 11 31 51 71 111");
testSizeBelowDepth (0, 3, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
testSizeBelowDepth (0, 4, "101 41 21 61 11 31 51 71 141 121 161");
testSizeBelowDepth (4, 2, "101 41 21 61 11 31 51 71 141");
testSizeBelowDepth (8, 2, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
testSizeBelowDepth (6, 3, "90 30 100 10 81 20 40 60 50 70 62 63 64");
testSizeBelowDepth (0, 2, "40 20 61 10 30 50 70");
testSizeBelowDepth (4, 1, "41 21 61 11 30 51 70");
testSizeBelowDepth (0, 2, "");
testSizeBelowDepth (0, 2, "1");
testSizeBelowDepth (0, 5, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
testIsPerfectlyBalancedS (false, "100 40 140 20 120");
testIsPerfectlyBalancedS (true, "17 9 25 5 13 21 29 3 7 11 15 19 23 27 31 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32");
testIsPerfectlyBalancedS (false, "17 9 25 5 13 21 29 3 7 11 15 19 23 27 31 4 8 12 16 20 24 28 32");
testIsPerfectlyBalancedS (false, "16 8 24 4 12 20 28 2 6 10 14 18 22 26 30 1 5 9 13 17 21 25 29");
testIsPerfectlyBalancedS (true, "16 8 24 4 12 20 28 2 6 10 14 18 22 26 30 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31");
testIsPerfectlyBalancedS (false, "41 21 61 11 31");
testIsPerfectlyBalancedS (false, "41 21 61 11 31 51 71 111");
testIsPerfectlyBalancedS (false, "101 41 21 61 11 31 51 71 111");
testIsPerfectlyBalancedS (true, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
testIsPerfectlyBalancedS (false, "101 41 21 61 11 31 51 71 141 121 161");
testIsPerfectlyBalancedS (false, "101 41 21 61 11 31 51 71 141");
testIsPerfectlyBalancedS (true, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
testIsPerfectlyBalancedS (false, "90 30 100 10 81 20 40 60 50 70 62 63 64");
testIsPerfectlyBalancedS (true, "40 20 61 10 30 50 70");
testIsPerfectlyBalancedS (true, "41 21 61 11 30 51 70");
testIsPerfectlyBalancedS (true, "");
testIsPerfectlyBalancedS (true, "1");
testIsPerfectlyBalancedS (false, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
testIsPerfectlyBalancedH (false, "100 40 140 20 120");
testIsPerfectlyBalancedH (true, "17 9 25 5 13 21 29 3 7 11 15 19 23 27 31 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32");
testIsPerfectlyBalancedH (false, "17 9 25 5 13 21 29 3 7 11 15 19 23 27 31 4 8 12 16 20 24 28 32");
testIsPerfectlyBalancedH (false, "16 8 24 4 12 20 28 2 6 10 14 18 22 26 30 1 5 9 13 17 21 25 29");
testIsPerfectlyBalancedH (true, "16 8 24 4 12 20 28 2 6 10 14 18 22 26 30 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31");
testIsPerfectlyBalancedH (false, "41 21 61 11 31");
testIsPerfectlyBalancedH (false, "41 21 61 11 31 51 71 111");
testIsPerfectlyBalancedH (false, "101 41 21 61 11 31 51 71 111");
testIsPerfectlyBalancedH (true, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
testIsPerfectlyBalancedH (false, "101 41 21 61 11 31 51 71 141 121 161");
testIsPerfectlyBalancedH (false, "101 41 21 61 11 31 51 71 141");
testIsPerfectlyBalancedH (true, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
testIsPerfectlyBalancedH (false, "90 30 100 10 81 20 40 60 50 70 62 63 64");
testIsPerfectlyBalancedH (true, "40 20 61 10 30 50 70");
testIsPerfectlyBalancedH (true, "41 21 61 11 30 51 70");
testIsPerfectlyBalancedH (true, "");
testIsPerfectlyBalancedH (true, "1");
testIsPerfectlyBalancedH (false, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
testIsOddBalanced (false, "41 21 61 11 31");
testIsOddBalanced (false, "41 21 61 11 71");
testIsOddBalanced (true, "41 21 61 10 30");
testIsOddBalanced (true, "40 21 61");
testIsOddBalanced (true, "41 20 60");
testIsOddBalanced (false, "41 21 61 11 31 51 71 111");
testIsOddBalanced (false, "101 41 21 61 11 31 51 71 111");
testIsOddBalanced (true, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
testIsOddBalanced (false, "101 41 21 61 11 31 51 71 141 121 161");
testIsOddBalanced (false, "101 41 21 61 11 31 51 71 141");
testIsOddBalanced (false, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
testIsOddBalanced (false, "90 30 100 10 81 20 40 60 50 70 62 63 64");
testIsOddBalanced (false, "40 20 61 10 30 50 70");
testIsOddBalanced (false, "41 21 61 11 30 51 70");
testIsOddBalanced (true, "");
testIsOddBalanced (true, "1");
testIsOddBalanced (false, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
testIsSemiBalanced (true, "41 21 61 11 31");
testIsSemiBalanced (false, "41 21 61 11 31 51 71 111");
testIsSemiBalanced (false, "101 41 21 61 11 31 51 71 111");
testIsSemiBalanced (true, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
testIsSemiBalanced (true, "101 41 21 61 11 31 51 71 141 121 161");
testIsSemiBalanced (false, "101 41 21 61 11 31 51 71 141");
testIsSemiBalanced (true, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
testIsSemiBalanced (false, "90 30 100 10 81 20 40 60 50 70 62 63 64");
testIsSemiBalanced (true, "40 20 61 10 30 50 70");
testIsSemiBalanced (true, "41 21 61 11 30 51 70");
testIsSemiBalanced (true, "");
testIsSemiBalanced (true, "1");
testIsSemiBalanced (true, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
}
private static void testMutators () {
testRemoveOddSubtrees ("", "41 21 61 11 31");
testRemoveOddSubtrees ("", "101 41 21 61 11 31 51 71 141");
testRemoveOddSubtrees ("100 40 140 20 120", "100 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
testRemoveOddSubtrees ("90 30 100 10 20", "90 30 100 10 81 20 40 60 50 70 62 63 64");
testRemoveOddSubtrees ("40 20 10 30", "40 20 61 10 30 50 70");
testRemoveOddSubtrees ("", "41 21 61 11 30 51 70");
testRemoveOddSubtrees ("", "");
testRemoveOddSubtrees ("", "1");
testRemoveOddSubtrees ("0", "0");
testRemoveOddSubtrees ("90 30 100 10 80 20 40 12 60 62", "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
testRemoveBelowDepth ("41 21 61 11 31", 2, "41 21 61 11 31");
testRemoveBelowDepth ("41 21 61 11 31 51 71", 2, "41 21 61 11 31 51 71 111");
testRemoveBelowDepth ("101 41 111 21 61", 2, "101 41 21 61 11 31 51 71 111");
testRemoveBelowDepth ("101 41 141 21 61 121 161", 2, "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
testRemoveBelowDepth ("101 41 141 21 61 121 161 11 31 51 71", 4, "101 41 21 61 11 31 51 71 141 121 161");
testRemoveBelowDepth ("101 41 141 21 61", 2, "101 41 21 61 11 31 51 71 141");
testRemoveBelowDepth ("101 40 140 20 61 120 161", 2, "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
testRemoveBelowDepth ("90 30 100 10 81 20 40", 3, "90 30 100 10 81 20 40 60 50 70 62 63 64");
testRemoveBelowDepth ("40 20 61 10 30 50 70", 2, "40 20 61 10 30 50 70");
testRemoveBelowDepth ("41 21 61", 1, "41 21 61 11 30 51 70");
testRemoveBelowDepth ("", 2, "");
testRemoveBelowDepth ("1", 2, "1");
testRemoveBelowDepth ("90 30 100 10 80 95 105 5 20 40 85 93 97 103 110", 3, "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
testAddZeroToSingles ("41 21 61 11 0 ", "41 21 61 11");
testAddZeroToSingles ("41 21 61 11 0 51 71 ", "41 21 61 11 51 71");
testAddZeroToSingles ("90 30 100 10 81 0 20 40 0 0 60 50 70 62 0 0 63 0 64 ", "90 30 100 10 81 20 40 60 50 70 62 63 64");
testAddZeroToSingles ("40 20 61 10 30 50 70 ", "40 20 61 10 30 50 70");
testAddZeroToSingles ("", "");
testAddZeroToSingles ("1 ", "1");
testAddZeroToSingles ("90 30 100 10 80 95 105 5 20 40 85 93 97 103 110 2 6 12 21 35 60 82 86 92 94 96 98 102 104 106 111 34 36 45 62 ", "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
testRemoveLeaves ("41 21", "41 21 61 11 31");
testRemoveLeaves ("41 21 61 71", "41 21 61 11 31 51 71 111");
testRemoveLeaves ("101 41 21 61", "101 41 21 61 11 31 51 71 111");
testRemoveLeaves ("101 41 141 21 61 121 161", "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
testRemoveLeaves ("101 41 141 21 61", "101 41 21 61 11 31 51 71 141 121 161");
testRemoveLeaves ("101 41 21 61", "101 41 21 61 11 31 51 71 141");
testRemoveLeaves ("101 40 140 20 61 120 161", "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
testRemoveLeaves ("90 30 10 81 40 60 70 62 63", "90 30 100 10 81 20 40 60 50 70 62 63 64");
testRemoveLeaves ("40 20 61", "40 20 61 10 30 50 70");
testRemoveLeaves ("41 21 61", "41 21 61 11 30 51 70");
testRemoveLeaves ("", "");
testRemoveLeaves ("", "1");
testRemoveLeaves ("90 30 100 10 80 95 105 5 20 40 85 93 97 103 110 35 60", "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
testRemoveSingles ("101 41 141 21 61 121 161 11 31 51 71 111 131 151 171", "101 41 21 61 11 31 51 71 141 121 161 111 131 151 171");
testRemoveSingles ("101 41 141 21 61 121 161 11 31 51 71", "101 41 21 61 11 31 51 71 141 121 161");
testRemoveSingles ("101 41 141 21 61 11 31 51 71", "101 41 21 61 11 31 51 71 141");
testRemoveSingles ("101 40 140 20 61 120 161 11 31 51 71 111 131 151 171", "101 40 20 61 11 31 51 71 140 120 161 111 131 151 171");
testRemoveSingles ("90 30 100 20 60 50 64", "90 30 100 10 81 20 40 60 50 70 62 63 64");
testRemoveSingles ("40 20 61 10 30 50 70", "40 20 61 10 30 50 70");
testRemoveSingles ("41 21 61 11 30 51 70", "41 21 61 11 30 51 70");
testRemoveSingles ("", "");
testRemoveSingles ("1", "1");
testRemoveSingles ("90 30 100 10 80 95 105 5 20 40 85 93 97 103 110 2 6 12 21 35 60 82 86 92 94 96 98 102 104 106 111 34 36 45 62", "90 30 100 10 80 20 40 60 5 85 35 95 105 2 6 110 103 104 102 93 97 96 82 86 12 21 45 62 106 111 92 94 98 34 36");
}
private static int exampleCount = 0;
private static void show(MyIntSET set, String filename) {
StdOut.format ("tree x%s-%s: %s\n", exampleCount, filename, set);
set.toGraphviz ("x" + exampleCount + "-" + filename + ".png");
exampleCount++;
}
private static void testSize (int expected, String tree) {
MyIntSET set = MyIntSET.fromString(tree);
int actual = set.size ();
if (! areEquals (set, MyIntSET.fromString(tree))) {
StdOut.format ("Failed size(%s): Tree modified\n", tree);
}
if (expected != actual) {
StdOut.format ("Failed size(%s): Expecting (%d) Actual (%d)\n", tree, expected, actual);
}
}
private static void testHeight (int expected, String tree) {
MyIntSET set = MyIntSET.fromString(tree);
int actual = set.height ();
if (! areEquals (set, MyIntSET.fromString(tree))) {
StdOut.format ("Failed height(%s): Tree modified\n", tree);
}
if (expected != actual) {
StdOut.format ("Failed height(%s): Expecting (%d) Actual (%d)\n", tree, expected, actual);
}
}
private static void testSizeOdd (int expected, String tree) {
MyIntSET set = MyIntSET.fromString(tree);
int actual = set.sizeOdd ();
if (! areEquals (set, MyIntSET.fromString(tree))) {
StdOut.format ("Failed sizeOdd(%s): Tree modified\n", tree);
}
if (expected != actual) {
StdOut.format ("Failed sizeOdd(%s): Expecting (%d) Actual (%d)\n", tree, expected, actual);
}
}
private static void testSizeAtDepth (int expected, int depth, String tree) {
MyIntSET set = MyIntSET.fromString(tree);
int actual = set.sizeAtDepth (depth);
if (! areEquals (set, MyIntSET.fromString(tree))) {
StdOut.format ("Failed sizeAtDepth(%d,%s): Tree modified\n", depth, tree);
}
if (expected != actual) {
StdOut.format ("Failed sizeAtDepth(%d,%s): Expecting (%d) Actual (%d)\n", depth, tree, expected, actual);
}
}
private static void testSizeAboveDepth (int expected, int depth, String tree) {
MyIntSET set = MyIntSET.fromString(tree);
int actual = set.sizeAboveDepth (depth);
if (! areEquals (set, MyIntSET.fromString(tree))) {
StdOut.format ("Failed sizeAboveDepth(%d,%s): Tree modified\n", depth, tree);
}
if (expected != actual) {
StdOut.format ("Failed sizeAboveDepth(%d,%s): Expecting (%d) Actual (%d)\n", depth, tree, expected, actual);
}
}
private static void testSizeBelowDepth (int expected, int depth, String tree) {
MyIntSET set = MyIntSET.fromString(tree);
int actual = set.sizeBelowDepth (depth);
if (! areEquals (set, MyIntSET.fromString(tree))) {
StdOut.format ("Failed sizeBelowDepth(%d,%s): Tree modified\n", depth, tree);
}
if (expected != actual) {
StdOut.format ("Failed sizeBelowDepth(%d,%s): Expecting (%d) Actual (%d)\n", depth, tree, expected, actual);
}
}
private static void testIsPerfectlyBalancedS (boolean expected, String tree) {
MyIntSET set = MyIntSET.fromString(tree);
boolean actual = set.isPerfectlyBalancedS ();
if (! areEquals (set, MyIntSET.fromString(tree))) {
StdOut.format ("Failed isPerfectlyBalancedS(%s): Tree modified\n", tree);
}
if (expected != actual) {
StdOut.format ("Failed isPerfectlyBalancedS(%s): Expecting (%b) Actual (%b)\n", tree, expected, actual);
}
}
private static void testIsPerfectlyBalancedH (boolean expected, String tree) {
MyIntSET set = MyIntSET.fromString(tree);
boolean actual = set.isPerfectlyBalancedH ();
if (! areEquals (set, MyIntSET.fromString(tree))) {
StdOut.format ("Failed isPerfectlyBalancedH(%s): Tree modified\n", tree);
}
if (expected != actual) {
StdOut.format ("Failed isPerfectlyBalancedH(%s): Expecting (%b) Actual (%b)\n", tree, expected, actual);
}
}
private static void testIsOddBalanced (boolean expected, String tree) {
MyIntSET set = MyIntSET.fromString(tree);
boolean actual = set.isOddBalanced ();
if (! areEquals (set, MyIntSET.fromString(tree))) {
StdOut.format ("Failed isOddBalanced(%s): Tree modified\n", tree);
}
if (expected != actual) {
StdOut.format ("Failed isOddBalanced(%s): Expecting (%b) Actual (%b)\n", tree, expected, actual);
}
}
private static void testIsSemiBalanced (boolean expected, String tree) {
MyIntSET set = MyIntSET.fromString(tree);
boolean actual = set.isSemiBalanced ();
if (! areEquals (set, MyIntSET.fromString(tree))) {
StdOut.format ("Failed isSemiBalanced(%s): Tree modified\n", tree);
}
if (expected != actual) {
StdOut.format ("Failed isSemiBalanced(%s): Expecting (%b) Actual (%b)\n", tree, expected, actual);
}
}
private static void testRemoveOddSubtrees (String expected, String tree) {
MyIntSET actual = MyIntSET.fromString(tree);
actual.removeOddSubtrees ();
if (! areEquals (actual, MyIntSET.fromString(expected))) {
StdOut.format ("Failed removeOddSubtrees\n");
show (MyIntSET.fromString(tree), "original");
show (actual, "actual");
show (MyIntSET.fromString(expected), "expected");
}
}
private static void testRemoveBelowDepth (String expected, int depth, String tree) {
MyIntSET actual = MyIntSET.fromString(tree);
actual.removeBelowDepth (depth);
if (! areEquals (actual, MyIntSET.fromString(expected))) {
StdOut.format ("Failed removeBelowDepth(%d)\n", depth);
show (MyIntSET.fromString(tree), "original");
show (actual, "actual");
show (MyIntSET.fromString(expected), "expected");
}
}
private static void testRemoveSingles (String expected, String tree) {
MyIntSET actual = MyIntSET.fromString(tree);
actual.removeSingles ();
if (! areEquals (actual, MyIntSET.fromString(expected))) {
StdOut.format ("Failed removeSingles\n");
show (MyIntSET.fromString(tree), "original");
show (actual, "actual");
show (MyIntSET.fromString(expected), "expected");
}
}
private static void testRemoveLeaves(String expected, String tree) {
MyIntSET actual = MyIntSET.fromString(tree);
actual.removeLeaves();
if (! areEquals (actual, MyIntSET.fromString(expected))) {
StdOut.format ("Failed removeLeaves\n");
show (MyIntSET.fromString(tree), "original");
show (actual, "actual");
show (MyIntSET.fromString(expected), "expected");
}
}
private static void testAddZeroToSingles(String expected, String tree) {
MyIntSET actual = MyIntSET.fromString(tree);
actual.addZeroToSingles ();
if (! expected.equals (actual.toString ())) {
StdOut.format ("Failed addZeroToSingles\n");
show (MyIntSET.fromString(tree), "original");
show (actual, "actual");
show (MyIntSET.fromString(expected), "expected");
}
}
/* ***************************************************************************
* Some methods to create and display trees
* DO NOT MODIFY THESE METHODS
*****************************************************************************/
// Add one element to a tree, in BST order
public void put(int key) { root = put(root, key); }
private static Node put(Node n, int key) {
if (n == null) return new Node(key);
if (key < n.key) n.left = put(n.left, key);
else if (key > n.key) n.right = put(n.right, key);
return n;
}
// Test for equality
public static boolean areEquals (MyIntSET a, MyIntSET b) { return areEquals(a.root, b.root); }
private static boolean areEquals (Node x, Node y) {
if (x == null) {
return (y == null);
} else {
return (y != null) && x.key == y.key && areEquals (x.left, y.left) && areEquals (x.right, y.right);
}
}
// Create a tree from a string
public static MyIntSET fromString (String ints) {
MyIntSET set = new MyIntSET ();
for (String s : ints.split (" "))
try { set.put (Integer.parseInt (s)); } catch (NumberFormatException e) {}
return set;
}
// Return the values of the tree in level order
public Iterable<Integer> levelOrder() {
Queue<Integer> keys = new Queue<>();
Queue<Node> queue = new Queue<>();
queue.enqueue(root);
while (!queue.isEmpty()) {
Node n = queue.dequeue();
if (n == null) continue;
keys.enqueue(n.key);
queue.enqueue(n.left);
queue.enqueue(n.right);
}
return keys;
}
// String representation of the tree
public String toString() {
StringBuilder sb = new StringBuilder();
for (int key: levelOrder())
sb.append (key + " ");
return sb.toString ();
}
// Graphical representation of the tree
public void toGraphviz(String filename) {
GraphvizBuilder gb = new GraphvizBuilder ();
toGraphviz (gb, null, root);
gb.toFileUndirected (filename, "ordering=\"out\"");
}
private static void toGraphviz (GraphvizBuilder gb, Node parent, Node n) {
if (n == null) { gb.addNullEdge (parent); return; }
gb.addLabeledNode (n, Integer.toString (n.key));
if (parent != null) gb.addEdge (parent, n);
toGraphviz (gb, n, n.left);
toGraphviz (gb, n, n.right);
}
}
|