001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
/******************************************************************************
* Compilation: javac DirectedEulerianPath.java
* Execution: java DirectedEulerianPath V E
* Dependencies: Digraph.java Stack.java StdOut.java
* BreadthFirstPaths.java
* DigraphGenerator.java StdRandom.java
*
* Find an Eulerian path in a digraph, if one exists.
*
******************************************************************************/
package algs42;
import algs13.Stack;
import algs41.BreadthFirstPaths;
import algs41.Graph;
import stdlib.*;
import java.util.Iterator;
/**
* The {@code DirectedEulerianPath} class represents a data type
* for finding an Eulerian path in a digraph.
* An <em>Eulerian path</em> is a path (not necessarily simple) that
* uses every edge in the digraph exactly once.
* <p>
* This implementation uses a nonrecursive depth-first search.
* The constructor take Θ(<em>E</em> + <em>V</em>) time
* in the worst case, where <em>E</em> is the number of edges and
* <em>V</em> is the number of vertices.
* It uses Θ(<em>V</em>) extra space (not including the digraph).
* <p>
* To compute Eulerian cycles in digraphs, see {@link DirectedEulerianCycle}.
* To compute Eulerian cycles and paths in undirected graphs, see
* {@link algs41.EulerianCycle} and {@link algs41.EulerianPath}.
* <p>
* For additional documentation,
* see <a href="https://algs4.cs.princeton.edu/42digraph">Section 4.2</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
* @author Nate Liu
*/
public class DirectedEulerianPath {
private Stack<Integer> path = null; // Eulerian path; null if no suh path
/**
* Computes an Eulerian path in the specified digraph, if one exists.
*
* @param G the digraph
*/
public DirectedEulerianPath(Digraph G) {
// find vertex from which to start potential Eulerian path:
// a vertex v with outdegree(v) > indegree(v) if it exits;
// otherwise a vertex with outdegree(v) > 0
int deficit = 0;
int s = nonIsolatedVertex(G);
for (int v = 0; v < G.V(); v++) {
if (G.outdegree(v) > G.indegree(v)) {
deficit += (G.outdegree(v) - G.indegree(v));
s = v;
}
}
// digraph can't have an Eulerian path
// (this condition is needed)
if (deficit > 1) return;
// special case for digraph with zero edges (has a degenerate Eulerian path)
if (s == -1) s = 0;
// create local view of adjacency lists, to iterate one vertex at a time
@SuppressWarnings("unchecked")
Iterator<Integer>[] adj = (Iterator<Integer>[]) new Iterator[G.V()];
for (int v = 0; v < G.V(); v++)
adj[v] = G.adj(v).iterator();
// greedily add to cycle, depth-first search style
Stack<Integer> stack = new Stack<Integer>();
stack.push(s);
path = new Stack<Integer>();
while (!stack.isEmpty()) {
int v = stack.pop();
while (adj[v].hasNext()) {
stack.push(v);
v = adj[v].next();
}
// push vertex with no more available edges to path
path.push(v);
}
// check if all edges have been used
if (path.size() != G.E() + 1)
path = null;
assert check(G);
}
/**
* Returns the sequence of vertices on an Eulerian path.
*
* @return the sequence of vertices on an Eulerian path;
* {@code null} if no such path
*/
public Iterable<Integer> path() {
return path;
}
/**
* Returns true if the digraph has an Eulerian path.
*
* @return {@code true} if the digraph has an Eulerian path;
* {@code false} otherwise
*/
public boolean hasEulerianPath() {
return path != null;
}
// returns any non-isolated vertex; -1 if no such vertex
private static int nonIsolatedVertex(Digraph G) {
for (int v = 0; v < G.V(); v++)
if (G.outdegree(v) > 0)
return v;
return -1;
}
/**************************************************************************
*
* The code below is solely for testing correctness of the data type.
*
**************************************************************************/
// Determines whether a digraph has an Eulerian path using necessary
// and sufficient conditions (without computing the path itself):
// - indegree(v) = outdegree(v) for every vertex,
// except one vertex v may have outdegree(v) = indegree(v) + 1
// (and one vertex v may have indegree(v) = outdegree(v) + 1)
// - the graph is connected, when viewed as an undirected graph
// (ignoring isolated vertices)
private static boolean satisfiesNecessaryAndSufficientConditions(Digraph G) {
if (G.E() == 0) return true;
// Condition 1: indegree(v) == outdegree(v) for every vertex,
// except one vertex may have outdegree(v) = indegree(v) + 1
int deficit = 0;
for (int v = 0; v < G.V(); v++)
if (G.outdegree(v) > G.indegree(v))
deficit += (G.outdegree(v) - G.indegree(v));
if (deficit > 1) return false;
// Condition 2: graph is connected, ignoring isolated vertices
Graph H = new Graph(G.V());
for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v))
H.addEdge(v, w);
// check that all non-isolated vertices are connected
int s = nonIsolatedVertex(G);
BreadthFirstPaths bfs = new BreadthFirstPaths(H, s);
for (int v = 0; v < G.V(); v++)
if (H.degree(v) > 0 && !bfs.hasPathTo(v))
return false;
return true;
}
private boolean check(Digraph G) {
// internal consistency check
if (hasEulerianPath() == (path() == null)) return false;
// hashEulerianPath() returns correct value
if (hasEulerianPath() != satisfiesNecessaryAndSufficientConditions(G)) return false;
// nothing else to check if no Eulerian path
if (path == null) return true;
// check that path() uses correct number of edges
if (path.size() != G.E() + 1) return false;
// check that path() is a directed path in G
// TODO
return true;
}
private static void unitTest(Digraph G, String description) {
StdOut.println(description);
StdOut.println("-------------------------------------");
StdOut.print(G);
DirectedEulerianPath euler = new DirectedEulerianPath(G);
StdOut.print("Eulerian path: ");
if (euler.hasEulerianPath()) {
for (int v : euler.path()) {
StdOut.print(v + " ");
}
StdOut.println();
}
else {
StdOut.println("none");
}
StdOut.println();
}
/**
* Unit tests the {@code DirectedEulerianPath} data type.
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
int V = Integer.parseInt(args[0]);
int E = Integer.parseInt(args[1]);
// Eulerian cycle
Digraph G1 = DigraphGenerator.eulerianCycle(V, E);
unitTest(G1, "Eulerian cycle");
// Eulerian path
Digraph G2 = DigraphGenerator.eulerianPath(V, E);
unitTest(G2, "Eulerian path");
// add one random edge
Digraph G3 = new Digraph(G2);
G3.addEdge(StdRandom.uniform(V), StdRandom.uniform(V));
unitTest(G3, "one random edge added to Eulerian path");
// self loop
Digraph G4 = new Digraph(V);
int v4 = StdRandom.uniform(V);
G4.addEdge(v4, v4);
unitTest(G4, "single self loop");
// single edge
Digraph G5 = new Digraph(V);
G5.addEdge(StdRandom.uniform(V), StdRandom.uniform(V));
unitTest(G5, "single edge");
// empty digraph
Digraph G6 = new Digraph(V);
unitTest(G6, "empty digraph");
// random digraph
Digraph G7 = DigraphGenerator.simple(V, E);
unitTest(G7, "simple digraph");
// 4-vertex digraph
Digraph G8 = new Digraph(new In("eulerianD.txt"));
unitTest(G8, "4-vertex Eulerian digraph");
}
}
/******************************************************************************
* Copyright 2002-2020, Robert Sedgewick and Kevin Wayne.
*
* This file is part of algs4.jar, which accompanies the textbook
*
* Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
* Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
* http://algs4.cs.princeton.edu
*
*
* algs4.jar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* algs4.jar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with algs4.jar. If not, see http://www.gnu.org/licenses.
******************************************************************************/
|