001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
|
/******************************************************************************
* Compilation: javac EulerianCycle.java
* Execution: java EulerianCycle V E
* Dependencies: Graph.java Stack.java StdOut.java
*
* Find an Eulerian cycle in a graph, if one exists.
*
* Runs in O(E + V) time.
*
* This implementation is tricker than the one for digraphs because
* when we use edge v-w from v's adjacency list, we must be careful
* not to use the second copy of the edge from w's adjaceny list.
*
******************************************************************************/
package algs41;
import algs13.Queue;
import algs13.Stack;
import stdlib.*;
/**
* The {@code EulerianCycle} class represents a data type
* for finding an Eulerian cycle or path in a graph.
* An <em>Eulerian cycle</em> is a cycle (not necessarily simple) that
* uses every edge in the graph exactly once.
* <p>
* This implementation uses a nonrecursive depth-first search.
* The constructor takes Θ(<em>E</em> + <em>V</em>) time in the worst
* case, where <em>E</em> is the number of edges and <em>V</em> is the
* number of vertices
* Each instance method takes Θ(1) time.
* It uses Θ(<em>E</em> + <em>V</em>) extra space in the worst case
* (not including the graph).
* <p>
* To compute Eulerian paths in graphs, see {@link EulerianPath}.
* To compute Eulerian cycles and paths in digraphs, see
* {@link algs42.DirectedEulerianCycle} and {@link algs42.DirectedEulerianPath}.
* <p>
* For additional documentation,
* see <a href="https://algs4.cs.princeton.edu/41graph">Section 4.1</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
* @author Nate Liu
*/
public class EulerianCycle {
private Stack<Integer> cycle = new Stack<Integer>(); // Eulerian cycle; null if no such cycle
// an undirected edge, with a field to indicate whether the edge has already been used
private static class Edge {
private final int v;
private final int w;
private boolean isUsed;
public Edge(int v, int w) {
this.v = v;
this.w = w;
isUsed = false;
}
// returns the other vertex of the edge
public int other(int vertex) {
if (vertex == v) return w;
else if (vertex == w) return v;
else throw new IllegalArgumentException("Illegal endpoint");
}
}
/**
* Computes an Eulerian cycle in the specified graph, if one exists.
*
* @param G the graph
*/
public EulerianCycle(Graph G) {
// must have at least one edge
if (G.E() == 0) return;
// necessary condition: all vertices have even degree
// (this test is needed or it might find an Eulerian path instead of cycle)
for (int v = 0; v < G.V(); v++)
if (G.degree(v) % 2 != 0)
return;
// create local view of adjacency lists, to iterate one vertex at a time
// the helper Edge data type is used to avoid exploring both copies of an edge v-w
@SuppressWarnings("unchecked")
Queue<Edge>[] adj = (Queue<Edge>[]) new Queue[G.V()];
for (int v = 0; v < G.V(); v++)
adj[v] = new Queue<Edge>();
for (int v = 0; v < G.V(); v++) {
int selfLoops = 0;
for (int w : G.adj(v)) {
// careful with self loops
if (v == w) {
if (selfLoops % 2 == 0) {
Edge e = new Edge(v, w);
adj[v].enqueue(e);
adj[w].enqueue(e);
}
selfLoops++;
}
else if (v < w) {
Edge e = new Edge(v, w);
adj[v].enqueue(e);
adj[w].enqueue(e);
}
}
}
// initialize stack with any non-isolated vertex
int s = nonIsolatedVertex(G);
Stack<Integer> stack = new Stack<Integer>();
stack.push(s);
// greedily search through edges in iterative DFS style
cycle = new Stack<Integer>();
while (!stack.isEmpty()) {
int v = stack.pop();
while (!adj[v].isEmpty()) {
Edge edge = adj[v].dequeue();
if (edge.isUsed) continue;
edge.isUsed = true;
stack.push(v);
v = edge.other(v);
}
// push vertex with no more leaving edges to cycle
cycle.push(v);
}
// check if all edges are used
if (cycle.size() != G.E() + 1)
cycle = null;
assert certifySolution(G);
}
/**
* Returns the sequence of vertices on an Eulerian cycle.
*
* @return the sequence of vertices on an Eulerian cycle;
* {@code null} if no such cycle
*/
public Iterable<Integer> cycle() {
return cycle;
}
/**
* Returns true if the graph has an Eulerian cycle.
*
* @return {@code true} if the graph has an Eulerian cycle;
* {@code false} otherwise
*/
public boolean hasEulerianCycle() {
return cycle != null;
}
// returns any non-isolated vertex; -1 if no such vertex
private static int nonIsolatedVertex(Graph G) {
for (int v = 0; v < G.V(); v++)
if (G.degree(v) > 0)
return v;
return -1;
}
/**************************************************************************
*
* The code below is solely for testing correctness of the data type.
*
**************************************************************************/
// Determines whether a graph has an Eulerian cycle using necessary
// and sufficient conditions (without computing the cycle itself):
// - at least one edge
// - degree(v) is even for every vertex v
// - the graph is connected (ignoring isolated vertices)
private static boolean satisfiesNecessaryAndSufficientConditions(Graph G) {
// Condition 0: at least 1 edge
if (G.E() == 0) return false;
// Condition 1: degree(v) is even for every vertex
for (int v = 0; v < G.V(); v++)
if (G.degree(v) % 2 != 0)
return false;
// Condition 2: graph is connected, ignoring isolated vertices
int s = nonIsolatedVertex(G);
BreadthFirstPaths bfs = new BreadthFirstPaths(G, s);
for (int v = 0; v < G.V(); v++)
if (G.degree(v) > 0 && !bfs.hasPathTo(v))
return false;
return true;
}
// check that solution is correct
private boolean certifySolution(Graph G) {
// internal consistency check
if (hasEulerianCycle() == (cycle() == null)) return false;
// hashEulerianCycle() returns correct value
if (hasEulerianCycle() != satisfiesNecessaryAndSufficientConditions(G)) return false;
// nothing else to check if no Eulerian cycle
if (cycle == null) return true;
// check that cycle() uses correct number of edges
if (cycle.size() != G.E() + 1) return false;
// check that cycle() is a cycle of G
// TODO
// check that first and last vertices in cycle() are the same
int first = -1, last = -1;
for (int v : cycle()) {
if (first == -1) first = v;
last = v;
}
if (first != last) return false;
return true;
}
private static void unitTest(Graph G, String description) {
StdOut.println(description);
StdOut.println("-------------------------------------");
StdOut.print(G);
EulerianCycle euler = new EulerianCycle(G);
StdOut.print("Eulerian cycle: ");
if (euler.hasEulerianCycle()) {
for (int v : euler.cycle()) {
StdOut.print(v + " ");
}
StdOut.println();
}
else {
StdOut.println("none");
}
StdOut.println();
}
/**
* Unit tests the {@code EulerianCycle} data type.
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
int V = Integer.parseInt(args[0]);
int E = Integer.parseInt(args[1]);
// Eulerian cycle
Graph G1 = GraphGenerator.eulerianCycle(V, E);
unitTest(G1, "Eulerian cycle");
// Eulerian path
Graph G2 = GraphGenerator.eulerianPath(V, E);
unitTest(G2, "Eulerian path");
// empty graph
Graph G3 = new Graph(V);
unitTest(G3, "empty graph");
// self loop
Graph G4 = new Graph(V);
int v4 = StdRandom.uniform(V);
G4.addEdge(v4, v4);
unitTest(G4, "single self loop");
// union of two disjoint cycles
Graph H1 = GraphGenerator.eulerianCycle(V/2, E/2);
Graph H2 = GraphGenerator.eulerianCycle(V - V/2, E - E/2);
int[] perm = new int[V];
for (int i = 0; i < V; i++)
perm[i] = i;
StdRandom.shuffle(perm);
Graph G5 = new Graph(V);
for (int v = 0; v < H1.V(); v++)
for (int w : H1.adj(v))
G5.addEdge(perm[v], perm[w]);
for (int v = 0; v < H2.V(); v++)
for (int w : H2.adj(v))
G5.addEdge(perm[V/2 + v], perm[V/2 + w]);
unitTest(G5, "Union of two disjoint cycles");
// random digraph
Graph G6 = GraphGenerator.simple(V, E);
unitTest(G6, "simple graph");
}
}
/******************************************************************************
* Copyright 2002-2020, Robert Sedgewick and Kevin Wayne.
*
* This file is part of algs4.jar, which accompanies the textbook
*
* Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
* Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
* http://algs4.cs.princeton.edu
*
*
* algs4.jar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* algs4.jar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with algs4.jar. If not, see http://www.gnu.org/licenses.
******************************************************************************/
|