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(Extended Abstract)
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Abstract 2. Malicious agents should not be able to corrupt computation at
good sites; however, not all agents at bad sites are malicious.
We present gartially-typed semantics for B, a distributedre Thus, the static notions of good and bad should not be used
calculus. The semantics is designed for mobile agents in open dis- to prevent actions by an agent; rather, some form of dynamic
tributed systems in which some sites may harbor malicious inten- typechecking is necessary.

tions. Nonetheless, the semantics guarantees traditional type-safety 3
properties at “good” locations by using a mixture of static and dy- ’
namic type-checking. We show how the semantics can be extended

Because agent interaction is commonplace, agent movement,
rather than interaction, should be subject to dynamic type-

i . ) checking.
to allow trust between sites, improving performance and expres-
siveness without compromising type-safety. In practice, the distinction between good and bad sites is made
relative to a particular administrative domain. In the narrowest set-
1 Introduction ting, only one particular virtual machine), or location, might

be considered good, or well-typed, whereas all other machines on

In [17] we presented a type system for controlling the use of re- the network are considereq pqtentially malicious. In this case, the
sources in a distributed system, or network. In particular it guar- goal of a security mechanism is to protect the local machine from
antees that resource access is always safgjnteger resources misuse, while at the same time allowing code from other machines
are always accessed with integers and string resources are alway be installed locally. More generally, the distinction between
accessed with strings. While this property is desirable, it is a prop- good and bad might be drawn between intra- and inter-net, with
erty of the network as a whole. In open systems it is impossible to corporate or departmental machines protected by well-typing.
verify the system as a whole,g.to “type-check the web”. In this Here we are interested in preventing misuse based on type-
paper, we present type systems and semantics which guarantee saf@ismatching — for example, a foreign agent attempting to access
resource access for open systems in which some sites are untypedan area of memory which is unallocated, or is allocated to a dif-

Any treatment of open Systems must assume some unde”yingferentVM; or an age_nt attemptlng to r_ead_an integer location as an
security mechanisms for communication between sites, or loca- &ray, and thus gaining access to arbitrarily large areas of memory.
tions. One approach would be to add security features directly Such type violations may lead to core dumps, information leakage
in the language, as in Abadi and Gordon’s Spi calculi]s [In or the spread of viruses and other virtual pestilence.
such languages code signatures and nonces are directly manipula- We study these issues in the formal setting of B distributed
ble as program objects. Here we take a more abstract approachvariant of there-calculus [L7]. The calculus was introduced i {],
presenting a “secure” semantics for a language without explicit se- but here we use the more recent formulation givenlif].[In Dt
curity features. Of the underlying communication mechanism, we resources reside at locations and mobile agents may move from site
assume only that it delivers packets uncorrupted and that the sourcdO site, interacting via local resources to affect computations. The

of a packet can be reliably determined. typing system of Bxis based omocation typeswhich describe the
We start our development from the following principles: resources available at a site. For example
1. Sites are divided into two groups: tlymod or typed, and loc{puti:res(int), getires(int), putl:res(loc), gettres(loc) }
thebad, or untyped, the latter of which may harbor malicious ) . . )
agents. is the type of a location with four resources, two for manipulating
integers and two for manipulating location names. A feature which
*http://www.csc.ncsu.edu/eos/users/r/riely/wwu/.  Department of it H ) i
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and Computing Sciences, Univ. of Sussex, Falmer, Brighton, BN1 9QH UK. To formalize the notion of “bad sites” in 1) we add a new
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the typing system and a new form of subtyping. We call the result-
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at bad sites are untyped. Nevertheless partial typing ensures thaffable 1 Syntax
resources at good sites are not misused.

The weakness of partial typing allows for the existence of ma- Names: e =Kk Location
licious agents at bad sites. Further, since agents can move, unpro- | a Resource
tected good sites can easily be corrupted; an example of this phe- Values: U.V.W = bv Base Value
nomenon is described iBection3.2. Technically this means that o | e Name
partial typing is not preserved by the standard reduction semantics | x Variable
of DT, a good site will cease to be well-typed if an untypable agent | (u,..,un) Tuple
moves there from an untyped site. The object of this paper is to T .
formalize a protection policy for good sites against such malicious Patterns:  X,Y =X Variable
attacks. | (X, -, Xn) Tuple

As in [27, 19, 15, 1§], the basic idea is to require that code ThreadsP,Q,R ::= stop Termination
be verified before it is loaded locally. Unlike these references, PIQ Composition
however, our work is explicitly agent-based, and allows incoming (veT)P Restriction
agents to carry references to resources distributed throughout the gou.P Movement
network; further, our approach supports the introductionrast ul(v) P Output
between sites, as described below. u?(X:T)P  Input

Verification of incoming agents takes the form of dynamic type- «P Replication
checking, where incoming code is compared agaifiidtea for the if u=vthen Pelse Q Matching
target site. Filters provide an incomplete, or partial, view of the . .
types of the resources in the network, both local and remote. Since Networks:M,N ::= 0 Empty
the information in filters is incomplete, the dynamic typechecking | M ||\_‘ Composltlon
algorithm must be able to certify agents even when the filter con- IQ{[S]?T) N Egzmctlon

tains little or no information about the agent’s site of origin; other-
wise, it would forbid too many migrations. But this is potentially
very dangerous, as malicious agents may lie about resources at their
origin or at a third-party site.

We avoid this danger by developing an adequate semantics2 The Language and Standard Typing
based on the notion @futhority. An agent moving from location

k to ¢ is dynamically typechecked under the authoritykpfising In this section we review the syntax and standard semanticstof D
the filter for¢; every resource access must be verified either by the €xtended with base values. For a full treatment of the language,
filter or the authority. The full development is given$ection4, including many examples, see.

where we prove Subject Reduction and Type Safety theorems for

this semantics, ensuring that resource access at good locations i2.1 Syntax

always type-safe. This approach should be contrasted with that of o . . . .

[17], which gives an adequate semantics for networks in which the The Syntax is given iffable 1, although discussion of types, T, is

authority of incoming agents cannot reliably be determined. postponed t@&ection2.3. The syntax is parameterized with respect
One drawback of this framework is that every agent must be to the following syntactic sets, which we assume to be disjoint:

dynamically typechecked when moving from a site to another. To Base of base valuesranged over byv,

alleviate this burden, irsection5 we introduce a relationship of Loc, of location namesranged over bk-m,

trust between locations, formalized using the location tifpest. Res of resource namesanged over by—d,

We then modify the operational semantics so that agents originating Var, of variables ranged over by-z.

at trusted locations need not be typechecked. Although technically

this is a simple addition to the type system, it is also very expres- The main syntactic categories of the language are as follows:

sive. The result is that the network is divided imtebs of trusand

agents can only gain entry to a web of trust via typechecking. Once

entry to a web of trust has been earned, however, an agent can move

freely around the web; it will only be typechecked again if it leaves

a web and subsequently wishes to reenter. Moreover these webs

of trust may grow dynamically as incoming agents inform sites of

other sites that they can trust.

e Threads P-R, are terms of the ordinary polyadiecalculus
[16] with additional constructs for agent movement and re-
striction of locations.

e Agentsk[P], are located threads.

e Networks M—N, are collections of agents combined using the
static combinators of composition and restriction.

These, in turn usdlames ewhich include location names and re-
source name$§/alues u—w, which include base values, names, vari-
‘ables and tuples of values aRdtterns X-Y, which include vari-
ables and tuples of patterns; we require that patterns be linear,
that each variable appear at most once.

As an example of a network, consider the term:

The paper proceeds as follows. $ection2 we review DOt
and its standard semantics, including the standard typing system
Section3 introduces the notion of partial typing and shows that
partial typing is not preserved by the standard reduction relation.
Section4 presents the formalization of filters and dynamic typing,
showing how these are incorporated into the run-time semantics.
In Section5 this framework is extended to include trust. The paper .
ends with a brief discussion of related work. Pap IPTI(veaT) (EHQH | k[[R]])

In this extended abstract all proofs are omitted, as is much of Thjs network contains three agent§P], ¢[Q] andk[R]. The first
the discussion. The full versior{] is available atftp://ftp. two agents are running at locatiénthe third at locatiork. More-
cogs.susx.ac.uk/pub/reports/compsci/cs0498.ps. Z. over Q andR share knowledge of a private resouaef type T,

allocated at and unknown td.
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In the sequel we use i), respectively fiiN), to denote the
set of variables, respectively names, that occur freld.irA term
with no free variables islosed We write P{Yx|} for the capture-
avoiding substitution ofi for X in P. We adopt standard abbrevi-
ations from ther-calculus [L7], e.g.dropping final occurrences of
stop, writing uj, .., Uy ast, and identifying terms up to renaming
of bound names and variables. We also systematically omit type
annotations when they play no role in the discussion, for example
renderingu?(X:T) P asu?(X) P.

2.2 Standard Reduction

The standard reduction semantics is defined using two relations
over closed network terms, a reduction relatidh{— N) and a
structural equivalenceM = N). The relations are defined using

a set of axioms. So that these axioms may be applied anywhere

within a network context, we introduce the idea of a network pre-
congruence. A relatios over networks is defined to benatwork
pre-congruencé N = N’ implies

e N|M = N'|M,
e M|N = M|N’, and
o (VkeT)N = (vweT)N'.

The reduction pre-congruence is formalized as the least net-
work pre-congruence which satisfies the axioms givehaible 2.

The reduction axioms for communicatiéricomm) and matching
(r-eq) are taken directly from thercalculus, with a few changes

to accommodate the fact that agents are explicitly located. Note
that communication can only occur between colocated agents.
The most important new rule i&-move), k[go?.P] — ¢[P],
which states that an agent locatedkatan move to/ using the
move operatogo £. P. Also significant is(r-new), k[(ve:T) P —
(vke:T)K[P], which states that a name created by a thread can be-
come available across the network. Note that when a new name
is lifted out of an agent, the network-level restriction records the
name of the location which allocated the name; these location
tags are used only for static typing. Finally, the rdlesplit),

K[P| Q] — K[P] | K[Q], allows an agent to spawn off subagents
which are able to move around the network independently. The
only reduction rules that vary significantly in later sections are
(r-move) and(r-new).

The structural congruence is defined similarly; itis the least net-
work pre-congruence that satisfies the axiom3atifle 2, together
with the laws for equivalences and the standard monoid laws for
parallel compositiort. The axioms given ifable2 provide means

Table 2 Standard Reduction

Reduction pre-congruence:

(r-move)  k[gol.P] — ¢[P]
(r-new) K[(veT)P] — (vkeT)k[P] if e#£k
(r-split)  K[P[Q] — K[P]|K[Q]
(r-comm) Kk[al{v)P] | k[aZ(X) Q] — K[P] | K[Q{7xX}]
)

(r-eq1) K[if u=uthen Pelse Q] — K[P]
(r-eqp) K[if u=vthen Pelse Q] — K[Q]

Structural congruence:
(s-extr) M| (vkeT)N = (weT)(M|N) if e¢ fn(M)

if u£v

(s-grbg1) (vkeT)0 =0
(s-grbga) k[stop] =0
(s-copy) k[xP] = Kk[P] | K[*P]

Beside each reduction, we have written the axioms used to infer
it, omitting mention of the monoid laws. An example of a process
Q that uses the received val(eX) is ‘goz x! (1)’, which after the
communication becomegok.al (1)’

2.3 Types and Subtyping

The purpose of the type system is to ensure proper use of base
types, channels and locations. In this paper we use the simple type
language from2, §5]. We use uppercase Roman letters to range
over types, whose syntax follows:

Res: A-D := res(T)
Loc: K,L = loc{a;:Ay, .., @n:An, X By, .., Xn:Bn}
Val: ST =BT |K|A|K[A, .,An]| (Ts, ., Tn)

The syntax provides types for base values, locations, local re-
sources and tuples. Types of the fornfAK are dependentuple
types, which allow communication of non-local resources; we dis-
cuss these further in the next subsection.

We require that each resource name and variable in a location
type appear at most once. Location types are essentially the same
as standard record types, and we identify location types up to re-
ordering of their “fields”. Thudoc{a:A, b:B} = loc{b:B, a:A}.

We write ‘loc’ for ‘ loc{ }'. Note that in general location types may
contain variables. This is convenient for typing, but in the syntax

for the extension of the scope of a name, for garbage collection of threads and networks, givenTable1, we restrict all types to be
of unused names and terminated threads, and for the replication of¢josedi.e. no variables can appear in location types in terms.

agents.

The main reduction relation we are interested in(4s-) =
(=-+— - =); this allows structurally congruent networks to be
considered “the same” from the point of view of reductions. As an
example, suppose that we wish to write a network with two agents,
one atk and one af. The agent ak wishes to send a fresh inte-
ger channed, located ak, to the other agent using the channogl
located a¥. This network could be written:

([cAzx) Q[ | K[(va) (P | got.c!(k,a))]
— ([c2z,x) Q] | (vka) (K[P | got.cl(k,a)]) (r-new)
— £[cAz,x) Q] | (vka) (K[P] | k[got.cl(k,a)])  (r-split)
— £[c2z,x) Q] | (via) (K[P] | £[c!(k,a)]) (r-move)
)

— (i) ([Q{*Fzx}] | K[P]

1The equivalence laws art = M, M = N impliesN = M, andM = N andN = O
imply M = O. The monoid laws areM |0 =M, M|N=N|M, andM | (N|O) =
(MIN)|O.

(s-extr) (r-comm) (s-grbgs

The subtyping preorder (¥ S) is discussed at length in].
On base types and channel types there is no nontrivial subtyping;
for example res(T) <: res(T’) if and only if T=T’. On location
types, the subtyping relation is similar to that traditionally defined
for record or object types:

loc{ti:A, V:B} < loc{ti:A}
On tuples, the definition is by homomorphic extension:

S« T _ ifviiS<Ti _
K[A] <: L[B] if K<L andA<: B
An important property of the subtyping preorder is that it has a

partial meet operaton, which will enable us to accumulate typing
information associated with identifiers.



Table 3 Standard Typing

Values (rules for base values not shown):

rue<T M (w) <: loc{u:A}
M uT I Ky A

[y UK
IR ui:Ti (Vi) Mg vB
M UT [y (U, V) :K[B]

Threads:

I usS

M vT
I gy u:loc F{wuT}{wW:S} K P
MgP e
Iy gou.P Iy if u=Vvthen Pelse Q
Iy uires(T) I Ky wres(T)
M vT fv(X) disjoint fv(I")
MwP FO{wX T} i Q
Ik ul(v)P I K Uu2A(X:T)Q
rwP e¢ ()
M Q rm{weT} P
[ stop, P|Q, *P [ (veT)P

Networks:
e¢ () re=m

rEP rh{eT} FN rEN
- K[P] rF(weT)N FFO,M|N

Definition 1. A partial binary operator1 on a preordefS, <) is
a partial meet operator if it satisfies the following for everys,

teS
(@) r <tandr < simply trisdefined and <trs

(b) trsdefined impliegns=<t

(c) (tms)mr=tn(srr)

(d) tms=smnt
In the last two conditions- refers to partial equality; if one of the
expressions is defined the other must also be defined. d

Proposition 2. The set of types, under the subtyping preorder, has
a partial meet operator.

Proof. (Outline) On location types this operator is induced by the
following equation:

loc{U:A} Mloc{V:B} = loc{T:AUV:B}
if Vi,j:u = vjimplies A = B;
For example:

loc{a:A, b:B} Mloc{b:B, c:C} = loc{a:A, b:B, c:C} O

2.4 Standard Typing
Judgments in the typing system take three forms:

=N NetworkN is well-typed
M P ThreadP is well-typed to run at locatiow
Ik v:T  Valuevcan be assigned type T at locatian

Herel andA range ovettype environmeniswvhich map location
names to location types and variables to base types or location
types? For example, the following is a type environment:

= {tloc{a:A,x:B}, yint, Zloc{a:A’} }

We write " (u) to refer to the type of identifien in . So forl" as
defined above; (z) = loc{a:A’} wheread (u) is undefined.

The standard typing system is definedTable 3. We presup-
pose a set of rules for base values, which, for example, say that
integer constants have typet and the boolean constant@nd f
have typebool. In Table3, there are two rules for identifiers. The
first applies to “universal” identifiers in the domain of the type en-
vironment: location names and variables of location or base types.
The second applies to “local” identifiers in location types: resource
names and variables of resource type. Universal identifiers have a
consistent meaning across all sites, whereas local identifiers do not;
e.g.the location namé refers to the same thing no matter where it
occurs, whereas the resource hamoes not.

Note that when typing a dependent tuglev), the typing of
V is deduced with respect to the location identifier Thus if
Ik (k,a): (K,A) thenk anda are two independent values whose
type consistency is checked independently. On the other hand if
Ik (k,a):K[A] thena is considered to be a resource at the loca-
tion k, and this judgment depends atve well-typed ak, I  a:A.

We emphasize this use of dependent types with some notation:

Notation. In examples, we us.e[V/ld:ef (u,V) to indicate that the
tuple (u,v) has a dependent type[A. O

For networks and threads, the main rules of interest are for
agents and movement, respectively. For the ag?it to be well-
typed, P must be well-typed at locatiofi whereas for the thread
gou.P to be well-typed at some locatiom, P must be well-typed
at the target location.

The rules for input and restriction are intuitive, although they
make use of some notation for updating environments, defined in
AppendixA. Suppose, for example, we wish to infer the judgment
I | U?(X:T) Q. By a-conversion we may assume that the variables
in the patternX are distinct from those in the environmdnt So
we need to establish two facts:

e relative tol", the identifieru is a resource at the location
i.e.T Ky wres(T), and

o the continuatiorQ is well-typed relative td" augmented with
the typing information in:T.

This extension of the type environment is represented &s
{wX:T}, the meet off and the environment constructed frofn
and T relative tow, {WX:T}. For example ifX:T has the form
x:A then the extra information added 10 is the environment
{wx:A} = {w:loc{x:A}}; in typing Q we are therefore allowed to
assume that is a resource of type A local to. On the other hand
if X:T has the forng[x]:K[A] then the extra information addedfo
is the environmen{yz[X:K[A]} = {zKMloc{x:A}}. Here when
typecheckingQ we can assume thatis a resource of type A at
locationz, which in turn has the type Rloc{x:A}.

Similarly the network(via:A)N is well-typed with respect to
I if adoes not appear in andN is well-typed with respect t6 M
{kiloc{a:A}}, since{xa:A} works out to be{k:loc{a:A}}. Also
provingl™ K, (vkl:L) N involves establishing M {¢:L} K, N since
{kl:L} ={¢:L}.

2For simplicity, the typing system defined here requires that every tuple be fully
decomposed upon receptidre., terms of the forma?(x:(int,int)) P are not typable.
The more general case is straightforward, but requires a more complex treatment of
location types.




The rule for matching allows the combination of capabilities Table 4 Partial Typing Relation
available on different instances of a location name. Note that the o
rule may only be applied whenrST is defined. In the case that Al rules from Table3 but those for restrictionv)
S=T, the rule degenerates to the standard rule for conditionals:

T # Ibad
Mk, uT,vT,P e¢f(r)
wUT, VT, P Q bad I (w) = Ibad rm{weT} P
[t if U= Vthen Pelse Q (t-bad) o5 —— (tnews) =GP
The extra generality of the rule is necessary to type threads such as (k) = Ibad T # Ibad
the following: tgm(r) e¢f(r)
( ) rn{¢lbad} =N ( ) rm{xeT} N
cnewp)— ) new,)—— f 7
a2(zx]) b2(wly]) if z=wthen goz (x?(u) y!(u)) ) T WD) N e T (Ve )N
This thread receives two remote channels from different sources,
then forwards messages from one channel to the other. Further ) . )
examples are given inLP] where we argue that the more general Type environments are now more expressive. A typical exam-
rule is crucial for typing many practical applications. ple is given by:
The typing system satisfies several standard properties such as .
type specialization, weakening and a substitution lemma, as de- k :loc{a:res(int)}
scribed in [LZ]. The following result establishes the fact that well- b:res(loc[res(bool)])
typedness is preserved by reduction. Together with a Type Safety Fr=<¢ ¢: Ioc{ c:res(loc[res(int)]) } *
theorem, again described in7], this ensures that well-typed terms d:res(lbad)
are free of runtime errors throughout their execution. m : Ibad
Theorem 3 (Subject Reduction for the Standard Semantics). Here we have three locatioris,/ andm, the first two of which are
f T -Nand N— N’ thenl - N’ 0 typed, and the last untyped. Of the good (typed) sites, we know

thatk has an integer channal and/ has three channels; which
i i communicates dependent tuples with the second element being an
3 Partial Typing integer channekb, which communicates dependent tuples with the
second element being boolean channels; @wehich communi-
cates untyped locations. We will use this environment in most sub-
equent examples in this section and the next.
The typing relation given iffable 3 may now be applied to

. . . X ) X - ) this extended language of partial types with the result that untyped
sites In this section we first define gartial typing systenwhich locations enjoy many expected properties. For example, since

allows agents at certaimtypedor bad locations to have arbitrary, a4 < loc{a:res(int)} andlIbad <: loc{a:res(bool)}, we can in-
potentially malicious behavior. We then present an example which ¢,

shows that the standard semantics is inadequate for partially typed {milbad} K, (a,a):(res(int), res(bool))
systems and finally point to the solution proposed in later sections. ) m ’

The purpose of this paper is to study systems in which only a sub-
set of agents are known to be well typed. Since agents themselve
are unnamed and can move about the network, we draw the distinc-
tion between the typed and the untyped worlds usiegtions or

In general we can infer that a resource at an untyped location has
any resource type, meaning that local computations at these loca-
tions are unconstrained by typing considerations; this is the case
To capture the notion of antypedocations formally, we introduce  even if the resource is restricted.

a new location typdpad, into the type language. We use the terms Agents can also use the type information to infer that a remote
untypedandbadinterchangeably, similarltypedandgood Loca- location is untyped. For example consider the network

tion types are now defined:

3.1 The Partial Typing Relation

o L[b?(2) c2w) if z=wthen d!(2)]
K,L::=loc{&A,XB} | Ibad
which is well-typed with respect o, from (*). If an agent receives

We sometimes refer to types in the augmented languagaréisl the same dependent pair (safg]) on both the channels andc,
types The subtype relation is extended to partial types by adding then it can determine that locations untyped. Thus the agent can
the following subtyping rule: subsequently output on d, a channel that transmits locations of
N the typelbad.
Ibad <: loc{t:A} Despite these examples, the standard typing system does not

quite capture the notion of “untyped location”, even with the addi-
This reflects the fact that channels at an untyped location may tion of Ibad. Most important, the standard typing rule for move-
have any type and consequently behavior at bad locations is un-ment does not allow untyped locations to send malicious agents
constrained. With the addition dbad, the partial meet operator  to typed locations. We would like to have tHat- m[gok.al (t)].

becomes total on location typés. Here an untyped agent at attempts to move t& and misuse the
o (TEBUTTY i ViLD: - integer channead by sending on it the boolean valueThe standard
3 ~= ~3 _ Jloc{t:SUV.T} if Vi,j:u =v;impliesS =T, . o
loc{U:S} M loc{V:T} = {|bad otherwise typing rule for movement, however, does not allow this judgment,
Ibad M loc{V:T} = Ibad since it requires thaa! (t) be well-typed ak, which definitely is
loc{i:T} M Ibad = Ibad not the case.

Thepartial typing relationis defined inTable4. All of the rules
of the standard type system carry over to the partial typing system



but for those concerning restriction, which require an additional The semantics presented in the following section will prevent
side condition. The introduction of the rule-bad) allows untyped the reduction of 1) to (2) by dynamicallytyping certain agents

locations to have truly arbitrary behavior, including the ability to when they move from one location to another. To accomplish this,
(attempt to) send malicious agents to good locations. Thus the par-we augment the standard reduction semantics with type informa-

tial typing relation validates the judgmentt m[gok.al(t)]; here tion detailing the resources available at each site. Significantly, this
the malicious sitam attempts to send to the good sken agent type information is heldbcally at each site, and thus sites will have
which will misuse the resource differentviewsof the network. Crucial to this semantics is the abil-

The rule(n-new,,) says that locations created at untyped loca- ity of a location to determine thauthority of an incoming thread,
tions should themselves be untyped. This rule is required to main- i.e. the location from which the thread was sent. This semantics

tain well-typing under reductions such as: is improved inSection5 by addingtrusted locationgo the type
system. In each of these sections, the main results are Subject Re-
K[(ve:L)gol.P] +— (vkl:L)K[go L. P] — (vil:L) £[P] duction (for the partial typing relation) and Type Safety.

) It is worth contrasting this approach with the “purely local” ap-
The rules(t-newg) and(n-newg) are as in the standard type sys- proach adopted for “anonymous networks” irt]. In anonymous
tem, but require that typed locations not create untyped ones. Thispetworks, the authority of incoming threads is not known. The se-
“reasonableness requirement” is necessary to establish Type Safetymantics of [.3] uses a weaker typing system requiring consistency

as formulated in"heoremi.2. only of local resource types. Thus, in that work) (s taken to be
well-typed, with subject reduction failing only in the move from
3.2 An Example (3) to (4). The chief advantage of the current work is that it permits

. . . . the use ofrust, which appears to be incompatible with terms such
Consider a system with two agents/atvaiting to receive dataon 55 ).

channelsc andb, respectively. The first agent will expect, as the
second element of the tuple it receives, the name of an integer chan- i .
nel, whereas the second will expect the name of a boolean channel# ~ Filters and Authorities
In addition suppose that there are agentsatdm poised to send
data to¢ on channelx andb, respectively. Such a system is the
following:

In this section we propose a semantics which recovers subject re-
duction for partially-typed networks. The solution assumes that the
N= ([c2(wly]) gow.y!(0)] origin, orauthority, of incoming agents can be reliably determined.
| £[b?(Z]X]) gozX!(t)]
| Klgot.c!(fal)] _ ! o
| m[go?. bl (k[a))] To accomplish dynamic typechecking, it is necessary to add type
] information to running networks. We do this by addindilter
Here the agents dtandk are all quite reasonable; they could be  k(A) for each locatiorkin a network. The filter includes a type en-

4.1 Syntax and Semantics

typed using the standard type systemrable3. The final agent,  vironmentA which givesk's view of the resources in the network.
atm, however, flagrantly violates the types of chanrelandb; Suppose that in a netwol, locationk knows that there is resource
this agent intends to send an integer chanapivhere a boolean  nameda of type A at locatior?. This intuition is captured by re-
channel is expected (d). _ _ _ quiring thatN have a subterrk(A) such thaiA(¢) <: loc{a:A}.

One can easily see that, using the standard typing system (with- = Formally we extend the syntax of network&ble1) to include
out Ibad), for noA do we haveA F N. This is because channal filters, as follows:
atk may be bound to eithsror x, and these identifiers are subject
to conflicting uses. There is no assignment of standard types to N = ... | k{d)
b andc that satisfies all of the constraints givenrNn On the other
hand, using the partial typing system, we héve N, whererl is We say that a terrk(A)) is afilter for k. Intuitively each location

as in ¢). This well typing, however, is not preserved by reduction. k should have exactly one filter associated with it. This constraint
The agents communicating ereduce unproblematically, first ~ could be formalized within the typing system, but for simplicity we
with a move fromk to ¢, then a communication, then a move from prefer to treat it separately.
£ to k. All of these reductions preserve well-typing undler
The agents communicating dnevolve in the same way, the  Definition 4. We say that a network is well formedif for every
only difference being that the first move is framrather than from k € fn(N) there is exactly one subterm Nfwhich is a filter fork,

k. Using standard reductiofigble2), we have: and for every subterrfwm:L) M of N there is exactly one subterm
of M which is a filter for. O
([bz[x]) goz.x!(t)] | m[gos.b! (K[a])] @
— ([b?(zZ]x]) goz XI(t)] | ¢[b!(k[al])] @) We refer to networks with filters aspen networksind for the rest
. ([gok.al ()] 3) of the paper, we assume they are always well-formed.
— k[al(t)] (4)

Static Typing The static typing relation extends thatTafbles 3
and 4 with the two rules for filters, given ifable5. The rule
(n-filterg) requires that a filter for a good locatiGrmust have full
knowledge of the resources lafI" (k) = A(k)) and a view of the
rest of the world that is consistent with reality <: A). The rule
(n-filtery,) indicates that filters for bad locations may be arbitrary.
These typing rules guarantee that whenever a filter exists, it must
have a reasonable view of the world.

Here, however,4)—(4) are not well-typed unddr. This fact is ob-
vious when consideringlf where an agent & attempts to send a
boolean on an integer channel. Already 2, (however, typing un-
derr fails. In order to infef” - £[b! (k[a])] we must establish that
forsome T[T k bires(T) andrl K k[a]:T. Given the type obat?, we
would have to take F loc[res(bool}], butl" ¥ k[a]:loc[res(bool)],
sincea is an integer channel &t



Table 5 Typing and reduction using filters

Static typing: all rules fronTable4

M< A
il F(TO =4(K) citrar. 1. (K) =bad
(n- 1 terg)W (n- | terb)w

Reduction:(r-split), (r-eq1) and(r-eqz) from Table2

(r;-move)  K[gol.P] | £{A)
—  L[P] | £4A)
ifk=CorA IIKP

(r¢-newr) K[(va:A)P] | k(A)
— (w@A) (K[P] | k{Ar {kaAl}))
if a¢ fn(A)

(re-newl) K[(VE:L) P | k()
— (L) (KIP] | kAT {eLy) [ £({eLh))
if £¢fn(A)U{k}

(rf-comm) ~ K[al(v) P] | K[a2(X:T) Q] | k(A)
—  K[P[ [ KIQ{/X}] [ k(AM {kv:T})

Dynamic typing: all rules fronTable4, ‘II—'V(\,’ replacing ‘K’

Ibad <: K
(Vf-se|f1) aki (Vf-Se|f2) ki
Al kK Al aA
(te-return) ———
A IRy gok. P

Reduction The reduction relation for open networks is also
given in Table 5. The purpose of filters is to check that incom-
ing agents are well-typed. Thus, the main change to the semantic
is the replacement of the reduction rgtemove) with:

(DY) | Klgol.P] — (D) | £[P] ifk=CorA P

HereA H—f P is adynamic typing relationdiscussed below, which
intuitively says thaP is well-formed to move to locatiofy if acting
underauthority of k Agents originating locally are assumed to be
well-typed and therefore need not be checked dynamically.

relation:(ll—'\f\,) = (k). In effect, this would limit incoming agents to
include only names of resources that are known in advance. While
this is certainly sound, it is much too restrictive; for example, new
resources could only be used by agents that originated locally. Con-
sider the system (where the filterlkais omitted):
kl[(va)gol.bl(k[a])] | £[b?(Zx))P] | £(A) (5)
Here k creates a new resource and wishes to communicate it to
£. However With(H—{fv) = (k) the move fromk to ¢ is refused —
(r;-move) cannot be applied — since the filtArat £ can have no
knowledge of the new resouree

At the opposite extreme, we might allow threads to include any
reference to non-local resources. However, this approach is clearly
unsound from the counter-example given in the last section. The
difficulty is that threads from bad locations may provide incorrect
information about good locations, breaking subject reduction.

To straddle the gap between sound-but-useless and unsound-
but-expressive, we introduce the notionaafthority. We say that
an agent leaving a locatidnactsunder the authority of kWhen
an agent with authoritk enters another location, we say tlkas
theauthority of the agent.

While it is not safe to allow incoming agents to referaoy
non-local resources, it is safe to allow them to refer to resources
located at their authority,e. at their “home” location. Intuitively
this is true because, under this discipline, “bad” agents can only
“lie” about resources located at their authority, which must have
been a bad location to begin with. Lies about bad locations don’t
hurt well-typing, since bad locations are untyped.

Formally, the rules for runtime typing extend those of the static
type system given iffables 3 and4 with two additional rules for
values and one for threads. These rules allow references to an in-
coming agent's authority to go unchecked. The riygeself;) al-
lows an incoming agent to refer to its authorky regardless of
whether the filter environmedt contains any information abolt
(Note that the conditiotbad <: K is vacuously satisfied; we include

dt here only for reference in the next section.) The rideselfy)

allows an incoming agent to refer to resources at its authority. As
an example, lef\; = {¢:loc{arres(K[B])}}. Although we cannot
infer thatA, 1 al(k[b]) using the static typing system, we can de-
dUCEA(”‘? al (k[b]) using the dynamic typing relation. Thus the
following reduction is allowed by the semantics:

klgot.al (kb)] | £4Ar) — ¢[al(kb] | £(Ac)

The rule (t¢-return) allows a thread to return to its home loca-

As a network evolves, the filter at a site should be augmented tjon without subjecting the returning thread to further typecheck-

to reflect that sites increasing knowledge of the network. At the
very least this should include updates with information about new
local resources. The rules-newr) says that when a new resource
a is created ak, the type of that resource is recorded in the filter
for k. This ensures thatcontinues to have full knowledge of local
resources. Similarly when a new locatiéiis created by, a new
filter should be created fdrand the filter folk updated to establish

a view of¢. This is achieved by the rulgs-newl).

ing. This rule allows some additional expressiveness and reduces
the burdens of typechecking somewhat.

Note that while the static typing system interprets the rules of
Tables 3 and4 with respect to an omniscient authorify)( the dy-
namic type system interprets these rules with respect to the knowl-
edge contained in a filte®\( wherel™ <: A). Whereas untypability
with respect td"™ indicates that a network is malformed, untypa-
bility with respect taA may simply indicate thah has insufficient

In addition, filters may take other measures to increase their jnformation to determine whether an agent is malicious or not.

knowledge of the network. One possibility is that information is

extracted from values which are communicated at the site: when a
value is received at a site, the site’s filter is augmented to include

4.2 Examples

any new information that can be gleaned from the communicated Example 5. First we show how filters are updated via communi-

value. The rule(ri-comm) formalizes this idea. Alternatives are
discussed in the full version.

Dynamic Typing One approach to dynamic typing would be to

take the dynamic typing relation to be the same as the static typing

cation with imported agents. Consider the open netwbjkd(s-
cussed above, where the locatlowishes to transmit té the name
of a new local resourca of type A. Suppose the filter dtis A =
{l:loc{b:res(K[A])}}, so that¢ has no information about location



k. Then we have the following reductions (we Uis® represent the

filter atk, the contents of which are not important for the example):

k(M) | KI(va:A) go.bi (Kfal)] | £[b2zx:K[A])P] | £(a)
(@A) k(") | Klgot.bl(Klal)] | £[b2zX:KIA])P] | £(a)
(vi@A) k(") | £[bt(Kal)] | e[o2zX:KIAT)P] | £(a)

—

(via:A) k(I") | fstop] | £[P{*Fzx}] | £(A)

wherel =T M {kloc{a:A}} andA’ = An{kiloc{a:A}}.

The first move, using the rul@s-newr), extrudes the local re-
sourcea atk, updating the filter ak accordingly. Using the struc-
tural congruence, the scopeaé€an be extended to inilude the en-
tire network. Therfrs-move) may be employed sinae |, b! (k[a]).
Here the dynamic typing by the filtérat ¢ of the incoming thread
b!(k[a]) succeeds essentially because of the fwieself,); the
thread only communicates the names of resourcé&sitt author-
ity. Finally a local communication at is performed, using rule
(rf-comm). Not only is the value communicated B but the filter
at/ is also updated; after the communication, the filterfa@on-
tains information about the type of resourcatk. a

Example 6. Let us now revisit open networkl) discussed in
Section3.2, which shows that partial typing is not preserved by

Example 8. An untyped site will also succeed in sending an agent
if the reception site already knows the information being received.
For example suppogts filter is extended so thatknows the type

of resourcea atk, that isA(k) = loc{a:res(int) }. Then we have the
reduction

mlgol.cl(kfal)] | £{A) — ¢[c!(ka])] | £(A)

because of the inferene‘.‘ekg' cl(k[a]). Of course the authority ah
plays no role in this judgment. O

Example 9. The information in filters determines which migra-
tions are allowed and reductions in turn may increase the infor-
mation in filters. This means that certain migrations can remain
blocked until the appropriate filter has been updated.

Consider the following open network, again typed using the
environment™ given in (), whereA is the restriction of” onto/,
e A={r )}

migo/.cl{kla))] | K[got.c!(k[al)] | £[+cAzX])P] | £{(A)
Here the migration fronrm to ¢ is not immediately possible, since

A}FZ” c!(k[a]). However the migration fronk is allowed since

AII—'Z c!l(k[a]), and the network reduces, after communicatiorcon
to:
migot.cl(ka)] | £[P] | ([+c2z[x))P] | £a")

the standard reduction relation. To use the new semantics, we mustyparep’ — P{k32x} andA’ = AN {kiloc{azres(int)}}. The mi-

add a filter for each location. Here we show only the filter for
£{A), whereA satisfies the constraints ¢i-filterg). Thus, let us
consider the open network

I Fmigoe.bi(k[a))] | £¢A)

wherel is given by €) in Section3.1 Note that the agent an
attempts to misinform and agentéabout the type of the resource
aatk. In the revised reduction semantics the move froro ¢ is
allowed only ifAH—L,“ b! (k[a]), that is if we can dynamically type-
checkb!(k[a]) using the filterA under the authorityn. But this is
impossible, given the constraint thiat- ¢{(A). To see this, first
note that/ has full self-knowledgei,e. A(¢) =T (¢), and therefore
A(¢) must have the entri:res(loc[res(bool)]); therefore to type
the term we must be able to deduﬁé{?a:res(bool). Next note
that A must be consistent with reality, namdly This means that
if A has knowledge of the resoureeat k then it must be at the
conflicting typeres(int); therefore the rules ofable 3 cannot be
used to inferAIﬁTa:res(bool). Finally, sincek is not the authority
of the thread, neither can the additional ruleSable5 be used to
justify the claim thaﬂlﬁr("az res(bool). It follows that the inference
Al b (K[a]) is impossible. O

Example 7. Let us now modify the previous example so timat
attempts to relate information about @w/nresources, rather than

gration fromm to ¢ can now take place, allowing the network to
reduce, after a further communication, to:

(P[P | el+cAzX) P | £4a)

sinceA’Il—Ln c!l(k[a]) . In the absence of other agents, the migrations
can only be executed in one ordérfifst). O

Example 10. As afilter is updated, contradictory evidence may be
obtained about a site, in which case the site must be untyped and
can safely be assumed to be bad. As an exampleded the filter

A= {£:T(¢)} be as before, and consider the open network:

m[go £. b (m{d]) cl(m[d])] | ([b?(Z[x]:T)cAwly}) P] | £(A)

where T is the same type &sat ¢, res(loc[res(bool)]). After the
migration frommto ¢ and one communication this reduces to

(et (mid))] | £[c2wly) P] | £4a")

wherel’ = Ar{miloc{d:res(bool)}}. After the second communi-
cation, the network reduces to

([P"] | £4a”)

those ofk. In such cases, movement always succeeds, whether orwhereA” = A’ {mloc{d:res(int)}} = Ar1{mIbad}. O
not the source site is bad. As an example suppose the thread at

locationmis changed tan[go . b!(m[a])], i.e. mwishes to inform
¢ of aresource local ts. Then we have the reduction:

m[go£.bi(mfa])] | £(A) — ([b(ma)] | £(A)

This follows sinceAH—Ln m[a]:loc[res(bool)] can be inferred using
(ve-self;) and(v¢-selfy ), regardless of the type assignechian A.
g

4.3 Subject Reduction and Type Safety

As we have seen iection3.2 partial typing is not preserved by
the standard reduction relation. However this property is regained
by the revised reduction relation déble5.

Theorem 11 (Subject Reduction for Open Networks). For the
inference systems dable5: If I =N and N— N’ thenll - N’.
O



Table 6 Runtime Error and others for handling untrusted location names. In a similar vein
we may have untrusted locations containing resources that commu-
nicate trusted location names. As we shall see, these resources at
untrusted locations cannot be used to increase the level of trust in a
network.

The extension of the subtyping relation to these new types is

based on two ideas:

([a2X:T)P] | (D) CT% if A(f) ¢ loc{ares(T)}
(al(v)P] | £(a) €5 if A(l) ¢ loc{ares(T)}, all T
([al(vyP] | £(n) ET5 if A(l) <: loc{ares(T)}

andAm {,v:T} undef
([if u=vthen Pelse Q] ™5 if {,u:T} undef

or{,v:T}undef, all T L .
{ovT} e Every trusted location is also a location.

N -ere, N -ere, N=M M -2 e Every trusted location guarantees good behavior; therefore,
: a “bad” or untyped location can never be trusted by a good
(vkeT)N et N|m et N et site. This means that the typisad is no longer the minimal
location type in the subtyping preorder.
The subtyping relation is therefore built up using the ordering:
A typing system is only of interest to the extent that it guaran- g
tees freedom from runtime errors. Here we describe the runtime loc{T:A}

errors captured by our system, which can be informally described / '\
asmisuse of resources at good sit€3ften the formulation of run- loc{T:A,v:B}  ltrust{T:A}
time errors is quite cumbersome as it involves the invention of a
tagged version of the language, sé&, [21]. However in this case / \ ~/
the presence of filters makes it straightforward. lbad Itrust{T:A,v:B}

In Table6 we define, for each locatiaha unary predicate™ o )
over networks. The judgment % should be read: “in the net-  The formal definition is given in the full version of the paper.
work N there is a runtime error at locatigh There are two kinds
of errors which can occur. The first occurs when an agent attemptsProposition 13. The set of types with trust, under the subtyping
to use a resource that has not been allocated at the agent’s currerpreorder, has a partial meet operator. O
location, as formalized in the first two clauses of the definition in

Table6. The second kind of error occurs when there is a local in-

consistency between values being manipulated by an agent. Thesdnore detailed information about remote sites. Consider a network
may occur in either of two ways. The first, accounted for in the N Which contains afiltef{(A). As before, ifk is not mentioned in
third clause inTable6, is when a value is about to be transmitted 2 this means that has no knowledge df. But now there are now

locally which is inconsistent with the current contents of the filter, three possibilities with respect to a remote locakonentioned in
The second, accounted for in the fourth clause, is when the values :
in a match cannot be assigned the same type. e A(K) <: Ibad, which means that has accumulated sufficient

With the addition ofitrust, the filters in a network may contain

Finally, note that in the case that a location narrie restricted,
errors atm are attributed to the site which createdgiven ask in
Table6). This fact explains the need for the side conditios Tbad
on the rulegt-newg) and(n-newg) in Table4.

Theorem 12 (Type Safety for Open Networks).
For the inference systems ofbles 5 and6: If ' = N and[ (¢) #

contradictory information abouwk to conclude thak is un-
typed.

e A(K) <: Itrust, which means that trusts k Note that this no-

tion of trust is asymmetric{ may trustk without k trusting
£. Also note that in well-typed systems, the rylefilter)
in Table5 ensures thak, trusted by/, cannot be an untyped

erl location unles¢ itself is untyped; this is enforced by the re-
Ibad then N ' = quirement thaf (k) <: A(K), sincelbad ¢ Itrust.
5 Trust e A(K) < loc, which means that knows ofk, but cannot deter-

mine whether or nok is well-typed.

In the semantics of the last section all agents moving to a new site As we have seen in the previous section, the information in a
are dynamically typechecked before gaining entrance. In this sec-filter may increase as the network evolvies, £(A) may evolve to
tion we consider an optimization which allows for freer and more £{Q'), wherel' <: A. But the subtyping relation between types en-
efficient movement across the network. The idea is to tadst sures that once a locatidris deemed “bad” it {A) it will remain
between locations; a trusted site is guaranteed never to mishehaveo forever, and similarly with sites that are deemed “trusted”. It is
and therefore agents moving from a trusted site need not be dynam-only the third category which may change.Hramplel0we have
ically typechecked. seen that new information may resultfgk) changing fromoc to
Formally we introduce a new type constructor fiarsted loca- Ibad. We shall soon see that new information can also “improve”
tion types Itrust{t:A}. The extended syntax ¢fpes with trusts the status ok from loc to ltrust.
obtained by replacing the clause for location types with: With the addition of trust, we can revise the reduction rela-
. =3 v R =% v tion of the previous section to eliminate dynamic typechecking
K,L::=lbad | loc{&A,XB} | Itrust{aA, X B} of agents arriving from trusted sites. We adopt the semantics of
Note that (as with the addition ¢ifad) this extension increases the  Table5, replacing(rs-move) with:
set of possible resource types. For example the type
(re-move) K[gol.P] | £(a) — ([P] | £(A)

resltrustiatrestint)}) if A(K) < Itrust or A 1K P
. l

is the type of a resource for communicating trusted locations which
have an integer resource nameedThus we may have trusted lo-  Note that the presence hfust changes the importance of the con-
cations with certain resources for handling trusted location namesdition Ibad <: K in the dynamic typing rulev¢-self;). Whereas



this condition was tautological iiection4, here it iks not. The side
condition precludes the use @f¢-self; ) to infer Al K:ltrust. This
is important, as it prevents bad sites from becoming trusted.

Example 14. LetA = {{:loc{d:res(lItrust) },k:Itrust} and consider
the open network:

(o) | £[d22)P] | klgof.di(m)] | mgot.d!(n)]

Here the locationsn andn are unknown td/, i.e. A(m) andA(n)
are undefined. In additior is a resource at for communicating
trusted locations. The migration from to ¢ is not immediately
allowed sinceﬁll—?‘ d!(n) cannot be inferredn does not have suffi-
cient authority to convincé that locatiom is to be trusted.

The move fromk to ¢, however,is allowed, without dynamic
typechecking, sincé trustsk. After the movement and communi-
cation ond, the resulting network is

4o [ [P4™zH | migol.di(m)]

whereA’ = An {miltrust}. Thus, after communication with the
agent fromk, ¢ trustsm. At this stage the migration fromm to ¢
is allowed, free of typechecking, amd can inform/ of another
trusted site,n. In this way theweb of trustcontaining? grows
dynamically as the network evolves.

Note it is crucial that trustk initially; if this were not the case
then the original migration frork to ¢ would have been prevented

by dynamic typechecking. There is no way for a site to “prove its
trustworthiness”; the web of trust can only grow by communication

between trusted sites. O

Example 15. Consider the network
m[golo.gol1.gol2. P | Li{L)

where there is a web of trust amofig that isAj(¢)) <: Itrust for
all'i, j. Suppose further thatg(m) is undefined, in particular that
{o does not trusin.

The migration fromm to /g is allowed only if the following
judgment can be verified:

AIFZ goly.gol1.golo. P

Note that this checks not only the potential behavior of the incom-

ing agent at the initial sitéy but also at the other siteg, ¢». So
an agent is allowed into the web of trust betwégr¢, and/, only

Example 16. As a final example, suppose that the set of locations
is static and all sites are mutually trusted. In this case we recover
the standard semantics (modulo the presence of filters), as given in
Section2.

The main results of the previous section extend to the new set-
ting.

Theorem 17. For the inference systems ®&bles 5 and 6, aug-
mented with trusted location types and us{rgmove) instead of
(rf-move):

e If TN and N— N’thenl - N’
e If [ N andr(¢) # Ibad then N-€%5, O

6 Conclusions

We introduced the notion gdartial typing which captures the in-
tuition that “bad” sites in a network may harbor malicious agents
while “good” sites may not. We demonstrated that in the presence
of partial typing, some form of dynamic typechecking is required to
ensure that good sites remain uncorrupted. We presented a seman-
tics for Ditincorporating such dynamic typechecking, showing that
it prevented type violations at good sites. Finally, we addels of
trust to the language, reducing the need for dynamic typechecking
while retaining type safety at good sites.

The presentation of @ given here is very different from that
in [23] but is only a minor variant on that in.P]; for example, we
have added base types and moved some of the semantic rules from
the structural equivalence to the reduction relation. Most of the
changes are stylistic rather than substantive. Two of the changes,
however, are essential for the treatment of partial typing. First, we
have moved the rulg-new) from the structural equivalence to the
reduction relation; this is necessary to allow filter updating. Sec-
ond, we have split the space of names in two, syntactically distin-
guishing locations from resources; this is necessary to prevent the
filter updating rules from producing nonsense environments such
as{l:loc{l:res()}}.

Several other distributed variants of titcalculus have been
defined, and it is informative to see how partial typing might be
added to these languages. Syntacticalligi®most similar to the
language of Amadio and Prasad [], which also uses a “goto”
operator for thread movement, writtespawn (¢, P)”. However, in
Amadio and Prasad’s language, the set of resources available to a
thread does not vary as the thread moves about the network. This
means that an agent Attan access resources at a different loca-

if can be assured not to harm any resources at any of the locationsion k without requiring thread movement. To add partial typing
in the web. Moreover this check is made against the knowledge atto such a language, one would need to typechmeksagenove-

the incoming siteg. Even if P intends to respect all the resources
at/,, if it mentions a resource @ of which Ag is unaware, entry
will be barred.

If the typecheck againéty succeeds then we obtain the network

lolgol1.g8002.P] | &i{A)

where the agent frorm has gained entry to the web of trust. The
subsequent movements, frdgito ¢1 and from¢; to ¢,, are allowed
freely because of the relationship of trust between these sités. If
moves outside the web of trust, however, sagnf@nd then wishes
to return to somé;, then it will be typechecked again before reen-

try. In Section4, we gave an example which shows that such type-

ment dynamically, rather than thread movement, violating the third
principle given in the introduction.

The fact that resource names are allowed to occur at multiple
locations is crucial to the success of our strategy for dynamic type-
checking. It would be difficult to formulate our approach under the
assumption that each name has a unique location (as, for example,
in [4]). For example, suppose that the resoweeas “uniquely lo-
cated” atk. Then the agerm[go £.b!(m[a])] at the bad siten could
“hijack” a using(t-selfy ), convincingl thata was uniquely located
atm, rather than some good locatién In particular entry td by
an agent fronk may subsequently be blocked becatisgstakenly
believes that the unique locationafs m.

The join calculus of Fournet, Gonthier, Levy, Marganget and

checking is necessary for agents which wish to reenter a web of Remy [L(] shares many of these properties. Whereas Amadio’s

trust.

language adds thread movement to message movement, however,
the join calculus adds location movement. Unfortunately this does



not help combat the problems outlined above, which result from the onuand T:

“universal extent” of resource names in both subject and object po-
sition. In D, the type system ensures that the “extent” of resource
names in subject position is locak. resources may beferenced

at remote sites, but may only bsedlocally.

Cardelli and Gordon’s ambient calculug,[on the other hand,
appears to be amenable to partial typing since ambient movement
is a local operation; thus the problem of “universal extent” does
not arise. The typing system ofr0is based on the original sorting
system of thatcalculus [L6], and this sorting system has recently
been extended to the ambient calculul [Whereas locations in
Drthave a straightforward analog in implementations — they cor-
respond to address spaces — the notion of “ambient” is more gen-
eral, adding expressiveness while blurring the distinction between
agent movement and agent interaction. In the ambient calculus it
is theopen operator, rather than the or out operators, which en-
ables interaction between two threads (or thread collections). Thus

{wbv:BT} =@, if bv e valse{BT)
{wx:BT} ={xBT}

{wkK} = {kK}

{wxK} ={xK}

{waA} ={wloc{a:A}}

{wxA} = {wiloc{xA}}

{W(u,\N/):K[BJ} = {wu:K} 1 {V:B}
{Wl:T} = {wu: T} - M {wln:Tn}

For example:

{w(0,a):(int,A)} = {w:loc{a:A}}
{w(k,Kc]):(loc{a:A},loc[C])} = {kiloc{a:A,c:C}}

a first attempt at partial typing for the ambient calculus would dy- References
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open.
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