001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
package algs42;
import stdlib.*;
import algs13.Queue;
import algs13.Stack;
/* ***********************************************************************
* Compilation: javac GabowSCC.java
* Execution: java GabowSCC V E
* Dependencies: Digraph.java Stack.java TransitiveClosure.java StdOut.java
*
* Compute the strongly-connected components of a digraph using
* Gabow's algorithm (aka Cheriyan-Mehlhorn algorithm).
*
* Runs in O(E + V) time.
*
* % java GabowSCC tinyDG.txt
* 5 components
* 1
* 0 2 3 4 5
* 9 10 11 12
* 6
* 7 8
*
*************************************************************************/
public class XGabowSCC {
private final boolean[] marked; // marked[v] = has v been visited?
private final int[] id; // id[v] = id of strong component containing v
private final int[] preorder; // preorder[v] = preorder of v
private int pre; // preorder number counter
private int count; // number of strongly-connected components
private final Stack<Integer> stack1;
private final Stack<Integer> stack2;
public XGabowSCC(Digraph G) {
marked = new boolean[G.V()];
stack1 = new Stack<>();
stack2 = new Stack<>();
id = new int[G.V()];
preorder = new int[G.V()];
for (int v = 0; v < G.V(); v++) id[v] = -1;
for (int v = 0; v < G.V(); v++) {
if (!marked[v]) dfs(G, v);
}
// check that id[] gives strong components
assert check(G);
}
private void dfs(Digraph G, int v) {
marked[v] = true;
preorder[v] = pre++;
stack1.push(v);
stack2.push(v);
for (int w : G.adj(v)) {
if (!marked[w]) dfs(G, w);
else if (id[w] == -1) {
while (preorder[stack2.peek()] > preorder[w])
stack2.pop();
}
}
// found strong component containing v
if (stack2.peek() == v) {
stack2.pop();
int w;
do {
w = stack1.pop();
id[w] = count;
} while (w != v);
count++;
}
}
// return the number of strongly connected components
public int count() { return count; }
// are v and w strongly connected?
public boolean stronglyConnected(int v, int w) {
return id[v] == id[w];
}
// in which strongly connected component is vertex v?
public int id(int v) { return id[v]; }
// does the id[] array contain the strongly connected components?
private boolean check(Digraph G) {
TransitiveClosure tc = new TransitiveClosure(G);
for (int v = 0; v < G.V(); v++) {
for (int w = 0; w < G.V(); w++) {
if (stronglyConnected(v, w) != (tc.reachable(v, w) && tc.reachable(w, v)))
return false;
}
}
return true;
}
public static void main(String[] args) {
args = new String[] { "data/tinyDG.txt" };
In in = new In(args[0]);
Digraph G = DigraphGenerator.fromIn(in);
XGabowSCC scc = new XGabowSCC(G);
// number of connected components
int M = scc.count();
StdOut.println(M + " components");
// compute list of vertices in each strong component
@SuppressWarnings("unchecked")
final
Queue<Integer>[] components = new Queue[M];
for (int i = 0; i < M; i++) {
components[i] = new Queue<>();
}
for (int v = 0; v < G.V(); v++) {
components[scc.id(v)].enqueue(v);
}
// print results
for (int i = 0; i < M; i++) {
for (int v : components[i]) {
StdOut.print(v + " ");
}
StdOut.println();
}
}
}
|