001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
|
package algs33;
import stdlib.*;
import algs13.Queue;
/* ***********************************************************************
* Compilation: javac RedBlackBST.java
* Execution: java RedBlackBST < input.txt
* Dependencies: StdIn.java StdOut.java
* Data files: http://algs4.cs.princeton.edu/33balanced/tinyST.txt
*
* A symbol table implemented using a left-leaning red-black BST.
* This is the 2-3 version.
*
* % more tinyST.txt
* S E A R C H E X A M P L E
*
* % java RedBlackBST < tinyST.txt
* A 8
* C 4
* E 12
* H 5
* L 11
* M 9
* P 10
* R 3
* S 0
* X 7
*
*************************************************************************/
public class RedBlackBST<K extends Comparable<? super K>, V> {
private static final boolean RED = true;
private static final boolean BLACK = false;
private Node<K,V> root; // root of the BST
// BST helper node data type
private static class Node<K,V> {
public K key; // key
public V val; // associated data
public Node<K,V> left, right; // links to left and right subtrees
public boolean color; // color of parent link
public int N; // subtree count
public Node(K key, V val, boolean color, int N) {
this.key = key;
this.val = val;
this.color = color;
this.N = N;
}
}
/* ***********************************************************************
* Node<K,V> helper methods
*************************************************************************/
// is node x red; false if x is null ?
private boolean isRed(Node<K,V> x) {
if (x == null) return false;
return (x.color == RED);
}
// number of node in subtree rooted at x; 0 if x is null
private int size(Node<K,V> x) {
if (x == null) return 0;
return x.N;
}
/* ***********************************************************************
* Size methods
*************************************************************************/
// return number of key-value pairs in this symbol table
public int size() { return size(root); }
// is this symbol table empty?
public boolean isEmpty() { return root == null; }
/* ***********************************************************************
* Standard BST search
*************************************************************************/
// value associated with the given key; null if no such key
public V get(K key) { return get(root, key); }
// value associated with the given key in subtree rooted at x; null if no such key
private V get(Node<K,V> x, K key) {
while (x != null) {
int cmp = key.compareTo(x.key);
if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else return x.val;
}
return null;
}
// is there a key-value pair with the given key?
public boolean contains(K key) { return (get(key) != null); }
// is there a key-value pair with the given key in the subtree rooted at x?
private boolean contains(Node<K,V> x, K key) { return (get(x, key) != null); }
/* ***********************************************************************
* Red-black insertion
*************************************************************************/
// insert the key-value pair; overwrite the old value with the new value
// if the key is already present
public void put(K key, V val) {
root = put(root, key, val);
root.color = BLACK;
assert check();
}
// insert the key-value pair in the subtree rooted at h
private Node<K,V> put(Node<K,V> h, K key, V val) {
if (h == null) return new Node<>(key, val, RED, 1);
int cmp = key.compareTo(h.key);
if (cmp < 0) h.left = put(h.left, key, val);
else if (cmp > 0) h.right = put(h.right, key, val);
else h.val = val;
// fix-up any right-leaning links
if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
if (isRed(h.left) && isRed(h.right)) flipColors(h);
h.N = size(h.left) + size(h.right) + 1;
return h;
}
/* ***********************************************************************
* Red-black deletion
*************************************************************************/
// delete the key-value pair with the minimum key
public void deleteMin() {
if (isEmpty()) throw new Error("BST underflow");
// if both children of root are black, set root to red
if (!isRed(root.left) && !isRed(root.right))
root.color = RED;
root = deleteMin(root);
if (!isEmpty()) root.color = BLACK;
assert check();
}
// delete the key-value pair with the minimum key rooted at h
private Node<K,V> deleteMin(Node<K,V> h) {
if (h.left == null)
return null;
if (!isRed(h.left) && !isRed(h.left.left))
h = moveRedLeft(h);
h.left = deleteMin(h.left);
return balance(h);
}
// delete the key-value pair with the maximum key
public void deleteMax() {
if (isEmpty()) throw new Error("BST underflow");
// if both children of root are black, set root to red
if (!isRed(root.left) && !isRed(root.right))
root.color = RED;
root = deleteMax(root);
if (!isEmpty()) root.color = BLACK;
assert check();
}
// delete the key-value pair with the maximum key rooted at h
private Node<K,V> deleteMax(Node<K,V> h) {
if (isRed(h.left))
h = rotateRight(h);
if (h.right == null)
return null;
if (!isRed(h.right) && !isRed(h.right.left))
h = moveRedRight(h);
h.right = deleteMax(h.right);
return balance(h);
}
// delete the key-value pair with the given key
public void delete(K key) {
if (!contains(key)) {
System.err.println("symbol table does not contain " + key);
return;
}
// if both children of root are black, set root to red
if (!isRed(root.left) && !isRed(root.right))
root.color = RED;
root = delete(root, key);
if (!isEmpty()) root.color = BLACK;
assert check();
}
// delete the key-value pair with the given key rooted at h
private Node<K,V> delete(Node<K,V> h, K key) {
assert contains(h, key);
if (key.compareTo(h.key) < 0) {
if (!isRed(h.left) && !isRed(h.left.left))
h = moveRedLeft(h);
h.left = delete(h.left, key);
}
else {
if (isRed(h.left))
h = rotateRight(h);
if (key.compareTo(h.key) == 0 && (h.right == null))
return null;
if (!isRed(h.right) && !isRed(h.right.left))
h = moveRedRight(h);
if (key.compareTo(h.key) == 0) {
h.val = get(h.right, min(h.right).key);
h.key = min(h.right).key;
h.right = deleteMin(h.right);
}
else h.right = delete(h.right, key);
}
return balance(h);
}
/* ***********************************************************************
* red-black tree helper functions
*************************************************************************/
// make a left-leaning link lean to the right
private Node<K,V> rotateRight(Node<K,V> h) {
assert (h != null) && isRed(h.left);
Node<K,V> x = h.left;
h.left = x.right;
x.right = h;
x.color = x.right.color;
x.right.color = RED;
x.N = h.N;
h.N = size(h.left) + size(h.right) + 1;
return x;
}
// make a right-leaning link lean to the left
private Node<K,V> rotateLeft(Node<K,V> h) {
assert (h != null) && isRed(h.right);
Node<K,V> x = h.right;
h.right = x.left;
x.left = h;
x.color = x.left.color;
x.left.color = RED;
x.N = h.N;
h.N = size(h.left) + size(h.right) + 1;
return x;
}
// flip the colors of a node and its two children
private void flipColors(Node<K,V> h) {
// h must have opposite color of its two children
assert (h != null) && (h.left != null) && (h.right != null);
assert (!isRed(h) && isRed(h.left) && isRed(h.right))
|| (isRed(h) && !isRed(h.left) && !isRed(h.right));
h.color = !h.color;
h.left.color = !h.left.color;
h.right.color = !h.right.color;
}
// Assuming that h is red and both h.left and h.left.left
// are black, make h.left or one of its children red.
private Node<K,V> moveRedLeft(Node<K,V> h) {
assert (h != null);
assert isRed(h) && !isRed(h.left) && !isRed(h.left.left);
flipColors(h);
if (isRed(h.right.left)) {
h.right = rotateRight(h.right);
h = rotateLeft(h);
// flipColors(h);
}
return h;
}
// Assuming that h is red and both h.right and h.right.left
// are black, make h.right or one of its children red.
private Node<K,V> moveRedRight(Node<K,V> h) {
assert (h != null);
assert isRed(h) && !isRed(h.right) && !isRed(h.right.left);
flipColors(h);
if (isRed(h.left.left)) {
h = rotateRight(h);
// flipColors(h);
}
return h;
}
// restore red-black tree invariant
private Node<K,V> balance(Node<K,V> h) {
assert (h != null);
if (isRed(h.right)) h = rotateLeft(h);
if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
if (isRed(h.left) && isRed(h.right)) flipColors(h);
h.N = size(h.left) + size(h.right) + 1;
return h;
}
/* ***********************************************************************
* Utility functions
*************************************************************************/
// height of tree; 0 if empty
public int height() { return height(root); }
private int height(Node<K,V> x) {
if (x == null) return 0;
return 1 + Math.max(height(x.left), height(x.right));
}
/* ***********************************************************************
* Ordered symbol table methods.
*************************************************************************/
// the smallest key; null if no such key
public K min() {
if (isEmpty()) return null;
return min(root).key;
}
// the smallest key in subtree rooted at x; null if no such key
private Node<K,V> min(Node<K,V> x) {
assert x != null;
if (x.left == null) return x;
else return min(x.left);
}
// the largest key; null if no such key
public K max() {
if (isEmpty()) return null;
return max(root).key;
}
// the largest key in the subtree rooted at x; null if no such key
private Node<K,V> max(Node<K,V> x) {
assert x != null;
if (x.right == null) return x;
else return max(x.right);
}
// the largest key less than or equal to the given key
public K floor(K key) {
Node<K,V> x = floor(root, key);
if (x == null) return null;
else return x.key;
}
// the largest key in the subtree rooted at x less than or equal to the given key
private Node<K,V> floor(Node<K,V> x, K key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp == 0) return x;
if (cmp < 0) return floor(x.left, key);
Node<K,V> t = floor(x.right, key);
if (t != null) return t;
else return x;
}
// the smallest key greater than or equal to the given key
public K ceiling(K key) {
Node<K,V> x = ceiling(root, key);
if (x == null) return null;
else return x.key;
}
// the smallest key in the subtree rooted at x greater than or equal to the given key
private Node<K,V> ceiling(Node<K,V> x, K key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp == 0) return x;
if (cmp > 0) return ceiling(x.right, key);
Node<K,V> t = ceiling(x.left, key);
if (t != null) return t;
else return x;
}
// the key of rank k
public K select(int k) {
if (k < 0 || k >= size()) return null;
Node<K,V> x = select(root, k);
return x.key;
}
// the key of rank k in the subtree rooted at x
private Node<K,V> select(Node<K,V> x, int k) {
assert x != null;
assert k >= 0 && k < size(x);
int t = size(x.left);
if (t > k) return select(x.left, k);
else if (t < k) return select(x.right, k-t-1);
else return x;
}
// number of keys less than key
public int rank(K key) {
return rank(key, root);
}
// number of keys less than key in the subtree rooted at x
private int rank(K key, Node<K,V> x) {
if (x == null) return 0;
int cmp = key.compareTo(x.key);
if (cmp < 0) return rank(key, x.left);
else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
else return size(x.left);
}
/* *********************************************************************
* Range count and range search.
***********************************************************************/
// all of the keys, as an Iterable
public Iterable<K> keys() {
return keys(min(), max());
}
// the keys between lo and hi, as an Iterable
public Iterable<K> keys(K lo, K hi) {
Queue<K> queue = new Queue<>();
// if (isEmpty() || lo.compareTo(hi) > 0) return queue;
keys(root, queue, lo, hi);
return queue;
}
// add the keys between lo and hi in the subtree rooted at x
// to the queue
private void keys(Node<K,V> x, Queue<K> queue, K lo, K hi) {
if (x == null) return;
int cmplo = lo.compareTo(x.key);
int cmphi = hi.compareTo(x.key);
if (cmplo < 0) keys(x.left, queue, lo, hi);
if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
if (cmphi > 0) keys(x.right, queue, lo, hi);
}
// number keys between lo and hi
public int size(K lo, K hi) {
if (lo.compareTo(hi) > 0) return 0;
if (contains(hi)) return rank(hi) - rank(lo) + 1;
else return rank(hi) - rank(lo);
}
/* ***********************************************************************
* Check integrity of red-black BST data structure
*************************************************************************/
private boolean check() {
if (!isBST()) StdOut.format("Not in symmetric order: %s\n", this);
if (!isSizeConsistent()) StdOut.format("Subtree counts not consistent: %s\n", this);
if (!isRankConsistent()) StdOut.format("Ranks not consistent: %s\n", this);
if (!is23()) StdOut.format("Not a 2-3 tree: %s\n", this);
if (!isBalanced()) StdOut.format("Not balanced: %s\n", this);
return isBST() && isSizeConsistent() && isRankConsistent() && is23() && isBalanced();
}
// does this binary tree satisfy symmetric order?
// Note: this test also ensures that data structure is a binary tree since order is strict
private boolean isBST() {
return isBST(root, null, null);
}
// is the tree rooted at x a BST with all keys strictly between min and max
// (if min or max is null, treat as empty constraint)
// Credit: Bob Dondero's elegant solution
private boolean isBST(Node<K,V> x, K min, K max) {
if (x == null) return true;
if (min != null && x.key.compareTo(min) <= 0) return false;
if (max != null && x.key.compareTo(max) >= 0) return false;
return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
}
// are the size fields correct?
private boolean isSizeConsistent() { return isSizeConsistent(root); }
private boolean isSizeConsistent(Node<K,V> x) {
if (x == null) return true;
if (x.N != size(x.left) + size(x.right) + 1) return false;
return isSizeConsistent(x.left) && isSizeConsistent(x.right);
}
// check that ranks are consistent
private boolean isRankConsistent() {
for (int i = 0; i < size(); i++)
if (i != rank(select(i))) return false;
for (K key : keys())
if (key.compareTo(select(rank(key))) != 0) return false;
return true;
}
// Does the tree have no red right links, and at most one (left)
// red links in a row on any path?
private boolean is23() { return is23(root); }
private boolean is23(Node<K,V> x) {
if (x == null) return true;
if (isRed(x.right)) return false;
if (x != root && isRed(x) && isRed(x.left))
return false;
return is23(x.left) && is23(x.right);
}
// do all paths from root to leaf have same number of black edges?
private boolean isBalanced() {
int black = 0; // number of black links on path from root to min
Node<K,V> x = root;
while (x != null) {
if (!isRed(x)) black++;
x = x.left;
}
return isBalanced(root, black);
}
// does every path from the root to a leaf have the given number of black links?
private boolean isBalanced(Node<K,V> x, int black) {
if (x == null) return black == 0;
if (!isRed(x)) black--;
return isBalanced(x.left, black) && isBalanced(x.right, black);
}
/* ***************************************************************************
* Visualization
*****************************************************************************/
private Iterable<Node<K,V>> levelOrderNodes() {
Queue<Node<K,V>> keys = new Queue<>();
Queue<Node<K,V>> queue = new Queue<>();
queue.enqueue(root);
while (!queue.isEmpty()) {
Node<K,V> x = queue.dequeue();
if (x == null) continue;
keys.enqueue(x);
queue.enqueue(x.left);
queue.enqueue(x.right);
}
return keys;
}
public String toString() {
StringBuilder sb = new StringBuilder();
for (Node<K,V> n: levelOrderNodes())
sb.append (n.key + (n.color ? "* " : " "));
return sb.toString ();
}
public void toGraphviz(String filename) {
GraphvizBuilder gb = new GraphvizBuilder ();
toGraphviz (gb, null, root);
gb.toFileUndirected (filename, "ordering=\"out\"");
}
private void toGraphviz (GraphvizBuilder gb, Node<K, V> parent, Node<K, V> n) {
if (n == null) { gb.addNullEdge (parent); return; }
String nodeProperties = n.color ? "color=\"red\"" : "";
String edgeProperties = n.color ? "color=\"red\",style=\"bold\"" : "";
gb.addLabeledNode (n, n.key.toString (), nodeProperties);
if (parent != null) gb.addEdge (parent, n, edgeProperties);
toGraphviz (gb, n, n.left);
toGraphviz (gb, n, n.right);
}
public void drawTree() {
if (root != null) {
StdDraw.setCanvasSize(1200,700);
drawTree(root, .5, 1, .25, 0);
}
}
private void drawTree (Node<K,V> n, double x, double y, double range, int depth) {
int CUTOFF = 5;
StdDraw.setPenColor (StdDraw.BLACK);
StdDraw.text (x, y, n.key.toString ());
StdDraw.setPenRadius (.005);
if (n.left != null && depth != CUTOFF) {
if (n.left.color == RED) {
StdDraw.setPenRadius (.01);
StdDraw.setPenColor (StdDraw.RED);
}
StdDraw.line (x-range, y-.13, x-.01, y-.01);
drawTree (n.left, x-range, y-.15, range*.5, depth+1);
}
if (n.right != null && depth != CUTOFF) {
StdDraw.line (x+range, y-.13, x+.01, y-.01);
drawTree (n.right, x+range, y-.15, range*.5, depth+1);
}
}
/* ***************************************************************************
* Test client
*****************************************************************************/
public static void main(String[] args) {
StdIn.fromString ("S E A R C H E X A M P L E");
//StdIn.fromString ("D F B G E A C");
RedBlackBST<String, Integer> st = new RedBlackBST<>();
for (int i = 0; !StdIn.isEmpty(); i++) {
String key = StdIn.readString();
st.put(key, i);
}
st.toGraphviz ("g.png");
for (String s : st.keys())
StdOut.println(s + " " + st.get(s));
st.drawTree ();
}
}
|