001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
package algs44;
import stdlib.*;
import algs13.Stack;
import algs24.IndexMinPQ;
/* ***********************************************************************
 *  Compilation:  javac DijkstraSP.java
 *  Execution:    java DijkstraSP input.txt s
 *  Dependencies: EdgeWeightedDigraph.java IndexMinPQ.java Stack.java DirectedEdge.java
 *  Data files:   http://algs4.cs.princeton.edu/44sp/tinyEWD.txt
 *                http://algs4.cs.princeton.edu/44sp/mediumEWD.txt
 *                http://algs4.cs.princeton.edu/44sp/largeEWD.txt
 *
 *  Dijkstra's algorithm. Computes the shortest path tree.
 *  Assumes all weights are nonnegative.
 *
 *  % java DijkstraSP tinyEWD.txt 0
 *  0 to 0 (0.00)
 *  0 to 1 (1.05)  0->4  0.38   4->5  0.35   5->1  0.32
 *  0 to 2 (0.26)  0->2  0.26
 *  0 to 3 (0.99)  0->2  0.26   2->7  0.34   7->3  0.39
 *  0 to 4 (0.38)  0->4  0.38
 *  0 to 5 (0.73)  0->4  0.38   4->5  0.35
 *  0 to 6 (1.51)  0->2  0.26   2->7  0.34   7->3  0.39   3->6  0.52
 *  0 to 7 (0.60)  0->2  0.26   2->7  0.34
 *
 *  % java DijkstraSP mediumEWD.txt 0
 *  0 to 0 (0.00)
 *  0 to 1 (0.71)  0->44  0.06   44->93  0.07   ...  107->1  0.07
 *  0 to 2 (0.65)  0->44  0.06   44->231  0.10  ...  42->2  0.11
 *  0 to 3 (0.46)  0->97  0.08   97->248  0.09  ...  45->3  0.12
 *  0 to 4 (0.42)  0->44  0.06   44->93  0.07   ...  77->4  0.11
 *  ...
 *
 *************************************************************************/

public class DijkstraSP {
  private final double[] distTo;          // distTo[v] = distance  of shortest s->v path
  private final DirectedEdge[] edgeTo;    // edgeTo[v] = last edge on shortest s->v path
  private final IndexMinPQ<Double> pq;    // priority queue of vertices

  public DijkstraSP(EdgeWeightedDigraph G, int s) {
    for (DirectedEdge e : G.edges()) {
      if (e.weight() < 0)
        throw new IllegalArgumentException("edge " + e + " has negative weight");
    }

    distTo = new double[G.V()];
    edgeTo = new DirectedEdge[G.V()];
    for (int v = 0; v < G.V(); v++)
      distTo[v] = Double.POSITIVE_INFINITY;
    distTo[s] = 0.0;

    // relax vertices in order of distance from s
    pq = new IndexMinPQ<>(G.V());
    pq.insert(s, distTo[s]);
    while (!pq.isEmpty()) {
      int v = pq.delMin();
      for (DirectedEdge e : G.adj(v))
        relax(e);
    }

    // check optimality conditions
    assert check(G, s);
  }

  // relax edge e and update pq if changed
  private void relax(DirectedEdge e) {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
      distTo[w] = distTo[v] + e.weight();
      edgeTo[w] = e;
      if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
      else                pq.insert(w, distTo[w]);
    }
  }

  // length of shortest path from s to v
  public double distTo(int v) {
    return distTo[v];
  }

  // is there a path from s to v?
  public boolean hasPathTo(int v) {
    return distTo[v] < Double.POSITIVE_INFINITY;
  }

  // shortest path from s to v as an Iterable, null if no such path
  public Iterable<DirectedEdge> pathTo(int v) {
    if (!hasPathTo(v)) return null;
    Stack<DirectedEdge> path = new Stack<>();
    for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) {
      path.push(e);
    }
    return path;
  }


  // check optimality conditions:
  // (i) for all edges e:            distTo[e.to()] <= distTo[e.from()] + e.weight()
  // (ii) for all edge e on the SPT: distTo[e.to()] == distTo[e.from()] + e.weight()
  private boolean check(EdgeWeightedDigraph G, int s) {

    // check that edge weights are nonnegative
    for (DirectedEdge e : G.edges()) {
      if (e.weight() < 0) {
        System.err.println("negative edge weight detected");
        return false;
      }
    }

    // check that distTo[v] and edgeTo[v] are consistent
    if (distTo[s] != 0.0 || edgeTo[s] != null) {
      System.err.println("distTo[s] and edgeTo[s] inconsistent");
      return false;
    }
    for (int v = 0; v < G.V(); v++) {
      if (v == s) continue;
      if (edgeTo[v] == null && distTo[v] != Double.POSITIVE_INFINITY) {
        System.err.println("distTo[] and edgeTo[] inconsistent");
        return false;
      }
    }

    // check that all edges e = v->w satisfy distTo[w] <= distTo[v] + e.weight()
    for (int v = 0; v < G.V(); v++) {
      for (DirectedEdge e : G.adj(v)) {
        int w = e.to();
        if (distTo[v] + e.weight() < distTo[w]) {
          System.err.println("edge " + e + " not relaxed");
          return false;
        }
      }
    }

    // check that all edges e = v->w on SPT satisfy distTo[w] == distTo[v] + e.weight()
    for (int w = 0; w < G.V(); w++) {
      if (edgeTo[w] == null) continue;
      DirectedEdge e = edgeTo[w];
      int v = e.from();
      if (w != e.to()) return false;
      if (distTo[v] + e.weight() != distTo[w]) {
        System.err.println("edge " + e + " on shortest path not tight");
        return false;
      }
    }
    return true;
  }


  public static void main(String[] args) {
    In in = new In(args[0]);
    EdgeWeightedDigraph G = new EdgeWeightedDigraph(in);
    int s = Integer.parseInt(args[1]);

    // compute shortest paths
    DijkstraSP sp = new DijkstraSP(G, s);


    // print shortest path
    for (int t = 0; t < G.V(); t++) {
      if (sp.hasPathTo(t)) {
        StdOut.format("%d to %d (%.2f)  ", s, t, sp.distTo(t));
        if (sp.hasPathTo(t)) {
          for (DirectedEdge e : sp.pathTo(t)) {
            StdOut.print(e + "   ");
          }
        }
        StdOut.println();
      }
      else {
        StdOut.format("%d to %d         no path\n", s, t);
      }
    }
  }

}