
HLCL’98 — to appear

Resource Access Control in
Systems of Mobile Agents

(Extended Abstract)

Matthew Hennessy1

School of Cognitive and Computing Sciences
Univ. of Sussex
Brighton, UK

matthewh@cogs.susx.ac.uk

James Riely2

Department of Computer Science
North Carolina State Univ.

Raleigh, NC, USA
riely@csc.ncsu.edu

Abstract

We describe a typing system for a distributedπ-calculus which guarantees that distributed
agents cannot access theresourcesof a system without first being granted thecapabilityto
do so. The language studied allows agents to move between distributedlocationsand to
augment their set of capabilities via communication with other agents. The type system is
based on the novel notion of alocation type, which describes the set of resources available
to an agent at a location. Resources are themselves equipped with capabilities, and thus an
agent may be given permission to send data along a channel at a particular location without
being granted permission to read data along the same channel. We also describe atagged
version of the language, where the capabilities of agents are made explicit in the syntax.
Using this tagged language we defineaccess violationsas runtime errors and prove that
well-typed programs are incapable of such errors.

1 Research funded by CONFER II and EPSRC project GR/K60701.
2 Research funded by NSF grant EIA-9805604 and EPSRC project GR/K60701.

This is a preliminary version. The final version can be accessed at
URL: http://www.elsevier.nl/locate/entcs/volume16.html

Hennessy and Riely

1 Introduction

Mobile computation, where independent agents roam widely distributed networks
in search of resources and information, is fast becoming a reality. A number of
programming languages, APIs and protocols have recently emerged which seek to
provide high-level support for mobile agents. These include Java [24], Odyssey
[11], Aglets [15], Voyager [20] and the latest revisions of the Internet protocol
[21,1]. In addition to these commercial efforts, many prototype languages have
been developed and implemented within the programming language research com-
munity — examples include Linda [5,6], Facile [12], Obliq [4], Infospheres [8],
and the join calculus [9]. In this paper we address the issue of resource access
control for such languages.

Central to the paradigm of mobile computation are the notions of agent, re-
source and location.Agentsare effective entities that perform computation and
interact with other agents. Interaction is achieved using sharedresourcessuch as
memory cells, M-structures, objects (with shared methods and state) or commu-
nication channels. The use of the term “mobile” implies that agents are bound to
particularlocationsand that this binding may vary over time,i.e. agents canmove.
Resources, on the other hand, are often fixed to a single location, although proxies
and mirrors may be set up in order to distribute their contents.

In opendistributed systems, such as the internet, it is unwise to assume that all
agents are benign, and thus a certain amount of effort must be spent to ensure that
vital resources are protected from unauthorized access. This can be accomplished
by using a system ofcapabilitiesand by predicating resource access on possession
of the appropriate capability. It is unreasonable, however, to expect thateveryuse of
everyresource in a network be thus verified dynamically; such a requirement surely
would degrade performance unacceptably. Thus it is attractive to develop static
analyses, ortyping systemsthat guarantee controlled access to network resources.

We present a typed language for mobile agents which allows fine control over
the use of resources in a network. We also define ataggedversion of the language
in which agents explicitly carry the sets of capabilities which they have acquired.
Using this tagged language, we capture resource access violations asruntime errors
and show that well-typed terms are incapable of such errors.

The language studied in this paper, called Dπ, is a distributed variant of theπ-
calculus [19], and thus theresourcesof interest arechannelswhich support binary
communication between agents. We take agents to be locatedthreads, which are
simply terms of the ordinary polyadicπ-calculus [18], extended with primitives for
movementbetween locations and for the creation ofnewlocations.

The type system is based on the notion oflocation typesof the form:

loc{κ1, ...,κn}

where eachκi is a location capability. These may take the form of primitive capa-
bilities, typical examples beinggo, the ability to move to the location, andnewc,
the ability to create a new local channel; or a capability associated with a particular

2

Hennessy and Riely

channel,a:A. Here A represents a set ofchannel capabilitieswhich are of the form

• r〈T〉, the capability to receive valuesV from a channel and then to use eachV
with at mostthe capabilities specified by the type T, or

• w〈T〉, the capability to send valuesV into a channel, as long as that agent has, on
eachV sent,at leastthe capabilities specified by T.

Agents may restrict access to a resource by controlling the type of the channel
over which the name of the resource is sent. Thus if an agent sends the name
of a location,`, over a channel of typeres{r〈loc{a:A,b:B}〉}, then the recipient
gains capabilities on the channelsa andb at `, as specified by the capability sets A
and B respectively. Instead, when the same name is communicated over a channel
of type res{r〈loc{a:A′}〉}, the recipient gains access only to channela at `, with
permissions determined by A′.

The remainder of this extended abstract is organized as follows. In the next
section we define the language Dπ and its reduction semantics; we also describe
several examples that highlight some of the main features of the language. The
following section gives a description of the typing system and states a Subject Re-
duction Theorem; we show the application of the typing system to an example
program, acell server. In Section4 we give an informal outline the Type Safety
Theorem, which formalizes the idea that well-typed networks can not misuse re-
sources. We end with a brief comparison with related work.

In this extended abstract all proofs are omitted, as are many other details, in-
cluding some definitions. The reader is referred to the published technical report
[14] for a full account.

2 The Language

A typical Dπ network is the following:

`JPK | (νka:A)(`JQK | kJRK)

There are three agents running in parallel:`JPK and`JQK running at locatioǹ and
kJRK running at locationk. MoreoverQ andR share a private channela, declared
at locationk. The syntax for the agents is a mild extension of that of theπ-calculus;
structured valuesmay be exchanged along channels, and there is a new command
for code movement‘go`.P’, which causes the agent to move to location` and then
executeP.

The syntax of the language is given in Table2, where lettersa–m range over
the setNameof names, x–z range over the disjoint setVar of variables, andu–w
range overidentifiersin Name∪Var. The syntax for types T will be explained in the
following section. Types appear in the binders for variables and names: the input
construct ‘u?(X:T)Q’ binds each of the variables in the patternX; the restriction
constructs ‘(νe:T)P’ and ‘(νke:T)N’ bind the namee.

The typing system will distinguish the location of resources, leading us to define

3

Hennessy and Riely

Table 1Syntax of patternsX, valuesU, threadsP and networksM

X,Y ::= x Variable
(X1, .., Xn) Tuple

P,Q,R ::= stop Termination
P|Q Composition
(νe:T)P Restriction
gou.P Movement
u!〈V〉P Output
u?(X:T)P Input
∗P Replication
if U = V then P else Q Matching

U,V ::= u Id
(U1, .., Un) Tuple

M,N ::= 0 Empty
M |N Composition
(νke:T)N Restriction
kJPK Agent

dependent tuple types. In examples, we use the notation

u[v1, .., vn]
def= (u,v1, .., vn)

to indicate that the identifiersvi refer to resources at locationu.
The reduction semantics is defined as a reduction relation between networks;

thus judgments are of the formM −→ M′ whereM andM′ are (closed) network
terms, i.e. terms which contain no free occurrences of variables. The semantics
is given in Table2 using two relations; a structural equivalence≡ and a primitive
reduction relation7−→. The main relation of interest is:

(−→) def= (≡ · 7−→ · ≡)

The primitive reduction relation is defined to be the least precongruence on
networks that satisfies the axioms given in Table2. Most of the rules are familiar
from theπ-calculus, with a few changes to accommodate the fact that agents are
explicitly located. The main new rule is that for code movement,(r-move), which
allows an agent to move from one location to another, say from` to k: `Jgok.PK 7−→
kJPK. The rule(r-comm) for communication allows two agents running at the same
location` to exchange a valueV along a common channela:

`Ja!〈V〉PK | `Ja?(X)QK 7−→ `JPK | `JQ{|V/X|}K

It is worth emphasizing that the agents must be co-located for communication to
occur; agents that wish to communicate on a remote channel must first move to the
remote location using the asynchronous “move” operation. Nevertheless we can
easily implement a form of remote asynchronous output by using`.a!〈V〉 to denote
go`.a!〈V〉stop. In our reduction semantics we then have:

kJ`.a!〈V〉K | `Ja?(X)QK 7−→7−→ `JQ{|V/X|}K

The purpose of the structural equivalence is to abstract from the static structure
of terms,i.e. from the irrelevant details of the syntactic relation between compo-
sition (P |Q), restriction ((νe)P) and location (̀JPK). The structural equivalence

4

Hennessy and Riely

Table 2Reduction
(s-extr) N | (νe)M ≡ (νe)(N |M) if e /∈ fn(N)

(s-garbage1) (ν`e:T)0 ≡ 0

(s-garbage2) `JstopK ≡ 0
(s-split) `JP|QK ≡ `JPK | `JQK

(s-itr) `J∗PK ≡ `JPK | `J∗PK
(s-new) `J(νe:T)PK ≡ (ν`e:T)`JPK if e 6= `

(r-move) `Jgok.PK 7−→ kJPK
(r-comm) `Ja!〈V〉PK | `Ja?(X)QK 7−→ `JPK | `JQ{|V/X|}K

(r-eq1) `Jif U = U then P else QK 7−→ `JPK
(r-eq2) `Jif U = V then P else QK 7−→ `JQK if U 6= V

is defined to be the least congruence over networks that satisfies the commutative
monoid laws for composition and the axioms given in Table2. In addition to the
standard axiom for name extrusion(s-extr), the structural equivalence includes ax-
ioms that allow restriction and composition to be lifted from threads to networks.
The most important of these is the rule(s-split) which allows an agent to split into
two independent agents (`JP |QK ≡ `JPK | `JQK). The rule(s-garbage2) allows for
garbage collection of terminated agents, whereas(s-itr) provides a standard inter-
pretation of iteration. Note that when a channel name is extracted from a thread us-
ing (s-new) (`J(νe:T)PK≡ (ν`e:T)`JPK) it is necessary to note the location where
the name is defined. This in fact determines the syntactic form for channel restric-
tion at the network level. In(ν`a:A)M the channela defined at locatioǹ and its
scope is restricted to the networkM.

Example 2.1 (A Cell) A simple system consisting of a user and a cell may be de-
scribed as follows:

Net1⇐ `JCell(v)K | hJUserK
Cell(n)⇐ (νs)s!〈n〉

| ∗g?(z) s?(v) (s!〈v〉 | z.ret!〈v〉)
| ∗p?(z,x) s?(v) (s!〈x〉 | z.ack!〈〉)

User⇐ `.p!〈h,2〉 | ack?()(g!〈h〉 | ret?(x) print!〈x〉)
The cell has an internal channels in which the contents is stored and two public
channels (or methods) for accessing the contents,p for putting values into the cell
andg for getting the current contents; to make the example more accessible we
assume the existence of some primitive values such as integers. The get method
receives a return address from the user, which is assumed to be a location, reads
the current contents and sends it along the channelret at the callers site. The get
method acts in a similar manner; it receives a value and a return address, updates
the contents and sends an acknowledgement along the channelack at the return
address.

According to our reduction semantics the user and the cell may interact twice,

5

Hennessy and Riely

after which theprint channel at the users site` will have the value 2 available on it.

Example 2.2 (A refined Cell) The cell in the previous example has the disadvan-
tage that it may only be used by users which have the two (global) methodsret,ack
available at their sites. Here we improve on this by using structured values:

Net2⇐ `JCell(n)K | hJUserK
Cell(n)⇐ (νs)s!〈n〉

| ∗g?(z[y]) s?(v) (s!〈v〉 | z.y!〈v〉)
| ∗p?(z[y],x) s?(v) (s!〈x〉 | z.y!〈〉)

User⇐ (νr1)`.p!〈h[r1],2〉 | r1?()(νr2)
(
g!〈h[r2]〉 | r2?(x) print!〈x〉

)
On the get method, for example, the cell receives a structured value consisting of
a location, bound toz, and a channely at that location, reads the current contents
and sends it along the newly acquired channel. When the cell is defined in this
manner the user may generate new channelsr1, r2, local to its siteh, for the purpose
of communicating with the cell. This interaction strategy on makes the cell less
dependent on global assumptions.

Example 2.3 (A Cell Server) A server for generating new cells may be defined as
servJSK where S is given by:

S⇐∗req?(z[y]) (νcell) z.y!〈cell〉 | gocell.Cell(2)

Upon receiving a new request, the server creates a new cell locationcell, spawns
the cell code at that location, initialized to 2, and then sends the name of the cell
location to the user. A typical user would take the formhJcUK, where:

cU⇐ (νr) serv.req!〈h[r]〉 | r?(z) U(z)

Many variations of cell servers can be described in our language. For example
the following code describes a server which spawns a new cell at a location speci-
fied by the user; moreover the put and get methods are no longer global, but private
to the new cell and the calling user:

cS′⇐∗req?(z[x]) goz.(ν)p,g (Cell(2) | x!〈p,g〉)
cU′⇐ (νr) serv.req!〈h[r]〉 | r?(p,g)U′(p,g)

Example 2.4 (Routed Forwarding) Here we write a programForwarder(h[in],
d[s]) which establishes a connection between the local channelin and the (possibly
remote) channels. By “connection” we mean that messages sent intoin should
eventually find their way to the service channels at destinationd. Such a program
is trivial to write in Dπ:

∗in?(x) god.s!〈x〉
The unpleasant part of the problem specification is that we are not allowed to as-
sume that there is a direct connection from the current location tod. Instead, the
program must consult the local methodroute(d) which returns the name of the
neighboring location that is closest tod, i.e. somewhere between the current loca-
tion andd. To make the program readable, we assume some additional syntactic

6

Hennessy and Riely

conventions, including recursive definitions andlet-expressions.

Forwarder(h[in],d[s]) ⇐ if h = d then
∗in?(x) s!〈x〉

else
let n← route(d)
in gon.(νc) Forwarder(n[c],d[s])

| goh.∗in?(x) gon.c!〈x〉
endif

When theForwarder is started, it checks to see if the destinationd is the same as
the current locationh. If h andd are the same, then there is no need for routing, and
the program can simply set up a forwarding process fromin to s: ‘∗in?(x) s!〈x〉’. If
h andd are different, then the name of a neighborn is retrieved, wheren is between
h andd on the network. Then a new copy of the code is started atn, and a forward
process is set up betweenin andn.

3 Typing

An informal description of the types for Dπ was given in the introduction. Formally
they are a subset of thepre-typesdefined in Table3 which satisfy some consistency
constraints. These pre-types belong to three distinct syntactic categories:

• location types, K, L, of the formloc{κ̃}, whereκi are location capabilities.
• channel types, A, B, C, of the formres{α̃}, whereαi are channel capabilities.
• transmission types, S, T, which can be of the form K for locations, A for local

resources,̃T for tuples, or K[Ã] for dependent tuples with non-local resources.

Location and channel types are identified up to reordering of capabilities; in fact,
they may be viewed simply as sets of capabilities. We also routinely drop brackets
when they are empty.

The types come equipped with a subtyping relation, also defined in Table3. For
location pre-types we have K<: L if for every capabilityλ∈ L there exists a capabil-
ity κ∈K which is “at least as good”,i.e.κ <: λ. Here the location capabilitiesκ and
λ are compared inductively using the associated types,e.g. a:A <: a:B if A <: B.
Subtyping for channels is just as for locations: A<: B if for every capabilityβ ∈ B
there exists a capabilityα ∈ A such thatα <: β. But the subtyping relation on
channel capabilities is more interesting:

r〈S〉 <: r〈T〉 if S <: T
w〈S〉 <: w〈T〉 if T <: S

As one should expect from [22], the read capability is covariant, whereas the write
capability is contravariant. Thus a receiver can always takefewercapabilities than
specified, whereas a sender can always sendmore.

7

Hennessy and Riely

Table 3Pre-Types

Capabilities: Subtyping:
κ ::= go newc κ <: κ

a:A a:A <: a:B if A <: B
α ::= r〈T〉 r〈S〉 <: r〈T〉 if S <: T

w〈T〉 w〈S〉 <: w〈T〉 if T <: S

Pre-Types:
K ::= loc{κ̃} K <: L if ∀λ ∈ L: ∃κ ∈ K: κ <: λ
A ::= res{α̃} A <: B if ∀β ∈ B: ∃α ∈ A: α <: β
T ::= K A (T1, .., Tn) S̃ <: T̃ if ∀i : Si <: Ti

K[A1, .., An] K[Ã] <: L[B̃] if K <: L and Ã <: B̃

Definition 3.1 (Types)

(i) A location pre-typeK is a type if a:A ∈ K and a:A′ ∈ K implyA = A′.
(ii) A channel pre-typeA is a type if:

r〈T〉 ∈ A and r〈T′〉 ∈ A imply T = T′

w〈S〉 ∈ A and w〈S′〉 ∈ A imply S= S′

r〈T〉 ∈ A and w〈S〉 ∈ A imply S<: T

(iii) Pre-types of the form̃T andK[Ã] are types if their constituent components are
types. 2

Thus location types are allowed at most one capability for each channel. Channel
types are also constrained to have at most one read and one write capability. The
final constraint on channel types is a consistency requirement. It prevents agents
from “fabricating” capabilities. For example, it prevents an agent from sending a
value at typeloc{a:A} and then receiving the same value at typeloc{a:A,b:B}.

Readers familiar with [22] will notice that Pierce and Sangiorgi’s channel types
— “PS” types — are also representable in our type system (ignoring recursion).
The PS read type[T]r is identified withres{r〈T〉}, the PS write type[T]w is identi-
fied with res{w〈T〉}, and the PS read/write type[T]rw is identified withres{w〈T〉,
r〈T〉}, which we abbreviate byrw〈T〉. For these PS types, our definition of subtyp-
ing coincides with that of Pierce and Sangiorgi.

Our channel types include many types that are not definable using the system
of Pierce and Sangiorgi, however. For example, the type

C = res{r〈loc{a:A}〉,w〈loc{a:A,b:B}〉}

is not expressible as a PS type. Nonetheless, it is easy to see how such types arise
when agents are granted different permissions on the names in a network.

In addition, our subtyping relation induces a partialmeetoperator ‘u’. No such
operator exists for PS types — consider the types[[]r]r and[[]rw]w.

8

Hennessy and Riely

Table 4A Type System
Values:

Γ(u) <: K

Γ ẁ u:K

Γ(w) <: loc{u:T}
Γ ẁ u:T

Γ ẁ Ui :Ti (∀i)
Γ ẁ Ũ:T̃

Γ ẁ u:K
Γ ù ṽ:Ã

Γ ẁ (u, ṽ):K[Ã]

Threads:

Γ ẁ u:res{w〈T〉}
Γ ẁ V:T
Γ ẁ P

Γ ẁ u!〈V〉P

Γ ẁ u:res{r〈T〉}
fv(X) disjoint fv(Γ)
Γu{wX:T} ẁ Q

Γ ẁ u?(X:T)Q

Γ ẁ U:S
Γ ẁ V:T
Γu{wU:T}u{wV:S} ẁ P
Γ ẁ Q

Γ ẁ if U = V then P else Q

Γ ẁ u:loc{go}
Γ ù P

Γ ẁ gou.P

k /∈ fn(Γ)
Γu{k:K} ẁ P

Γ ẁ (νk:K)P

Γ ẁ w:loc{newc}
a /∈ fn(Γ)
Γu{wa:A} ẁ P

Γ ẁ (νa:A)P

Γ ẁ P
Γ ẁ Q

Γ ẁ stop,P|Q,∗P

Networks:

Γ k̀ k:loc
Γ k̀ P

Γ ` kJPK

Γ k̀ k:loc
` /∈ fn(Γ)
Γu{`:L} `M

Γ ` (νk`:L)M

Γ k̀ k:loc{newc}
a /∈ fn(Γ)
Γu{ka:A} `M

Γ ` (νka:A)M

Γ `M
Γ ` N

Γ ` 0,M |N

The primary judgments of the type system are of the formΓ ` M whereΓ is
a type environmentandM is a network term. Type environments are taken to be
to be maps from identifiers toopen location types, which have the formloc{ũ:T̃}.
The typing system is given in Table3 and uses auxiliary judgments for threads,
identifiers and values. For threads, judgments have the formΓ ẁ P, indicating that
the threadP is well-typed to run at locationw, wherew∈ dom(Γ). This in turn uses
judgments of the formΓ ẁ V:T, which indicates that the valueV is well formed at
w and has at least the capabilities specified by T.

In this extended abstract we do not explain the various rules in detail. Instead,
we briefly look at some examples.

At the thread level to deduce thatgou.P is well-typed to run atw, that isΓ ẁ

gou.P, we need to establishΓ(u) is a location withgo capability and thatP is well-
typed to run atu, i.e.Γ ù P. At the network level to deduce thatuJPK is well-typed,
Γ ` uJPK, we need to show thatu is a location andP is well-typed to run atu, i.e.
Γ ù P.

At the thread level to deduceΓ ẁ u?(X:T)Q we must establish thatu can be
assigned typeres{r〈T〉} at locationw, Γ ẁ u:res{r〈T〉}, and thatQ is well-typed
to run atw. But in showing the later, we may augment the environmentΓ with
the information thatX is of type T, that is we must showΓu{wX:T} ẁ Q. The
formal definition of this environment extension uses thepartial meetoperatoru,

9

Hennessy and Riely

mentioned above. Since the patternX may include structured values, the defini-
tion of environment extension is somewhat non-standard. For example, ifX:T is
(x,z[y]):(B, loc{a:A′}[C]) then:

{wX:T}=
{

w:loc{x:B}, z:loc{a:A′, y:C}
}

If further Γ is {w:loc{a:A}}, thenΓu {wX:T} denotes{w:loc{a:A, x:B}, z:loc{
a:A′, y:C}}. The same notation is used in the rules for restriction.

To deduceΓ ẁ if u = v then P else Q, where inΓ both u andv have location
types — sayΓ(u) <: K and Γ(v) <: L — then it is necessary to establish thatQ
is well-typed to run atw, Γ ẁ Q, and thatP is well-typed to run atw, relative to
an augmented version ofΓ in which bothu andv have inherited each others type
information: Γu{u:L,v:K} ẁ P. It is worth noting that the Routed Forwarding
example of the previous section cannot be typed using the standard typing rule for
matching, which requiresΓ ẁ P; other examples are discussed in the full version
of the paper.

The main result of this section is the following:

Theorem 3.2 (Subject reduction) If Γ `M and M−→M′ thenΓ `M′. 2

Example 3.3 (A Typed Cell Server)As an example of the use of these types to
control access to capabilities, consider again the cell server from Example2.3, this
time annotated with types.

S⇐∗req?(z[y]) (νcell:Lcell) z.y!〈cell〉 | gocell.Cell(0)

where “Cell(0)” represents the code for the cell initialized to 0.
Let us use the abbreviations for PS types introduced on page8. Theallocation

typeLcell of the cell locationcell can then be written:

Lcell = loc{go,newc,g:rw〈Tg〉,p:rw〈Tp〉}
Tg = loc{go}[w〈int〉]
Tp = (loc{go}[w〈〉], int)

Location cell must be given at least the type Lcell in order for the cell code to
typecheck. Note that the channelsg andp must be declared with both read and
write capabilities as the server reads from them and a user must be able to write
to them. The cell requires only the write capability on the response channels it
receives onp andg.

The user’s capabilities on the cell are determined by thetransmission typeTreq

of channelreq (which must have typerw〈Treq〉). If one takes

Treq = loc{go}[w〈L′cell〉]
L′cell = loc{go,g:w〈Tg〉,p:w〈Tp〉}

then this type ensures that a cell user cannot “redefine” the methodsp or g (by inter-
cepting messages sent on these channels), nor can it create new channels at the cell
location. We should point out that this typing also affords some level of protection

10

Hennessy and Riely

to the user. The response channelr is sent to the server with write capability only;
thus the server may not intercept other messages that the user may wish to receive
on r. Perhaps more important, the user’s location is sent without the privilege to
create new channels there, keeping the server from performing any computation at
the users location.

To emphasize the restrictions imposed by these capabilities consider the follow-
ing user:

U⇐ (νr) serv.req!〈h[r]〉 | r?(z) U′(z)

U requests a cell using the response channelr. Then the networkservJSK | hJUK
can reduce to

servJSK | (νcell:Lcell) hJU′(cell)K | cellJCellK

If T req is as above, then one can be sure that the agent U′(cell) has restricted access
to cell in this network. For example, if U′ has the form

U′(cell)⇐ gocell.p?(X) ...

then U will be untypable.
The user may pass on to its clients the capabilities it has received for the cell,

or restrictions of them. For example if U′ has the form

U′(cell)⇐ reqlow?(z[y]) z.y!〈cell〉 | reqhigh?(z[y]) z.y!〈cell〉 | ...
then the capabilities sent tolow and high priority clients can be controlled by
the types of the channelsreqlow and reqhigh. For example ifreqlow has the type
loc{go}[w〈loc{go,g:w〈Tg〉}〉] then low priority clients will not have any access to
the put method at the cell.

4 Type Safety

Due to lack of space in this extended abstract we can only we briefly outline the
Type Safety theorem for Dπ.

We first define a tagged version of the language, where threads are explicitly an-
notated with the permissions/capabilities they have accumulated for locations. The
syntax of threads and values is unchanged from that of Table2; only the network
level is affected, and here only the clause for agents. Each agent of the original
languagè JPK is tagged with aclosedtype environmentΓ which represents the
capabilities (or permissions) of the agent. For example, the agent

`JPK{`:loc{a:A,b:B},k:loc{a:A′}}

has knowledge of resourcesa and b at ` and of resourcea at k. In addition to
recording thenamesof available resources, the tag also records thepermissions
that the agent has acquired for the use of that resource (the types A, B and A′).
This additional information allows fine control in the definition of runtime error.

11

Hennessy and Riely

Table 5Runtime Errors
(e-move) `Jgok.PKΓ

err−−→ if Γ(k) 6<: loc{go}
(e-newc) `J(νa)PKΓ

err−−→ if Γ(k) 6<: loc{newc}
(e-snd) `Ja!〈V〉QKΓ

err−−→ if Γ`(V) 6<: wobj(Γ(`,a))
(e-rcv) `Ja?(X:T)PKΓ

err−−→ if robj(Γ(`,a)) 6<: T
(e-comm) `Ja!〈V〉PK∆ | `Ja?(X:T)QKΓ

err−−→ if wobj(∆(`,a)) 6<: robj(Γ(`,a))

(e-new)
M err−−→

(νe)M err−−→
(e-str)

M err−−→

M |N err−−→

M ≡ N N err−−→

M err−−→

Next the reduction semantics of Table2 is adapted to show how tags evolve
over time. To avoid confusion, we writeM 7−→M′ for tagged reduction. The only
non-trivial change is to the rule(r-comm) which is revised to

`Ja!〈V〉PKΓ | `Ja?(X:T)QK∆ 7−→ `JPKΓ | `JQ{|V/X|}K∆u{`V:T}

Note that here the receiver can accumulate new capabilities from the sender as
∆u{`V:T} denotes the result of augmenting∆ with the information that the value
V at` has acquired the capabilities described by T. As an example, let T= loc{}[C]
in the following tagged network:

`Ja!〈k[c]〉 PK{..., k:loc{b:B,c:C}} | `Ja?(z[x]:T) QK{..., k:loc{d:D}}

After the communication the network is:

`JPK{..., k:loc{b:B,c:C}} | `JQ{|k[c]/z[x]|}K{..., k:loc{d:D,c:C}}

The receptor has gained extra capabilities through this communication, as mediated
through the reception type T.

Next because of the presence of these tags we can easily define a notion of
run-time error; informallyM err−−→ means that somewhere in the (tagged network)
M a thread can use a resource in some manner which contradicts the explicit per-
missions it has accumulated over that resource. The formal definition is given in
Table4, where robj(res{r〈T〉, ...}) = T and wobj(res{w〈T〉, ...}) = T.

The final step in the formalization is to extend the typing system of Table3
to tagged networks,Γ
 M. This is achieved by adding the following rule, where
Γ <: ∆ if Γ(w) <: ∆(w) for everyw in dom(∆).

∆ k̀ k:loc
∆ k̀ P

Γ
 kJPK∆
Γ <: ∆

Within this framework we can prove the following results:

• SUBJECT REDUCTION FORTAGGED NETWORKS: For all tagged networksN,
Γ
 N andN 7−→ N′ thenΓ
 N′

12

Hennessy and Riely

• TYPE SAFETY FOR TAGGED NETWORKS: For all tagged networksN, Γ
 N
impliesN err−X−→

• STRONGEQUIVALENCE OF TAGGED AND UNTAGGED REDUCTION: For every
well-typed (untagged) network,Γ ` M, we can define a canonical well-typed
tagged networkΓ
 tagΓ(M) that is strongly bisimilar toM.

These results, together with Theorem3.2, imply that a well-typed networkΓ `
M is strongly bisimilar to the tagged network tagΓ(M) and that this explicitly tagged
network will never raise a runtime error,i.e. no agent will ever misuse a resource
during its execution.

5 Related Work

There are numerous languages now in the literature for describing distributed sys-
tems; Dπ is perhaps closest in spirit to [9,2,23,3] which also take as their point of
departure theπ-calculus, although with each there are significant differences. For
example in the join calculus [9] message routing isautomaticas the restricted syn-
tax ensures that all channels have a unique location at which they are serviced. In
Dπ, to send a message to a remote location, an agent must first spawn a sub-agent
which moves to that location; locations are morevisible in Dπ. In addition, several
of these languages [9,23,3] adopt location movementas the mechanism for agent
mobility. Location movement allows groups of running threads to be moved about
the network asynchronously (i.e. without each thread performing an explicitgo);
for further discussion, see the full version.

Many channel-based typing systems forπ-calculi and related languages have
been proposed. For example in [22], Pierce and Sangiorgi define a type system for
theπ-calculus with read and write capabilities on channels. Sewell [23] generalizes
the type system of [22] to distinguish betweenlocal communication, which can be
efficiently implemented, andnon-localcommunication. Fournetet al. [10] have
developed anML-style typing system for the join calculus where channels are al-
lowed a certain amount of polymorphism. Amadio [2] has presented a type system
that guarantees that channel names are defined at exactly one location, whereas the
type system of Kobayashiet al. [17] ensures that some channels are used linearly.

The work closest to ours is that of de Nicola, Ferrari and Pugliese [7]. Their
goals are the same as ours, but the specifics of their solution are quite different.
They work with a variant of Linda [6] with multiple “tuple spaces”. Tuple spaces
correspond to locations in our setting, and tuples (named data) correspond to re-
sources. The type system of [7] controls access to tuple spaces, rather than to
specific tuples, and thus provides coarser-grained control of resource access than
that provided by our typing system.

Static analyses for proving various security properties of programs have also
been proposed by several authors; two recent references are [16,13].

13

Hennessy and Riely

Acknowledgements

We would like to thank INRIA Sophia Antipolis for their hospitality while conduct-
ing this research. We have benefited from conversations with Alan Jeffrey, Peter
Sewell and Luca Cardelli, among others.

References

[1] R. Amadio and S. Prasad. Modelling IP mobility. Internal Report 244, Laboratoire
d’Informatique de Marseille, 1997.

[2] R. Amadio. An asynchronous model of locality, failure, and process mobility. In
COORDINATION ’97, volume 1282 ofLecture Notes in Computer Science. Springer-
Verlag, 1997.

[3] L. Cardelli and A. D. Gordon. Mobile ambients. In Maurice Nivat, editor,Proc.
FOSSACS’98, International Conference on Foundations of Software Science and
Computation Structures, volume 1378 ofLecture Notes in Computer Science, pages
140–155. Springer-Verlag, 1998.

[4] L. Cardelli. A language with distributed scope.Computing Systems, 8(1):27–59,
January 1995. A preliminary version appeared in Proceedings of the 22nd ACM
Symposium on Principles of Programming.

[5] N. Carriero and D. Gelernter. Linda in context.Communications of the ACM,
32(4):444–458, 1989.

[6] N. Carriero, D. Gelernter, and L. Zuck. Bauhaus Linda. InObject-Based Models
and Languages for Concurrent Systems, number 924 in Lecture Notes in Computer
Science, pages 66–76. Springer-Verlag, 1995.

[7] R. De Nicola, G. Ferrari, and R. Pugliese. Coordinating mobile agents via blackboards
and access rights. InCOORDINATION ’97, volume 1282 ofLecture Notes in
Computer Science. Springer-Verlag, 1997.

[8] K.M. Chandyet al. A world-wide distributed system using java and the internet. In
IEEE International Symposium on High Performance Distributed Computing. IEEE,
August 1996.

[9] C. Fournet, G. Gonthier, J.J. Levy, L. Marganget, and D. Rémy. A calculus of mobile
agents. In U. Montanari and V. Sassone, editors,CONCUR: Proceedings of the
International Conference on Concurrency Theory, volume 1119 ofLecture Notes in
Computer Science, pages 406–421, Pisa, August 1996. Springer-Verlag.

[10] C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Implicit typing la ml for the join-
calculus. InCONCUR: Proceedings of the International Conference on Concurrency
Theory, Lecture Notes in Computer Science, Warsaw, August 1997. Springer-Verlag.

[11] General Magic Inc. Agent technology.hhtp://www.genmagic.com/html/agent
overview.html, 1997.

14

Hennessy and Riely

[12] A. Giacalone, P. Mishra, and S. Prasad. A symmetric integration of concurrent and
functional programming.International Journal of Parallel Programming, 18(2):121–
160, 1989.

[13] N. Heintz and J.G. Riecke. The SLam calculus: Programming with secrecy and
integrity. InConference Record of the ACM Symposium on Principles of Programming
Languages, San Diego, January 1998. ACM Press.

[14] M. Hennessy and J. Riely. Resource access control in systems of mobile agents.
Computer Science Technical Report 2/98, University of Sussex, 1998. Available from
http://www.cogs.susx.ac.uk/.

[15] IBM Corp. The IBM aglets workbench.http://www.trl.ibm.co.jp/aglets/, 1996.

[16] G. Karjoth, D.B. Lange, and M. Oshima. A security model for aglets.IEEE Internet
Computing, 1(4), 1997.

[17] N. Kobayashi, B.C. Pierce, and D.N. Turner. Linearity and the pi-calculus. In
Conference Record of the ACM Symposium on Principles of Programming Languages,
Paris, January 1996. ACM Press.

[18] R. Milner. The polyadicπ-calculus: a tutorial. Technical Report ECS-LFCS-91-
180, Laboratory for Foundations of Computer Science, Department of Computer
Science, University of Edinburgh, UK, October 1991. Also inLogic and Algebra
of Specification, ed. F. L. Bauer, W. Brauer and H. Schwichtenberg, Springer-Verlag,
1993.

[19] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I and II.
Information and Computation, 100:1–77, September 1992.

[20] ObjectSpace Inc. Objectspace voyager.http://www.objectspace.com/voyager,
1997.

[21] C. Perkins. IP mobility support. RFC 2002, 1996.

[22] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes.Mathematical
Structures in Computer Science, 6(5):409–454, 1996. Extended abstract in LICS ’93.

[23] P. Sewell. Global/local subtyping for a distributedπ-calculus. Technical Report 435,
Computer Laboratory, University of Cambridge, August 1997.

[24] Sun Microsystems Inc. Java home page.http://www.javasoft.com/, 1995.

15

	Introduction
	The Language
	Typing
	Type Safety
	Related Work

