
Typed Parametric Polymorphism for Aspects

Radha Jagadeesan a,1 Alan Jeffrey b,1 James Riely a,2

aSchool of CTI, DePaul University, Chicago, Illinois
bSecurity Technology Research, Bell labs, Lucent Technologies

Abstract

We study the incorporation of generic types in aspect languages. Since advice acts like
method update, such a study has to accommodate the subtleties of the interaction of classes,
polymorphism and aspects. Indeed, simple examples demonstrate that current aspect com-
piling techniques do not avoid runtime type errors.

We explore type systems with polymorphism for two models of parametric polymor-
phism: the type erasure semantics of Generic Java, and the type carrying semantics of
designs such as generic C#. Our main contribution is the design and exploration of a
source-level type system for a parametric OO language with aspects. We prove progress
and preservation properties.

We believe our work is the first source-level typing scheme for an aspect-based extension
of a parametric object-oriented language.

Key words: Aspect-oriented programming, Typing, Generic types.

1 Introduction

Aspects have emerged as a powerful tool in the design and development of sys-
tems [1–6]. A profiling example from the AspectJ tutorials illustrates the use of
aspects and helps to introduce the basic vocabulary. Suppose class L realizes a use-
ful library, and we want to obtain timing information about a method foo() of L.
With aspects this can be done by writing advice specifying that, whenever foo is
called, the current time should be logged, foo should be executed, and then the
current time should again be logged. It is indicative of the power of aspects that (a)
the profiling code is localized in the advice, and (b) the responsibility for profiling
all foo() calls resides with the compiler and/or runtime environment. The latter

1 Research supported in part by NSF CyberTrust 0430175
2 Research supported in part by NSF CAREER 0347542

Preprint submitted to Elsevier Science 1 September 2006

ensures that the developer of the library need not worry about advice that may be
written in the future. In [7] this notion is called obliviousness. However, in writing
the logging advice, one must identify the pieces of code, using pointcuts, that need
to be logged. In [7] this notion is called quantification.

Aspects provide general and paradigm-independent mechanisms for representing
and composing crosscutting concerns such as logging. Aspect-oriented extensions
have been developed for object-oriented [2,8,9], imperative [10,11], and functional
languages [12,13]. There is also emerging research into the use of aspects at the
requirement and the architecture level (e.g. see the proceedings of the workshop
series on early aspects).

The diversity of applications testify to the success of the aspect approach. See [14]
for an early systematic survey; we mention only a few examples here. Aspects ad-
dress inheritance anomalies (see [15] for a survey) of concurrent object-oriented
programming [16]. They provide a basic ingredient for variability management in
programming with features [17,18]. Aspects enable useful refactoring of (operat-
ing) systems [11] and middleware [19] code. They also support program visualiza-
tion by enabling program monitoring [20].

Much recent research in aspect programming languages aims to further facilitate
change through increased language expressiveness by enhancing the quantifica-
tion mechanism. To name but a few, there are explorations of virtual machine sup-
port for dynamic (i.e. incorporated at runtime) join points [21], the treatment of
pointcuts as functional queries [22], description of pointcuts that can operate on
distributed code [23], domain-specific and user-defined extensions to the pointcut
language [24], and logic-based metaprogramming mechanisms [25].

The above research focuses primarily on facilitating the expression and composi-
tion of aspects in programming languages. Instead, we are interested in exploring
aspect language mechanisms that are both dynamic and safe, so as to not com-
promise the trustworthiness of the system. Our main new technical development
is a source-level type system for aspect languages that incorporates the paramet-
ric features of object-oriented languages. We show that type safety is preserved by
reduction.

One motivation is the use of aspect languages in security applications (e.g., see
[26]). Consider the use of Inlined Reference Monitors (IRMs, see [27] for a sur-
vey) to enforce fine-grained, application-specific access policies. Aspects enable
elegant implementations of IRMs: the IRM writer writes the security policy as an
aspect, and the aspect weaver merges the checking code into the application itself
to produce a secured application. This application requires that basic safety guar-
antees are provided by the aspect language.

More generally, we are interested in aspect language mechanisms that support a
principle identified in [28]: services may be refined as long as the original promises

2

are still upheld. In this paper, we focus on the simple invariants of memory safety
(programs can only access appropriate memory locations) and control safety (pro-
grams can only transfer control to appropriate program points).

The study of expressive type systems for aspect languages was recognized as an
important research problem early on [29]. Aspectual collaborations [30] provide
compelling evidence supporting the utility of generic advice. PolyAML [31] ex-
plores polymorphic types in a functional language with explicit programmer anno-
tations of the control points at which advice may be added. Polymorphism has also
been studied in the implementation of the functional language Aspectual Caml [32],
where aspects also interact with type inference and curried functions.

However, we believe our work is the first source-level typing scheme for an aspect-
based extension of a parametric object-oriented language. We explore type systems
with polymorphism for two models of parametric polymorphism: the type erasure
semantics of Generic Java [33] and Pizza [34], and the type carrying semantics
of designs such as generic C# [35]. Our formal investigations provide another data
point in the ongoing argument between the two styles of parametric polymorphism.

Such a study has to accommodate the subtleties of the interaction of classes, poly-
morphism and aspects. Advice, at a first approximation, acts like method update [36].
Hence, it needs to be treated carefully from a typing point of view. Simple exam-
ples demonstrate that current aspect compiling techniques do not avoid runtime
type errors.

Our contribution is timely, as full source-level support for the generic features of
Java 1.5 is just now available in AspectJ. In particular, Java 1.5’s addition of covari-
ant return types, and the type erasure implementation of generics, presents prob-
lems for typesafe aspect-oriented languages, which we discuss in Section 2.

We conclude this introduction by addressing the impact of our study on the basic
obliviousness and quantification criteria on aspect languages. From a programming
point of view, type systems support an abstract view of the interface and provide
a way to enforce the principle of Least Privilege [37]: Throughout execution, each
principal should be accorded the minimum access necessary to accomplish its task.
Type systems are thus an example of a programming feature that “derives power
precisely from what they prevent some other programmer from doing” [38]. Super-
ficially, these restrictions contradict uninhibited and unrestricted obliviousness and
quantification, leading to an impression that the very idea of AOP is incompatible
with typing and cannot coexist with it.

We disagree with this conclusion. We take the point of view that in practice, the
tension is mitigated by the increasing expressiveness of type systems. Such a view-
point is not new [30]: in object-oriented programming dynamic dispatch yields
obliviousness [7], and modular reasoning requires the taming of this obliviousness
by expressive behavioral types (to ensure subtypes do not violate the contract of su-

3

pertypes) [39]. Currently, advances in type systems are making it easier to specify
and implement type systems, leading to wider acceptance of rich programmer an-
notations: the parametric types of Java and C# bear witness to this. We believe that
the finer control and stronger guarantees provided by rich type systems compensate
for the restrictions imposed by typing on AOP mechanisms.

Organization of the paper. In the next section, we use simple examples to il-
lustrate the issues. To make this paper self contained, Section 3 describes Feath-
erweight Generic Java (FGJ) [40], which is the basis for our aspect language. The
following section presents the dynamic semantics of Aspect FGJ (AFGJ). In Sec-
tion 5 we present a typing system which is sound for the type carrying semantics.
Finally in Section 6 we describe a more restrictive type system which is sound for
the type erasure semantics.

2 Examples

We study the static semantics of an aspect language. We provide type systems that
satisfy two fundamental properties:

• well typed programs do not get stuck in type errors, and
• well typing is preserved by reduction.

These properties show that our language is typesafe [41]. Our key technical contri-
bution is the identification of sufficient typing restrictions on pointcuts and advice
to establish the above properties for both (a) the type preserving semantics of C#
and (b) the type erasure semantics of Java.

Our aspect language is an extension of cast-free Featherweight Generic Java (FGJ)
[40]. Our focus is on a direct source-level semantics of a Java-like language; we
do not build on work on translations of class-based languages into polymorphic λ -
calculi or object-based languages [42–46]. While FGJ is similar in spirit to Classic
Java [47], Javas [48] and Middleweight Java [49], our choice of FGJ as a basis
for our formal study is based on the extant analysis of parametric types in FGJ.
A similar study has been conducted of generics in the .NET common language
runtime [50].

The focus of this paper is on the key ideas underlying the aspect extension. our
pointcut language is simple: it captures method execution and includes vararg pa-
rameters and boolean operators. We have not considered call pointcuts or temporal
operators such as AspectJ’s cflow; we do not address inner classes [51], wild-
cards [52], or type inference for generic methods.

4

Before our formal study, we sketch language features and design issues of an aspect
language with parametricity. We present examples in the familiar style of AspectJ;
in Section 4, we describe how these can be translated into AFGJ. The goals of these
examples are to demonstrate that:

• generic advice is useful, even in the presence of nongeneric base classes,
• advice complicates covariant return types, and
• advice complicates the type erasure semantics used by Generic Java.

In the remainder of this paper, we formalize the design of a generic aspect language
in light of the issues discussed here.

Generic aspects are useful even for nongeneric base classes. Suppose that we
want to transform the result of all parameterless methods in a class C by passing
them as parameters to a method D.do after. Parameterizing on the return type,
we might write:

class C {
String f() { return "1"; }
Integer g() { return 1; }

}
aspect CodingAfter<T> {

T around(): execution(T C.*()) {
return new D().do_after(proceed());

} }

The current stable AspectJ compiler (build 20060217002528) forces generic as-
pects to be abstract, and thus will not compile the preceding code.

Without a generic typing scheme one must either duplicate the aspect code for each
return type in C or one must type the around advice at Object, thus losing static
type guarantees. Indeed, the following code compiles successfully using the current
stable AspectJ compiler, but yields a ClassCastException when executing new
C().f():

aspect WrongReturnType {
Object around(): execution(* C.*()) { return 2; }

}

This difficulty arises with argument types as well as return types. We demonstrate
this using a standard crosscutting concern: synchronization. (The example incorpo-
rates non-functional features which are not expressible in pure AFGJ.) Consider a
class Out with signature:

void writeByte(Byte x)
void writeInteger(Integer x)
void writeCharacter(Character x)
...

5

Suppose we would like to write a locking aspect, which adds synchronization to
each method in Out:

aspect LockingStream<T> {
void around(T x): args(x) && execution(void Out.*(*)) {

synchronized(this) { proceed(x); }
} }

Without generics, the advice would have to be written

aspect NonGenericLockingStream {
void around(Object x): args(x) && execution(void Out.*(*)) {

synchronized(this) { proceed(x); }
} }

but it is difficult to see how to allow NonGenericLockingStream without also
allowing:

aspect WrongParameterType {
void around(Object x): args(x) && execution(void Out.*(*)) {

proceed(new Object { "hello" });
} }

This advice would cause a call to writeByte to proceed with an argument contain-
ing a String object, and hence generate a run-time type error.

These examples illustrate that generic advice can be valuable even with nongeneric
base classes.

Aspects complicate covariant return types. The difficulties are even more appar-
ent in the context of covariant return types. In Java 1.5, a subclass may refine the
return type of a method it overrides, as in CarFactory.build():

class Vehicle { ... }
class Car extends Vehicle { ... }
class VehicleFactory { Vehicle build() { ... } }
class CarFactory extends VehicleFactory { Car build() { ... } }

Unfortunately, such covariant return types conflict with aspects:

class Motorcycle extends Vehicle { ... }
aspect AlwaysBuildMotorcyle {
Vehicle around(): execution(* VehicleFactory.build()) {
return new Motorcycle();

} }

Considering AlwaysBuildMotorcycle and the classes it mentions in isolation,
one might believe that the aspect is typesafe (and indeed it is for Java 1.4). How-

6

ever, AlwaysBuildMotorcyle applies not only to VehicleFactory, but also to
all subclasses, causing CarFactory to produce Motorcycles rather than Cars.

We propose using generics as a solution to the general problem of interaction
between aspects and return types. Parametricity ensures type safety, banning ex-
amples such as AlwaysBuildMotorcycle while still allowing aspects to apply to
methods with different return types, as in CodingAfter.

Expressiveness considerations. We argue informally that these typing constraints
are not unduly restrictive. 3 Typical logging, monitoring and checks of safety con-
ditions before executing the method (c.f. the IRM application discussed in the in-
troduction) are parametric in the return type and are unaffected. On the other hand,
general advice that replaces the method with potentially unrelated new behavior is
severely restricted by our typing schemes.

Contravariant argument types. In contrast to Java and C# methods, C# delegates
also permit contravariant argument types. Our formal treatment in this paper does
not address this feature. In the conclusions, we outline the issues raised by the
interaction of aspects with contravariant argument types.

Aspects complicate type erasure. The type erasure semantics of a generic lan-
guages such as Java replaces any generic type by an upper bound, for example

class List<T extends Comparable<T>> { T[] contents; ... }

is type erased by replacing T by its upper bound Comparable to become:

class List { Comparable[] contents; ... }

This type erasure semantics is used by Java [40], but not by C# [50]. As a result,
Java does not have full type information available at runtime, whereas C# does.

Consider a parameterized list class List<T> with a method max that returns a new
object whose encapsulated array has each of its indices set to be the greater of
contents[i] and the argument x[i]. Such a method requires an ordering on T,
which is ensured using the type bound Comparable<T> [40]:

class List<T extends Comparable<T>> {
T[] contents; ...
List<T> max(List<T> x) {
// general code for general types

} }

3 We revisit this issue, using the vocabulary of [53], in the technical development of Sec-
tions 5 and 6.

7

In the case of a boolean list, bit operations might be used to obtain a more efficient
implementation. The following skeleton captures such an aspect:

aspect BooleanMax {
List<Boolean> around(List<Boolean> x): args(x) &&
execution(List<Boolean> List<Boolean>.max(List<Boolean>)) {
// special code for boolean arguments

} }

It is important to see that whether the pointcut in the advice above fires or not
depends on the type of the argument to max. For example, consider the following
generic program:

List<Integer> a = new List<Integer>();
List<Integer> am = a.max(a);
List<Boolean> b = new List<Boolean>();
List<Boolean> bm = b.max(b);

The call to b.max(b) will cause the specialized advice in BooleanMax to be called,
but the call to a.max(a) will be unadvised. However, this program is type erased
to become:

List a = new List();
List am = a.max(a);
List b = new List();
List bm = b.max(b);

After type erasure, it is impossible to distinguish the two method calls. Conse-
quently for such aspects, type information must be present at run time. A generic
aspect language for C# may allow such aspects (since C# does not use type erasure),
but a generic aspect language for Java must not.

In our generic aspect language for type erasure semantics, we restrict pointcuts as
follows: all parameters to classes (such as List) in a pointcut must be variables.
However, this restriction by itself is not sufficient to ensure type safety.

Generic aspects complicate type erasure. Consider a pair class:

class Pair<T,U> {
T first; U second; ...
T getFirst() { return first; }

}

It is reasonable to allow generic advice on such generic objects:

class Log<T> { T log(T x) { ... } }
aspect Logging<T,U> {
T around(): execution(T Pair<T,U>.first()) {

8

return new Log().log(proceed());
} }

Even in the presence of type erasure, such generic advice is typesafe. However, it
is possible to write generic advice which is not safe in the presence of type era-
sure. One source of nonsafety is nonlinear uses of type variables, as in the pointcut
execution(T Pair<T,T>.getFirst()) This pointcut matches Pair<Integer,
Integer> but not to Pair<Integer, String>, thus exposing dependence on in-
stance information.

3 Featherweight Generic Java

We present the syntax, dynamic and static semantics of cast-free Featherweight
Generic Java (FGJ) [40], which forms the basis for the aspect language presented
in later sections. FGJ restricts Java 1.5 to its bare essentials. For example, FGJ has
no mutable state, no interfaces, no overloading and a restricted form of constructors.
Similar restrictions are also present in the other analysis of generics, such as [50].
To make this paper self contained, we include all necessary definitions, referring
the reader to the original paper [40] for a full and detailed exposition. 4

FGJ disallows instanceof and reflection; we have chosen additionally to elimi-
nate casting, for a number of reasons:

• Casting is required in full Featherweight Generic Java because the main result
in [40] is the soundness of the translation into Featherweight Java, which in-
troduces casts. We do not discuss the translation in this paper, and so we do
not require casts.

• The type rules for casting in Featherweight Generic Java are complex, due to
the requirement that type erasure be sound. This complexity is reflected in the
proofs of subject reduction, and would obscure the central point of this paper:
the interaction of generics and aspects.

• The concerns raised by casting are orthogonal to aspects; we expect that, suit-
ably adapted to account for the complexities mentioned above, our results
apply to the language with casting.

4 Our presentation differs from that of [40] in several superficial respects. We have chosen
different metavariable names. We use Java type declaration conventions throughout; for
example, method types are written “R(P̄)” rather than “P̄→ R” and term variable bindings
are written “T x” rather than “x : T ”. We have unified method body lookup and method
type lookup into a single definition. We explicitly mention the global set of declarations DDD
(called CT in [40]) when it is used in definitions. We define evaluation contexts explicitly,
with a single evaluation rule, rather than listing a separate evaluation rule for each form of
context. Our typing rules explicitly require that all variables in environments and parameter
lists be distinct; eg, we disallow class c〈X/C,X/D〉 · · ·.

9

Let c and d range over class names (including the reserved name Object). Let f ,
g and h range over field names. Let ` range over method names. Let x range over
term variables (including the reserved variables this and target). And let X , Y ,
Z and W range over type variables.

The syntax of the language is given below. For any syntactic category with typical
element e, we write ē for an ordered sequence e1,e2, . . . ,en with n implicit; the
element separator may be a space, comma, or semicolon, depending on context. We
use i, ranging between 1 and n, to pick out a particular element ei. We occasionally
extend this convention across binary constructs; for example, we write X̄/C̄ for
X1/C1, . . . ,Xn/Cn, and T̄ x̄ for T1 x1, . . . ,Tn xn. We write “•”, or simply a blank
space, for the empty sequence.

FGJ SYNTAX

C,D,E ::= c〈T̄ 〉 Nonvariable Types

P,Q,R,S,T,U,V ::= X | C Types

O ::= new C(Ō) Values

M,N,L ::= Terms
x Term Variable
M. f Field Access
M.`〈T̄ 〉(N̄) Method Call
new C(N̄) Object

E ::= Evaluation Contexts
[]. f Field Access
[].`〈T̄ 〉(N̄) Method Call Target
M.`〈T̄ 〉(N̄, [], N̄′) Method Call Argument
new C(N̄, [], N̄′) Object

D ::= class c〈X̄/C̄〉/D{T̄ f̄; κ µ̄} Top Level Declarations

κ ::= c(T̄ f̄){super(ḡ); this.h̄= h̄;} Constructor Declarations

µ ::= 〈X̄/C̄〉R `(P̄ x̄){M} Method Declarations

∆ ::= • | ∆,X/C Type Environment

Γ ::= • | Γ,T x Term Environment

As in [40], we write “/” for “extends”. In a method declaration “〈X̄/C̄〉R `(P̄ x̄){
returnM;}” we elide the return and semicolon. We also drop angled brack-
ets when there are no type parameters; for example, we write Object rather than
Object〈〉.

The variables X̄ are bound in the class declaration class c〈X̄/C̄〉/D{T̄ f̄; κ µ̄};
the scope is C̄, D, T̄ , κ and µ̄ . The variables X̄ , x̄ and the reserved variable this are
bound in the method declaration 〈X̄/C̄〉R `(P̄ x̄){M}; the scope of X̄ is C̄, R, P̄ and

10

M; the scope of x̄ and this is M. We identify syntax up to renaming of bound vari-
ables. For any syntactic category with typical element e, we write fv(e) for the set
of free variables occurring in e. Substitution of terms for term variables and types
for type variables is as usual. We write substitutions postfix; for example, we write
M[T/X,N/x] for the term derived from M by simultaneously replacing occurrences of
X with T and occurrences of x with N. We treat environments as mappings, writing
∆(X) for the bound of X in ∆, and writing Γ(x) for the type of x in Γ.

To clarify definitions, we elide irrelevant elements of the syntax. For example, con-
sider a method declared 〈X̄/C̄〉R `(P̄ x̄){M}. If we are interested only in the body
of the method, we may write the declaration simply as 〈X̄〉 `(x̄){M}. If we are
interested only in the type, we may write the same declaration as 〈X̄/C̄〉R `(P̄) · · ·.

ASSUMPTION 3.1 (FIXED DECLARATIONS). Evaluation and other relations are
defined with respect to a fixed set of declarations. To avoid repeating the set of
declarations, we fix a set DDD of declarations for the remainder of the paper. As in
[40], we assume that Object is not declared and that the induced subclass relation
is antisymmetric. 5 �

FGJ Dynamics. The evaluation relation is defined using auxiliary definitions for
field and method lookup. These definitions are also used in typing; thus they are
parameterized by a typing environment ∆, which is empty during evaluation.

LOOKUP (∆ ` fields(T) = T̄ f̄) (∆ `meth(T.`) = 〈Ȳ/ Ē〉R(P̄ x̄){M})
(FIELD-OBJECT)

∆ ` fields(Object) = •

(METHOD-THIS)

DDD 3 class c〈X̄〉 · · ·{ · · · 〈Ȳ/ Ē〉R `(P̄ x̄){M}}
∆ `meth(c〈V̄ 〉.`) = (〈Ȳ/ Ē〉R(P̄ x̄){M})[V̄/X̄]

(FIELD-THIS-SUPER)

DDD 3 class c〈X̄〉/D{T̄ f̄; · · ·}
` fields(D[V̄/X̄]) = S̄ ḡ
∆ ` fields(c〈V̄ 〉) = S̄ ḡ, T̄ [¯̄V/X̄] f̄

(METHOD-SUPER)

DDD 3 class c〈X̄〉/D{· · · µ̄} ` not defined in µ̄

`meth(D[V̄/X̄].`) = 〈Ȳ/ Ē〉R(P̄ x̄){M}
∆ `meth(c〈V̄ 〉.`) = 〈Ȳ/ Ē〉R(P̄ x̄){M}

(FIELD-VAR)

` fields(∆(X)) = T̄ f̄
∆ ` fields(X) = T̄ f̄

(METHOD-VAR)

`meth(∆(X).`) = 〈Ȳ/ Ē〉R(P̄ x̄){M}
∆ `meth(X.`) = 〈Ȳ/ Ē〉R(P̄ x̄){M}

Field lookup collects the fields of a class with those of its superclasses. Method
lookup finds the most specialized class that declares a method. We now define
evaluation.

5 The subclass relation is the smallest preorder on class names induced by the rule: c ≤ d
if DDD 3 class c〈· · · 〉/d · · ·. These restrictions on DDD are required for weak confluence and
progress; they ensure that field and method lookup are deterministic and total for well typed
terms.

11

FGJ EVALUATION (M → M′)

(EVAL-FIELD)

fields(C) = f̄
new C(N̄). fi → Ni

(EVAL-METHOD)

M = new C(· · ·)
meth(C.`) = 〈X̄〉(x̄){L}
M.`〈V̄ 〉[](N̄)→ L[V̄/X̄,M/this, N̄/x̄]

(EVAL-CONTEXT)

M → M′

E [M]→ E [M′]

Note that in EVAL-METHOD the residual term is subject to three substitutions: for
the type parameters X̄ , and for the term parameters x̄ and this. The definition
of contexts allows nondeterministic evaluation, since all method and constructor
parameters are treated equally. As usual, we write E [M] for E [M/[]].

FGJ Statics. Typing uses several auxiliary definitions, which characterize subtyp-
ing, well formed types and environments, and well formed overriding. 6

AUXILIARY JUDGMENTS (∆ ` T <: T ′) (∆ ` T) (∆ ` ok) (∆; Γ ` ok)

(SUB-VAR)

∆ ` X <: ∆(X)

(SUB-CLASS)

DDD 3 class c〈X̄〉/D · · ·
∆ ` c〈V̄ 〉 <: D[V̄/X̄]

(SUB-REFLEX)

∆ ` T <: T

(SUB-TRANS)

∆ ` T <: T ′

∆ ` T ′ <: T ′′

∆ ` T <: T ′′

(TYPE-VAR)

X ∈ dom(∆)
∆ ` X

(TYPE-CLASS)

DDD 3 class c〈X̄/C̄〉 · · ·
∆ ` V̄ ∆ ` V̄ <: C̄[V̄/X̄]
∆ ` c〈V̄ 〉

(TYPE-OBJECT)

∆ ` Object

(ENV-TYPE)

∀i.X1/C1, . . . ,Xn/Cn `Ci
∀i, j.Xi = X j implies i = j
X1/C1, . . . ,Xn/Cn ` ok

(ENV-EMPTY)

∆ ` ok

∆; • ` ok

(ENV-TERM-VAR)

∆; Γ ` ok
∆; Γ ` T
∆; Γ,T x ` ok

x /∈ dom(Γ)

Subtyping is induced from variable and class declarations. Well formed types in-
clude declared variables, Object, and parameterized classes which satisfy the re-
quired constraints. An environment is well formed if all variables are unique and if
all of the types it contains are well formed.

WELL FORMED OVERRIDING (` 〈Ȳ/ Ē〉R(P̄) canoverride D.`)

(OVERRIDE-UNDEFINED)

meth(D.`) undefined
` 〈Ȳ/ Ē〉R(P̄) canoverride D.`

(OVERRIDE-DEFINED)

meth(D.`) = 〈Ȳ/ Ē〉R(P̄) · · ·
Ȳ/ Ē ` R′ <: R
` 〈Ȳ/ Ē〉R′(P̄) canoverride D.`

6 We group related judgments; for example, we write “∆ ` V̄ ” to abbreviate ∀i.∆ `Vi; we
also write ∆; Γ ` (M, N̄) : (T, P̄) to abbreviate ∆; Γ ` M : T and ∆; Γ ` N̄ : P̄.

12

Overriding is covariant in return type, but invariant in generic type bounds and
parameter types. The typing rules for class and method declarations are given next.

TOP LEVEL DECLARATION, METHOD TYPING (`D) (` µ : ok inc〈X̄/C̄〉/D)

(DEC-CLASS)

X̄/C̄ ` C̄,D, T̄
fields(D) = S̄ ḡ
X̄/C̄; S̄ ḡ, T̄ f̄ ` ok
` µ̄ : ok inc〈X̄/C̄〉/D
κ = c(S̄ ḡ, T̄ f̄){super(ḡ);this. f̄ = f̄ ;}
` class c〈X̄/C̄〉/D{T̄ f̄; κ µ̄}

(DEC-METHOD)

X̄/C̄,Ȳ/ Ē ` Ē, P̄,R
X̄/C̄,Ȳ/ Ē; P̄ x̄,c〈X̄〉 this ` M : R′

X̄/C̄ ` R′ <: R
` 〈Ȳ/ Ē〉R(P̄) canoverride D.`
` 〈Ȳ/ Ē〉R `(P̄ x̄){M} : ok inc〈X̄/C̄〉/D

The third premise of DEC-CLASS ensures that all type variables and fields are
unique by requiring that the corresponding environment be well formed — with-
out this restriction on fields, EVAL-FIELD is potentially nondeterministic. A similar
restriction is imposed by the second premise of DEC-METHOD, since well formed
terms must have well formed environments (Lemma B.4).

ASSUMPTION 3.2 (DECLARATIONS ARE TYPED). We require that each declara-
tions in the global declaration environment DDD be well formed. That is, in all defini-
tions and results, we assume that `Di, for each Di in DDD . �

The rules for terms are as follows.

TERM TYPING (∆; Γ ` M : T)

(TERM-VAR)

∆; Γ ` ok
Γ(x) = T
∆; Γ ` x : T

(TERM-FIELD)

∆; Γ ` M : T
∆ ` fields(T) = S̄ f̄
∆; Γ ` M. fi : Si

(TERM-METHOD)

∆ ` V̄
∆ `meth(T.`) = 〈Ȳ/ Ē〉R(P̄) · · ·
∆; Γ ` (M, N̄) : (T, P̄′)
∆ ` (V̄ , P̄′) <: (Ē, P̄)[V̄/Ȳ]
∆; Γ ` M.`〈V̄ 〉(N̄) : R

(TERM-OBJECT)

∆; Γ ` ok ∆ `C
` fields(C) = S̄ f̄
∆; Γ ` N̄ : S̄′

∆ ` S̄′ <: S̄
∆; Γ ` new C(N̄) : C

The rules TERM-VAR and TERM-OBJECT ensure that only well formed environ-
ments can be used in typing a term.

As shown in [40], the language enjoys type preservation and progress properties. In
addition, evaluation is confluent. Proof sketches are provided in Appendix B. For
full proofs, see [40]. The statement of progress uses the notion of value O, defined
in FGJ Syntax.

THEOREM 3.3 (PRESERVATION). If ` M : S and M → N then
∃T.` T <: S and ` N : T .

THEOREM 3.4 (PROGRESS). If ` M then either M is a value or ∃N.M → N.

13

THEOREM 3.5 (WEAK CONFLUENCE). If M → N1 and M → N2 then
∃L.N1 →∗ L and N2 →∗ L.

4 Aspect FGJ

The syntax of Aspect FGJ is adapted from that of AspectJ. Advice supports type
parameters similar to those of a polymorphic method. Pointcuts are unnamed; they
must be specified directly in advice declarations. We restrict attention to around
advice and execution pointcuts. We also remove the redundant binders in pointcuts.

For example the AspectJ term

aspect a<X extends V> {
R around(T t, P x): target(t) && args(x) && execution(R T.*(..)) {
return proceed(t,x);

} }

is rendered as “advice a〈X/V〉R(P x):exe R T.*(*){proceed(x)}”.

AFGJ extends FGJ with forms for advice declaration and for proceeding to the next
declared advice. We describe the operational semantics as a small step semantics;
thus, we need the syntax to describe running code. To this end, we add a form
for advised calls (from [54]), which are terms in the process of executing advice.
Advised calls contain a list of advice applications which name the advice that re-
mains to be run. The initial list of advice applications for a given method call is
determined by the pointcuts contained in aspect declarations.

ASPECT FGJ SYNTAX

A,B ::= a〈T̄ 〉 Advice Application

M,N,L ::= · · · Terms
M.`〈T̄ 〉[Ā](N̄) Advised Call
proceed(N̄) Proceed Call

E ::= · · · Evaluation Contexts
[].`〈T̄ 〉[Ā](N̄) Advised Call Target
M.`〈T̄ 〉[Ā](N̄, [], N̄′) Advised Call Argument
proceed(N̄, [], N̄′) Proceed Call Argument

D ::= · · · Top Level Declarations
advice a〈X̄/C̄〉R(P̄ x̄):φ{M} Advice Declaration

φ ,ψ,ρ ::= Pointcuts
exe R T.`〈V̄ 〉(P̄) Method Execution
exe R T.`〈V̄ 〉(P̄,*) Vararg Method Execution
exe R T.*(P̄) Wildcard Execution

14

exe R T.*(P̄,*) Vararg Wildcard Execution
φ && ψ And
φ || ψ Or
false False
true True

Γ ::= · · · Term Environment
Γ,R proceed(P̄) Proceed Declaration

AFGJ requires three reserved variables (this, target and proceed) in addition to
the reserved name Object. The variables X̄ , x̄ and the reserved variables target
and proceed are bound in the declaration advice a〈X̄/V̄ 〉R(P̄ x̄):φ{M}; the scope
of X̄ is V̄ , R, P̄, φ and M; the scope of x̄, target and proceed is M.

Proceed declarations record the type of a method’s parameters and return value;
they are used only in typing, discussed in the next section.

Pointcuts. The events which can trigger advice are method calls. In our language,
pointcuts are terms in a positive boolean logic (i.e. no negation) with atoms de-
scribing method calls. To indicate that a method call satisfies a pointcut, we use a
pointcut logic.

POINTCUT LOGIC (φ � ψ)

exe R T.`〈V̄ 〉(P̄, Q̄) � exe R T.`〈V̄ 〉(P̄,*) ρ � true false � ρ

exe R T.`〈V̄ 〉(P̄, Q̄,*) � exe R T.`〈V̄ 〉(P̄,*) ρ � φ && ψ if ρ � φ and ρ � ψ

exe R T.`〈V̄ 〉(P̄) � exe R T.*(P̄) ρ � φ || ψ if ρ � φ

exe R T.`〈V̄ 〉(P̄, Q̄) � exe R T.*(P̄,*) ρ � φ || ψ if ρ � ψ

exe R T.`〈V̄ 〉(P̄, Q̄,*) � exe R T.*(P̄,*) φ && ψ � ρ if φ � ρ

exe R T.*(P̄, Q̄) � exe R T.*(P̄,*) φ && ψ � ρ if ψ � ρ

exe R T.*(P̄, Q̄,*) � exe R T.*(P̄,*) φ || ψ � ρ if φ � ρ and ψ � ρ

Note that, in the above rules, Q̄ may be empty. The wildcard “*” in the arguments
permits a form of varargs in pointcuts.

Most of the use of the logic is with fully concrete method calls on the left, even
though the logic itself is presented more generally. Pointcut φ is satisfied by the
method call T.`〈V̄ 〉 if exe R T.`〈V̄ 〉(P̄) � φ , where P̄ and R are the parameter and
return types declared for the method. T is the dynamic type of the receiver, so we
effectively model dynamic dispatch to choose the applicable advice — this matches
the semantics of execution pointcuts in AspectJ like languages. In particular, we
can’t statically know what advice applies at a given call site.

Since we are modeling single dispatch languages, however, the parameter types P̄
(and the return type R) are determined by the declared type of a method `〈V̄ 〉 in a

15

class c〈T̄ 〉, rather than the actual parameter types.

All the pointcuts used in Section 2 are expressible in the above logic. We illustrate
the pointcut logic by a series of examples to explicate the design issues.

EXAMPLE 4.1. The pointcut exe Object c.*(*) captures all messages sent to
instances of c that are declared with return type Object; the receiving object’s ac-
tual class must be exactly c. The first wildcard captures all method names. The
wildcard in the argument position illustrates the use of the varargs facility in point-
cuts, and enables the capture of all methods without worrying about the number
and type of parameters. �

The pointcut logic forces all types to match exactly. It is intuitively clear that
without negation, it is not possible to define exact matching from a construct that
matches a type and all its subtypes. But what about the converse? We now show
that genericity compensates for the demands placed by the requirement of exact
matching by allows us to express downward type closure quite easily.

EXAMPLE 4.2. The generic pointcut 〈X/c,Y/Object〉exe Y X.*(*) captures
all messages sent to instances of any subclass of c, regardless of the declared return
type. Type variables in a pointcut such as this are expressed in the advice declara-
tion, as in

advice a〈X/c,Y/Object〉Y():exe Y X.*(*) · · · .
The pointcut 〈X/Object,Y/Object〉exe Y X.*(*) captures all methods in all
subclasses of Object. �

Negation in the pointcut logic. We disallow negation in pointcuts since it inter-
feres with the typing systems given in later sections: see section 5. We now discuss
the limitations on expressivity that are caused by this design.

Our logic directly captures one of the primary uses of negation, which is to match a
type exactly rather than including subtypes. More generally, using disjunction, this
enables us to write pointcuts that pick out any finite subset of types.

The true limitations of the absence of negation would be seen were we to include
interfaces. In this case, the absence of negation would prevent us from writing
pointcuts that isolate some subsets of types, e.g. all types that do not implement
an interface.

Dynamics. If parameterized advice a〈X̄〉 fires, then the pointcut must also generate
a binding for each Xi — there is nothing else to provide constraints. This leads to
the definition of advice lookup, given in the next table. This definition is also used
in typing; thus it is parameterized on a typing environment, ∆, which is empty
during evaluation. In this paper, we do not address the algorithmic issues related to
determining the type parameters of advice.

16

ADVICE LOOKUP (∆ ` T.`〈V̄ 〉 advisedby a〈Ū〉)
DDD 3 advice a〈X̄/C̄〉:φ · · ·
∆ ` Ū <: C̄[Ū/X̄] ∆ ` Ū
∆ `meth(T.`) = 〈Ȳ 〉R(P̄) · · ·
exe R[V̄/Ȳ] T.`〈V̄ 〉(P̄[V̄/Ȳ]) � φ [Ū/X̄]
∆ ` T.`〈V̄ 〉 advisedby a〈Ū〉

Note that the constraints on type variables in advice may not be unique. For exam-
ple consider advice a, with type variables 〈X ,Y 〉 and pointcut φ = exe R X.`〈Y 〉()
|| exe R Y.`〈X〉(). The event exe R c.`〈d〉() is advised by both a〈c,d〉 and
a〈d,c〉. As a result, advice lookup is nondeterministic. Determinism is recovered
via typing, described in the next section.

AFGJ EVALUATION (EVAL-FIELD AND EVAL-CONTEXT FROM FGJ)

(EVAL-LOOKUP)[
Ā
]
=

[
a〈Ū〉

∣∣∣∣ DDD 3 advice a · · ·
`C.`〈V̄ 〉 advisedby a〈Ū〉

]
M.`〈V̄ 〉(N̄)→ M.`〈V̄ 〉[Ā](N̄)

M = new C(· · ·)

(EVAL-ADVICE)

DDD 3 advice a〈X̄〉(x̄) · · ·{L}
M.`〈V̄ 〉[a〈Ū〉, Ā](N̄, N̄′)→ L[Ū/X̄,M/target, N̄/x̄,M.`〈V̄ 〉[Ā](N̄′)/proceed]

(EVAL-METHOD)

meth(C.`) = 〈X̄〉(x̄){L}
M.`〈V̄ 〉[](N̄)→ L[V̄/X̄,M/this, N̄/x̄]

M = new C(· · ·)

The evaluation strategy is adapted from our previous work [54]. EVAL-LOOKUP

uses comprehension syntax [55] to denote the sequence of advice declared in DDD that
advises the method call, in declaration order. This rule uses the dynamic type of the
object as determined by the constructor. As discussed earlier, since this is execution
advice, following languages such as AspectJ, the dynamic type of the receiver is
used to fetch the matching advice. 7 EVAL-ADVICE then executes the advice, in
order, passing the remaining advice through to proceed; this is accomplished using
the special substitution form defined below. Finally, EVAL-METHOD executes the
method body once the advice list is empty.

PROCEED SUBSTITUTION (L[M.`〈V̄ 〉[Ā](N̄′)/proceed] = L′)

The substitution is homomorphic for all term constructs but proceed(N̄).

7 We consider only execution pointcuts in this paper. For AspectJ’s call pointcuts, the
static type of the receiver is used to fetch matching advice [54].

17

proceed(N̄)[M.`〈V̄ 〉[Ā](N̄′)/proceed] = M.`〈V̄ 〉[Ā](N̄, N̄′)

EVAL-ADVICE and the proceed substitution, in combination, pass all the arguments
to the proceed variable. The splitting of the argument list in EVAL-ADVICE accom-
modates the flavor of varargs in our formalism, and is illustrated in the following
examples.

EXAMPLE 4.3. Recall from example 4.2 that the form X extends C can be used to
define a pointcut that matches all subtypes of C.

class C {
int const() { return 42; }
int id(int x) { return x; }

}
class D extends C { ... }
advice <X extends C> int a(): int X.*(*) {

return proceed() + 1;
}

Evaluation of the term new D().const() proceeds as follows:

new D().const()
-> new D().const[a<D>]() [eval-lookup]
-> new D().const[]() + 1 [eval-advice + proceed substitution]
-> 42 + 1 [eval-method]

Evaluation of the term new D().id(5) proceeds as follows:

new D().id(5)
-> new D().id[a<D>](5) [eval-lookup]
-> new D().id[](5) + 1 [eval-advice + proceed substitution]
-> 5 + 1 [eval-method]

These two evaluations illustrate how the same advice — in this case a — influ-
ences methods with different numbers of parameters — in this case const() and
id(int) — exploiting the varargs in our formalism. �

EXAMPLE 4.4. before and after advice as classically construed in AspectJ rely
on side effects, and thus are not very useful in the pure calculus that we consider.
We consider a pure functional form of after advice which transforms the result
of method call. The general form is after 〈X̄/V̄ 〉R a(P̄ x̄)[φ]{M}, where the
special variable result is allowed to occur in M with type R. This can be encoded
as advice a〈X̄/V̄ 〉R(P̄ x̄):φ{M[proceed(x̄)/result]}. The form of varargs supported
by our system, as illustrated by the earlier discussion of EVAL-ADVICE, is crucial
to ensuring that the same definition of “after” advice can be used for any method
whose list of parameters has P̄ x̄ as a prefix.

18

Similarly, the general form before 〈X̄/V̄ 〉R a(P̄ x̄)[φ]{M̄}, where each Mi rep-
resents a transformation of argument xi, can be encoded as:

advice a〈X̄/V̄ 〉R(P̄ x̄):φ{proceed(M̄)} �

5 Aspect FGJ Statics: Type Carrying Semantics

In this section, we discuss the typing of Featherweight Aspect GJ for the case when
precise type information is carried at runtime.

To guarantee unique bindings for advice variables, we must ensure that each vari-
able is used in every satisfiable pointcut. To do this, we formalize the notion of
disjunctively-closed free variables first. The base cases of the following definition
for atoms yields the free type variables. In a conjunction, the type variables can be
bound in either conjunct. In a disjunction, the type variables have to be bound in
both disjuncts. Thus, we are requiring (roughly) that all type variables in a pointcut
occur in every disjunctive subterm.

The following definition relies on the absence of negation in the pointcut logic.

DISJUNCTIVELY-CLOSED FREE VARIABLES (dcfv(φ) = X̄)

dcfv(exe R T.*(P̄,*)) = fv(R)∪ fv(T)∪ fv(P̄)
dcfv(exe R T.*(P̄)) = fv(R)∪ fv(T)∪ fv(P̄)

dcfv(exe R T.`〈V̄ 〉(P̄,*)) = fv(R)∪ fv(T)∪ fv(V̄)∪ fv(P̄)
dcfv(exe R T.`〈V̄ 〉(P̄)) = fv(R)∪ fv(T)∪ fv(V̄)∪ fv(P̄)

dcfv(φ || ψ) = dcfv(φ)∩dcfv(ψ) dcfv(false) = /0
dcfv(φ && ψ) = dcfv(φ)∪dcfv(ψ) dcfv(true) = /0

The following proposition shows that this definition achieves its intention.

PROPOSITION 5.1 (DETERMINISTIC ADVICE LOOKUP).
Let DDD 3 advice a〈Ȳ/ Ē〉R(P̄ x̄):φ{M}. If fv(φ) = dcfv(φ) and
` T.`〈V̄ 〉 advisedby a〈Ū〉 and ` T.`〈V̄ 〉 advisedby a〈Ū ′〉 then Ū = Ū ′.

The resulting type rules are described in the next table.

19

AFGJ TYPING (ALL RULES FROM FGJ TYPING)

(DEC-ADVICE)

φ � exe R T.*(P̄,*)
fv(φ) = dcfv(φ) = {Ȳ}
Ȳ/ Ē ` T, Ē, P̄,R
Ȳ/ Ē; P̄ x̄,T target,R proceed(P̄) ` M : R′

Ȳ/ Ē ` R′ <: R
` advice a〈Ȳ/ Ē〉R(P̄ x̄):φ{M}

(TERM-PROCEED)

∆; Γ ` ok
Γ(proceed) = R(P̄)
∆; Γ ` N̄ : P̄′

∆ ` P̄′ <: P̄
∆; Γ ` proceed(N̄) : R

(TERM-ADVISED)

∆ `C.`〈V̄ 〉 advisedby Ā
∆; Γ ` M.`〈V̄ 〉(N̄) : R
∆; Γ ` M.`〈V̄ 〉[Ā](N̄) : R

M = new C(· · ·)

(ENV-PROCEED)

∆; Γ ` ok ∆; Γ ` P̄,R
proceed /∈ dom(Γ)
∆; Γ,R proceed(P̄) ` ok

TERM-PROCEED uses a well formed proceed declaration to type the result of a call
to proceed. TERM-ADVISED checks the well typing of an advised method call using
the well typing of the advice that are members in the list. In this rule we require that
the term M be an object; this is not overly restrictive since advised method calls are
intermediate results which occur only after the receiver’s type is fully evaluated.

Most of the work is performed in the rule DEC-ADVICE. This rule requires that
the advice satisfy the “Disjunctively-Closed Free Variables” condition discussed
earlier. In addition, it addresses two further issues: constraints on pointcuts and
constraints on return types.

Constraints on pointcuts. Pointcuts are not typed in DEC-ADVICE. Nonetheless,
they are subject to two constraints.

• The requirement on disjunctively-closed free variables ensures that all the type
variables in a pointcut are constrained by any method call triggering the ad-
vice.

• The requirement that φ � exe R T.*(P̄,*) ensures additionally that all trig-
gers agree on types for target and for the parameters listed in the pointcut.

In particular, the second requirement is reflected in the definition of the pointcut
logic that both φ � ρ and ψ � ρ are required to satisfy φ ||ψ � ρ . This is illustrated
by the following example

EXAMPLE 5.2. Recall that the pointcut

φ = 〈X ,Y 〉(exe R X.`〈Y 〉() || exe R Y.`〈X〉())

is satisfied by the event exe R c.`〈d〉() with two conflicting variable bindings:
〈c,d〉 and 〈d,c〉. Such a pointcut is disallowed by DEC-ADVICE since the two sides
of the disjunction disagree on the type of the target. �

20

Constraints on the return type. DEC-ADVICE uses the type information recov-
ered from the pointcut via φ � exe R T.*(P̄,*) to generate assumptions to type
the body of the advice in X̄/C̄; P̄ x̄,T target,R proceed(P̄)`M : S. This impacts
and interacts with (covariant) overriding, as illustrated by the following examples.

EXAMPLE 5.3. Consider the pointcut exe Object c.foo(*). DEC-ADVICE in this
case sets the return type, R, to Object and the rule permits the advice to return a
result at any subtype of Object. Informally, this is typesafe since in this case the
declared return type of the triggering method is exactly Object. �

EXAMPLE 5.4. The reasoning of the previous example extends to more general
pointcuts. Consider the pointcut 〈X/c〉exe Object X.foo(*). Again in this case,
DEC-ADVICE sets R to Object and permits the advice to return a result at any
subtype of Object. Informally, even though the receiving object’s actual class can
be any subclass of c, this is also typesafe since the declared return type of the trigger
method is (exactly) Object. �

EXAMPLE 5.5. Consider the generic pointcut 〈X/c,Y/Object〉exeY X.foo(*).
In this case, DEC-ADVICE sets R to the type variable Y . DEC-ADVICE specifies
typesafe ways for the use of the return values of the proceed in the advice body.
The advice body can use the return value of proceed at the bound of the proceed
variable, in this case Object. Furthermore, the advice body has to return a result at
a subtype of Y , without knowing the exact type associated with Y . So, the advice
body has to be parametric in the return value from proceed. This discussion is made
concrete by the first example from Section 2, rendered in AFGJ as:

advice <R extends E> R CodingAfter: exe(R C.*()) {
return new D().do_after(proceed());

}

In order for this advice to type, D.do after must have type 〈X/E〉X(). �

EXAMPLE 5.6. Consider the pointcut exe(List<Boolean> List<Boolean>.max
(List<Boolean>)). In this case, DEC-ADVICE sets R to List<Boolean>, spec-
ifies that the advice body can use the return value of proceed at List<Boolean>
and forces the advice body to return a result at a subtype of List<Boolean>. �

We revisit our informal arguments in the introduction — that our typing constraints
are not unduly restrictive — using the vocabulary of [53] that classifies advice as
augmentation advice (where the entire body of the method always executes), nar-
rowing advice (either the entire body of the method executes or none of the body
executes) and replacement advice (advice replaces the method with potentially un-
related new behavior). With the proviso that the advice body is generic in the return
value from proceed, in the sense of example 5.5, augmentation and narrowing ad-
vice are permitted by our typing restrictions. Typical logging, monitoring and safety

21

checks clearly fall into this category. On the other hand, replacement advice on a
method in a class is generally typesafe only in the restricted situation that the advice
applies only to this class and not to any of its the subclasses.

Results. Theorem 3.3 (Preservation) and Theorem 3.4 (Progress) hold for AFGJ.
See Appendix C for proofs. Unlike Theorem 3.5, the weak confluence result for
AFGJ requires that terms be typed.

THEOREM 5.7 (AFGJ WEAK CONFLUENCE). If ` M : T , for some T , and
M → N1 and M → N2 then ∃L.N1 →∗ L and N2 →∗ L.

The proof of weak confluence relies on proposition 5.1. For details see Appendix C.

6 Aspect FGJ Statics: Type Erasure Semantics

The type system of the previous section guarantees deterministic advice lookup:
that whenever advice a〈Ū〉 fires, the choice of each Ui is unique (proposition 5.1).
Here we develop a type system that additionally guarantees that whether advice
fires is independent of the type parameters — so the types do not need to be present
at runtime and can be erased. Concretely, our typing rules ensure that if a piece of
advice advice a〈X̄/C̄〉(. . .):φ{ . . .} fires with types V̄ , the type information can
be abstracted out (into X̄) and replaced with any other types Ū which satisfy the
constraints.

The erasure typing (
) includes all rules from the previous system (`), but for DEC-
ADVICE. The second premise of DEC-ADVICE now also includes pointcut typing.

ERASURE TYPING (ALL PRIOR RULES EXCEPT DEC-ADVICE)

22

(PC-FALSE)

 false

(PC-TRUE)

 true

(PC-AND)

X̄ and Ȳ disjoint
X̄/C̄
 φ

Ȳ/ D̄
 ψ

X̄/C̄,Ȳ/ D̄
 φ && ψ

(PC-OR)

∆
 φ

∆
 ψ

∆
 φ || ψ

(PC-REORDER)

∆
 φ

∆′ is a permutation of ∆

∆′
 φ

(PC-VARARGS-EXE)

∆
 exe R T.`〈Ē〉(P̄, Q̄)

∆
 exe R T.`〈Ē〉(P̄,*)

(PC-VARARGS-WILD)

∆
 exe R T.*(P̄, Q̄)

∆
 exe R T.*(P̄,*)

(DEC-ADVICE)

φ � exe R T.*(P̄,*)
Ȳ/ Ē
 φ

Ȳ/ Ē ` T, Ē, P̄,R
Ȳ/ Ē; P̄ x̄,T target,R proceed(P̄)
 M : R′

Ȳ/ Ē ` R′ <: R

 advice a〈Ȳ/ Ē〉R(P̄ x̄):φ{M}
(PC-EXE-CLASS)

X̄ and Ȳ disjoint
DDD 3 class c〈X̄/C̄〉 · · ·
`meth(c〈X̄〉.`) = 〈Ȳ/ Ē〉R(P̄) · · ·
X̄/C̄ ,Ȳ/ Ē ` (C̄, Ē) <: (C̄′, Ē ′)
X̄/C̄′,Ȳ/ Ē ′
 exe R c〈X̄〉.`〈Ȳ 〉(P̄)
(PC-EXE-VAR)

W,Z, X̄ , and Ȳ disjoint
DDD 3 class c〈X̄/C̄〉 · · ·
`meth(c〈X̄〉.`) = 〈Ȳ/ Ē〉R(P̄) · · ·
W/R ,Z/c〈X̄〉, X̄/C̄,Ȳ/ Ē ` (Ē,R) <: (Ē ′,R′)
W/R′,Z/c〈X̄〉, X̄/C̄,Ȳ/ Ē ′
 exeW Z.`〈Ȳ 〉(P̄)
(PC-WILD)

W,Z, X̄ , and Ȳ disjoint
DDD 3 class c〈X̄/C̄〉 · · ·
W/Object,Z/c〈X̄〉, X̄/C̄,Ȳ/Object
 exeW Z.*(Ȳ)

The type system we develop for pointcuts has two rules for each atom in the point-
cut logic. One rule applies when the target type is a class; the other rule applies
when the target type is a variable.

The pointcut typing rules impose two kinds of restrictions to ensure that erasure
of types does not affect the choice of triggered pointcuts. First, the parameters to
classes are forced to be variables, since the instantiation of these type variables are
not available at run time. Second, a linear discipline is enforced on type variables
in pointcuts to eliminate hidden dependencies on type instantiations. This linear
discipline is developed by analogy with intuitionist linear logic: the PC-AND rule
corresponds to tensor introduction (⊗), whereas the PC-OR rule corresponds to with
introduction (&) and PC-REORDER corresponds to the multiset view of the context.
Keeping with the linear discipline, weakening and strengthening are disallowed.

PC-EXE-CLASS forces the parameters to classes to be distinct variables via the re-
striction on valid class declarations. It also forces the type variables used in the
result type of the method to be disjoint from the type parameters to the classes.
PC-EXE-VAR imposes the additional restriction that the type variable used for the

23

class itself and the result type are also distinct variables. The differences between
PC-WILD and PC-EXE-VAR are caused by the fact that the method is not specified
in PC-WILD, obviating the need for those hypothesis in the type judgment.

The two PC-VARARGS rules permit vararg pointcuts to be typed if there is some
instance of the varargs that permits the typing.

EXAMPLE 6.1. The pointcut exe(List<Boolean> List<Boolean>.max(List

<Boolean>)) is not typeable since PC-EXE-CLASS requires that all parameters to
classes be variables. This example should be contrasted with example 5.6. �

EXAMPLE 6.2. The pointcut exe(T Pair<T,T>.first()) is also untypeable. The
second hypothesis in PC-EXE-CLASS requires Pair<T,T> to be part of a valid
class declaration. A valid class declaration is not permitted to have repeated type
variables in our system. PC-AND prevents us from using conjunction to achieve
the same result, for example by using exe(T Pair<T,U>.first()) && exe(U

Pair<U,T>.first()). �

EXAMPLE 6.3. On the affirmative side, the example encoding of after advice
given previously — advice a〈X̄/C̄〉R(P̄ x̄):φ{M[proceed(x̄)/result]}— is typeable
provided that the following provisos hold: M is typeable, X̄ , P̄ are disjoint and
X̄/C̄
 φ . In the case where φ is of the form picking out a method call ` in class c,
exe R c〈Z̄〉.`〈Ȳ 〉(P̄), the last proviso implies that the type parameters to the class
c are type variables Z̄ and also that Z̄ and Ȳ disjoint. �

Results. The following lemma relates the erasure semantics to the type carrying
semantics from Section 5.

PROPOSITION 6.4. If ∆; Γ
 M : T then ∆; Γ ` M : T .

Proof. The crucial lemma states that if X̄/C̄
 φ then fv(φ) = dcfv(φ) = {X̄}.
Given the change to DEC-ADVICE, this allows us to conclude that the erasure se-
mantics (
) is more restrictive than the type carrying semantics (`). �

Proposition 6.4 allows us to carry over the proofs of weak confluence, progress
and preservation from the previous system. In the case of preservation, note that
the changes in the type system only affect declarations, which do not evolve under
evaluation.

We now argue that type erasure is safe for the typing system presented in this sec-
tion by proving that runtime types do not affect evaluation. The following theorem
is proved in Appendix D.

THEOREM 6.5 (PARAMETRICITY OF REDUCTION). Suppose X̄/ D̄
 M : T and
` S̄ and ` S̄ <: D̄[V̄/X̄]. Then ` M[S̄/X̄]→ L implies that L = N[S̄/X̄] and for all S̄′

such that ` S̄′ <: D̄[S̄′/X̄] we have that ` M[S̄′/X̄]→ N[S̄′/X̄].

24

The theorem states that for each reduction step involving a term M containing types
S̄, the type information can be abstracted out (into X̄) and replaced with any other
types S̄′ which satisfy the constraints. Note that this is true of every step of reduction
— at each step, the types can be replaced with any other type which satisfy the
constraints.

7 Conclusion

In this paper, we have studied the incorporation of generic types in aspect languages
in the context of both models of parametric polymorphism: the type erasure seman-
tics and the type carrying semantics. Our study has accommodated the subtleties of
the interaction of classes, polymorphism and aspects; advice complicates the notion
of return type and complicates the type erasure semantics used by Generic Java.

Our pointcut model is simple: we only consider execution pointcuts and our point-
cut logic is positive, i.e. no negation. We have argued that genericity enables us to
recover several important uses of negation.

We demonstrate that generic advice is useful, even in the presence of nongeneric
base classes. In general, we have argued that uses of augmentation and narrowing
advice fall inside our framework.

This paper proves the fundamental properties of a static semantics: namely that
well typing is preserved by reduction and that well typed programs can always
make progress. We also describe conditions under which reduction is independent
of type annotations. Our contribution is timely, as full source-level support for the
generic features of Java 1.5 is just now available in AspectJ.

In future work, we intend to explore richer pointcut logics including those already
present in AspectJ, such as call and cflow. We also intend to explore more expres-
sive type rules for wildcards. For example, PC-WILD that may be more restrictive
than necessary, by disallowing clearly sound examples such as the following.

advice a〈X ,Y 〉Y(int x):exe Y X.*(int){proceed(x+1)}

We have also not addressed contravariant argument types in this paper. Consider a
variant of the example from section 2: a class and an aspect intended to work on all
subclasses.

class D {
public String m(String s) { return "D"++s; }

}
aspect C<T> {
T around(): execution(* D.m(String s)) {

25

// what type may this code assume for s??
} }

Naively, if the aspect C has to work in a typesafe way in the presence of contravari-
ant arguments, the only type assumption that the body of the aspect can make about
the argument is Object. Clearly, this is quite restrictive, and the investigation of de-
sign issues to ease this impediment is left to future work.

In this (already long!) paper, we have not addressed the issues of weaving. The
weaving algorithm translates the aspect-based programs of AFGJ into programs in
the class-based FGJ. This algorithm is not novel: the untyped version of the algo-
rithm is closely modeled on that used by AspectJ. In our earlier work on an untyped
aspect calculus [54], we have analyzed such an algorithm formally for a calculus
with more features (e.g. inner classes, state, call and execution pointcuts). Since
weaving is primarily a direct reflection of aspect dynamics into object dynamics,
we believe that weaving preserves typeability of programs by mapping well typed
aspect programs to well typed class based programs. The formal exploration of this
point is left to future work.

Acknowledgment

We wish to thank Glenn Bruns for many useful discussions during both the in-
ception and elaboration of this work. We also wish to thank Steve Rogers and the
anonymous reviewers of this and an earlier version of this report for several useful
comments.

References

[1] L. Bergmans, Composing concurrent objects - applying composition filters for
the development and reuse of concurrent object-oriented programs, Ph.d. thesis,
University of Twente, http://wwwhome.cs.utwente.nl/∼bergmans/phd.htm (1994).

[2] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold, An
overview of AspectJ, Lecture Notes in Computer Science 2072 (2001) 327–355.

[3] H. Ossher, P. Tarr, Multi-dimensional separation of concerns and the hyperspace
approach, in: Proceedings of the Symposium on Software Architectures and
Component Technology: The State of the Art in Software Development, 2001.

[4] K. J. Lieberherr, Adaptive Object-Oriented Software: The Demeter method with
propagation patterns, PWS Publishing Company, 1996.

26

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
J. Irwin, Aspect-oriented programming, in: European Conference on Object-Oriented
Programming (ECOOP), 1997.

[6] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, A. Yonezawa, Abstracting object-
interactions using composition-filters, in: In object-based distributed processing,
LNCS, 1993.

[7] R. Filman, D. Friedman, Aspect-oriented programming is quantification and
obliviousness (2000).

[8] P. Tarr, H. Ossher, S. M. Sutton, Jr., Hyper/J: multi-dimensional separation of concerns
for java, in: ICSE, ACM, 2002, pp. 689–690.

[9] P. L. Tarr, H. Ossher, Hyper/J: Multi-dimensional separation of concerns for Java., in:
ICSE, IEEE Computer Society, 2001, pp. 729–730.

[10] G. Kiczales, Y. Coady, Aspectc, http://www.cs.ubc.ca/labs/spl/projects/aspectc.
html (2001).

[11] Y. Coady, G. Kiczales, M. J. Feeley, G. Smolyn, Using aspectc to improve the
modularity of path-specific customization in operating system code., in: ESEC /
SIGSOFT FSE, 2001, pp. 88–98.

[12] D. B. Tucker, S. Krishnamurthi, Pointcuts and advice in higher-order languages., in:
AOSD, 2003, pp. 158–167.

[13] D. Walker, S. Zdancewic, J. Ligatti, A theory of aspects, in: Conference Record of
ICFP 03: The ACM SIGPLAN International Conference on Functional Programming,
2003.

[14] G. C. Murphy, R. J. Walker, E. L. A. Baniassad, M. P. Robillard, A. Lai, M. Kersten,
Does aspect-oriented programming work?, Commun. ACM 44 (10) (2001) 75–77.

[15] S. Matsuoka, A. Yonezawa, Analysis of Inheritance anomaly in Object-oriented
concurrent programming languages, in: G. Agha, P. Wegner, A. Yonezawa (Eds.),
Research Directions in Concurrent Object-Oriented Programming, MIT Press, 1993,
pp. 107–150.

[16] C. V. Lopes, D: A language framework for distributed programming, Ph.d.
thesis, Northestern University, ftp://ftp.ccs.neu.edu/pub/people/lieber/theses/
lopes/dissertation.pdf (1997).

[17] M. Mezini, K. Ostermann, Variability management with feature-oriented
programming and aspects, in: Proceedings of the 12th ACM SIGSOFT symposium
on Foundations of software engineering, ACM Press, 2004, pp. 127–136.

[18] M. Mezini, K. Ostermann, Conquering aspects with Caesar., in: AOSD, 2003, pp. 90–
99.

[19] A. M. Colyer, A. Clement, Large-scale AOSD for middleware., in: G. C. Murphy, K. J.
Lieberherr (Eds.), AOSD, ACM, 2004, pp. 56–65.

27

[20] R. Khaled, J. Noble, R. Biddle, InspectJ: Program monitoring for visualisation using
AspectJ., in: ACSC, 2003, pp. 359–368.

[21] C. Bockisch, M. Haupt, M. Mezini, K. Ostermann, Virtual machine support for
dynamic join points., in: G. C. Murphy, K. J. Lieberherr (Eds.), AOSD, ACM, 2004,
pp. 83–92.

[22] M. Eichberg, M. Mezini, K. Ostermann, Pointcuts as functional queries., in: APLAS,
2004, pp. 366–381.

[23] M. Nishizawa, S. Chiba, M. Tatsubori, Remote pointcut: a language construct for
distributed AOP., in: G. C. Murphy, K. J. Lieberherr (Eds.), AOSD, ACM, 2004, pp.
7–15.

[24] S. Chiba, K. Nakagawa, Josh: an open Aspectj-like language., in: AOSD, 2004, pp.
102–111.

[25] K. D. Volder, T. D’Hondt, Aspect-Orientated Logic Meta-programming., in: P. Cointe
(Ed.), Reflection, Vol. 1616 of Lecture Notes in Computer Science, Springer, 1999,
pp. 250–272.

[26] B. D. Win, V. Shah, W. Joosen, R. Bodkin, AOSDSEC: AOSD Technology
for Application-Level Security, http://www.cs.kuleuven.ac.be/∼distrinet/events/
aosdsec/ (2004).

[27] F. B. Schneider, J. G. Morrisett, R. Harper, A Language-based Approach to Security.,
in: R. Wilhelm (Ed.), Informatics, Vol. 2000 of Lecture Notes in Computer Science,
Springer, 2001, pp. 86–101.

[28] O. Nierstrasz, Regular types for Active Objects., in: OOPSLA, 1993, pp. 1–15.

[29] G. Leavens, Report on the FOAL 2002 workshop, http://www.seas.upenn.edu/
∼sweirich/types/archive/1999-2003/msg01029.html (2002).

[30] K. J. Lieberherr, D. Lorenz, J. Ovlinger, Aspectual collaborations – combining
modules and aspects, The Computer Journal 46 (5) (2003) 542–565, http://www.
ccs.neu.edu/research/demeter/papers/ac-aspectj-hyperj.

[31] D. S. Dantas, D. Walker, G. Washburn, S. Weirich, Polyaml: a polymorphic aspect-
oriented functional programming language, in: ICFP ’05: Proceedings of the tenth
ACM SIGPLAN international conference on Functional programming, ACM Press,
New York, NY, USA, 2005, pp. 306–319.

[32] H. Masuhara, H. Tatsuzawa, A. Yonezawa, Aspectual caml: an aspect-oriented
functional language, in: ICFP ’05: Proceedings of the tenth ACM SIGPLAN
international conference on Functional programming, ACM Press, New York, NY,
USA, 2005, pp. 320–330.

[33] G. Bracha, M. Odersky, D. Stoutamire, P. Wadler, Making the Future Safe for the
Past: Adding Genericity to the Java programming language., in: OOPSLA, 1998, pp.
183–200.

28

[34] M. Odersky, P. Wadler, Pizza into Java: Translating theory into practice., in: POPL,
1997, pp. 146–159.

[35] A. Kennedy, D. Syme, Transposing f to c#: expressivity of parametric polymorphism
in an object-oriented language., Concurrency - Practice and Experience 16 (7) (2004)
707–733.

[36] M. Abadi, L. Cardelli, A Theory of Objects, Springer Verlag, 1996.

[37] J. Saltzer, M. Schroeder, The protection of information in computer systems., in: IEEE,
Vol. 9(63), 1975.

[38] A. P. Black, Object-Oriented languages: The Next Generation., ACM Comput. Surv.
28 (4es) (1996) 149.

[39] C. Clifton, G. T. Leavens, Obliviousness, modular reasoning, and the behavioral
subtyping analogy, tR #03-01a (Jan 2003).

[40] A. Igarashi, B. C. Pierce, P. Wadler, Featherweight Java: a minimal core calculus for
Java and GJ., ACM Trans. Program. Lang. Syst. 23 (3) (2001) 396–450.

[41] A. K. Wright, M. Felleisen, A syntactic approach to type soundness, Information and
Computation 115 (1) (1994) 38–94.
URL citeseer.ist.psu.edu/wright92syntactic.html

[42] K. B. Bruce, L. Cardelli, B. C. Pierce, Comparing object encodings, Information and
Computation 155, an extended abstract appeared in Proceedings of TACS ’97, LNCS
1281, Springer-Verlag, pp. 415-438.

[43] K. B. Bruce, A. Fiech, L. Petersen, Subtyping is not a good “match” for object-oriented
languages, in: European Conference on Object-Oriented Programming (ECOOP),
1997.

[44] K. B. Bruce, A. Fiech, A. Schuett, R. van Gent, A type-safe polymorphic object-
oriented language, in: European Conference on Object-Oriented Programming
(ECOOP), 1995.

[45] K. Fisher, J. Reppy, J. G. Riecke, A calculus for compiling and linking classes, in:
European Conference on Object-Oriented Programming (ECOOP), 2000.

[46] V. Bono, L. Liquori, A subtyping for the Fisher-Honsell-Mitchell lambda calculus of
objects., in: CSL, 1994, pp. 16–30.

[47] M. Flatt, S. Krishnamurthi, M. Felleisen, Classes and Mixins, in: ACM Symposium
on Principles of Programming Languages (POPL), 1998, pp. 171–183.

[48] S. Drossopoulou, S. Eisenbach, S. Khurshid, Is the Java type system sound?, Theory
and Practice of Object Systems 5 (11) (1999) 3–24.

[49] G. Bierman, M. Parkinson, A. Pitts, An imperative core calculus for Java and Java with
effects, Tech. Rep. 563, University of Cambridge Computer Laboratory (Apr. 2003).

[50] D. Yu, A. Kennedy, D. Syme, Formalization of generics for the .Net common language
runtime, in: POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, ACM Press, 2004, pp. 39–51.

29

[51] A. Igarashi, B. C. Pierce, On Inner classes., Inf. Comput. 177 (1) (2002) 56–89.

[52] M. Torgersen, C. P. Hansen, E. Ernst, P. von der Ahé, G. Bracha, N. Gafter, Adding
wildcards to the Java programming language, in: Proceedings of the 2004 ACM
symposium on Applied computing, ACM Press, 2004, pp. 1289–1296.

[53] M. C. Rinard, A. Salcianu, S. Bugrara, A classification system and analysis for aspect-
oriented programs., in: R. N. Taylor, M. B. Dwyer (Eds.), SIGSOFT FSE, ACM, 2004,
pp. 147–158.

[54] R. Jagadeesan, A. Jeffrey, J. Riely, A calculus of untyped Aspect-oriented programs.,
in: L. Cardelli (Ed.), ECOOP, Vol. 2743 of Lecture Notes in Computer Science,
Springer, 2003, pp. 54–73.

[55] P. Wadler, List comprehensions, in: The Implementation of Functional Programming
Languages, Prentice Hall, 1987.

A AFGJ Summary

For reference, we accumulate those definitions relevant to the AFGJ type carrying
semantics that are spread between Section 3 and Sections 4 and 5.

NAMES AND VARIABLES

a,b Advice names
c,d Class names (Object reserved)
f ,g,h Field names
` Method names
x Term Variables (this, target reserved)
X ,Y,Z,W Type Variables

30

SYNTAX

C,D,E ::= c〈T̄ 〉 Non-variable Type

P,Q,R,S,T,U,V ::= X | C Types

A,B ::= a〈T̄ 〉 Advice Application

O ::= new C(Ō) Values

M,N,L ::= Terms
x Term Variable
M. f Field Access
M.`〈T̄ 〉(N̄) Method Call
M.`〈T̄ 〉[Ā](N̄) Advised Call
proceed(N̄) Proceed Call
new C(N̄) Object

E ::= Evaluation Contexts
[]. f Field Access
[].`〈V̄ 〉(N̄) Method Call Target
[].`〈T̄ 〉[Ā](N̄) Advised Call Target
M.`〈V̄ 〉(N̄, [], N̄′) Method Call Argument
M.`〈T̄ 〉[Ā](N̄, [], N̄′) Advised Call Argument
proceed(N̄, [], N̄′) Proceed Call Argument
new C(N̄, [], N̄′) Object

D ::= Top Level Declarations
class c〈X̄/C̄〉/D{T̄ f̄; κ µ̄} Class Declaration
advice a〈X̄/C̄〉R(P̄ x̄):φ{M} Advice Declaration

κ ::= c(T̄ f̄){super(ḡ); this.h̄= h̄;} Constructor Declarations

µ ::= 〈X̄/C̄〉R `(P̄ x̄){M} Method Declarations

φ ,ψ,ρ ::= Pointcuts
exe R T.`〈V̄ 〉(P̄) Method Execution
exe R T.`〈V̄ 〉(P̄,*) Vararg Method Execution
exe R T.*(P̄) Wildcard Execution
exe R T.*(P̄,*) Vararg Wildcard Execution
φ && ψ And
φ || ψ Or
false False
true True

∆ ::= • | ∆,X/C Type Environment

Γ ::= • | Γ,T x Term Environment
Γ,R proceed(P̄) Proceed

31

EVALUATION (M → M′)

(EVAL-LOOKUP)[
Ā
]
=

[
a〈Ū〉

∣∣∣∣ DDD 3 advice a · · ·
`C.`〈V̄ 〉 advisedby a〈Ū〉

]
M.`〈V̄ 〉(N̄)→ M.`〈V̄ 〉[Ā](N̄)

M = new C(· · ·)

(EVAL-FIELD)

fields(C) = f̄
new C(N̄). fi → Ni

(EVAL-METHOD)

meth(C.`) = 〈X̄〉(x̄){L}
M.`〈V̄ 〉[](N̄)→ L[V̄/X̄,M/this, N̄/x̄]

M = new C(· · ·)

(EVAL-CONTEXT)

M → M′

E [M]→ E [M′]

(EVAL-ADVICE)

DDD 3 advice a〈X̄〉(x̄) · · ·{L}
M.`〈V̄ 〉[a〈Ū〉, Ā](N̄, N̄′)→ L[Ū/X̄,M/target, N̄/x̄,M.`〈V̄ 〉[Ā](N̄′)/proceed]

ENVIRONMENT TYPING (∆; Γ ` ok)

(ENV-EMPTY)

∆ ` ok

∆; • ` ok

(ENV-TERM-VAR)

∆; Γ ` ok
∆; Γ ` T
x /∈ dom(Γ)
∆; Γ,T x ` ok

(ENV-PROCEED)

∆; Γ ` ok
∆; Γ ` P̄,R
proceed /∈ dom(Γ)
∆; Γ,R proceed(P̄) ` ok

DECLARATION TYPING (`D)

(DEC-ADVICE)

φ � exe R T.*(P̄,*)
fv(φ) = dcfv(φ) = {Ȳ}
Ȳ/ Ē ` T, Ē, P̄,R
Ȳ/ Ē; P̄ x̄,T target,R proceed(P̄) ` M : R′

Ȳ/ Ē ` R′ <: R
` advice a〈Ȳ/ Ē〉R(P̄ x̄):φ{M}

(DEC-CLASS)

X̄/C̄ ` C̄,D, T̄
fields(D) = S̄ ḡ
X̄/C̄; S̄ ḡ, T̄ f̄ ` ok
` µ̄ : ok inc〈X̄/C̄〉/D
κ = c(S̄ ḡ, T̄ f̄){super(ḡ); this. f̄ = f̄;}
` class c〈X̄/C̄〉/D{T̄ f̄; κ µ̄}

TERM TYPING (∆; Γ ` M : T)

(TERM-FIELD)

∆; Γ ` M : T
∆ ` fields(T) = S̄ f̄
∆; Γ ` M. fi : Si

(TERM-VAR)

∆; Γ ` ok
Γ(x) = T
∆; Γ ` x : T

(TERM-ADVISED)

∆ `C.`〈V̄ 〉 advisedby Ā
∆; Γ ` M.`〈V̄ 〉(N̄) : R
∆; Γ ` M.`〈V̄ 〉[Ā](N̄) : R

M = new C(· · ·)

(TERM-OBJECT)

∆; Γ ` ok ∆ `C
` fields(C) = S̄ f̄
∆; Γ ` N̄ : S̄′

∆ ` S̄′ <: S̄
∆; Γ ` new C(N̄) : C

(TERM-PROCEED)

∆; Γ ` ok
Γ(proceed) = R(P̄)
∆; Γ ` N̄ : P̄′

∆ ` P̄′ <: P̄
∆; Γ ` proceed(N̄) : R

(TERM-METHOD)

∆ ` V̄
∆ `meth(T.`) = 〈Ȳ/ Ē〉R(P̄) · · ·
∆; Γ ` (M, N̄) : (T, P̄′)
∆ ` (V̄ , P̄′) <: (Ē, P̄)[V̄/Ȳ]
∆; Γ ` M.`〈V̄ 〉(N̄) : R

32

B Proofs for FGJ

B.1 Preservation and Progress

The following lemmas state basic sanity requirements relating subtyping, well-
formed types and lookup. In each case, the proofs follow by induction on the defini-
tion of subtyping. These lemmas are only used to prove properties of the dynamics
and, thus, type variables are not necessary. We recall Assumption 3.2, that all dec-
larations are well-typed.

LEMMA B.1 (SUPERTYPING PRESERVES WELL FORMED TYPE). If ∆ ` ok and
∆ ` T and ∆ ` T <: T ′ then ∆ ` T ′.

LEMMA B.2 (SUBTYPING PRESERVES FIELD LOOKUP). If ` T and ` T <: T ′

and ` fields(T ′) = V̄ f̄ then ` fields(T) = V̄ f̄ ,Ū ḡ for some ḡ disjoint from f̄ .

LEMMA B.3 (SUBTYPING PRESERVES METHOD LOOKUP). If ` T and ` T <: T ′

and `meth(T ′.`) = 〈Ȳ/C̄〉R(P̄) · · · then `meth(T.`) = 〈Ȳ/C̄〉R′(P̄) · · · and
` R′ <: R.

Further, note that terms can only be typed by well-formed environments

LEMMA B.4 (WELL FORMED TERM IMPLIES WELL FORMED ENVIRONMENT).
If ∆; Γ ` M : T then ∆; Γ ` ok.

The following lemma states a sanity condition on method lookup.

LEMMA B.5 (METHOD LOOKUP PRESERVES TYPING). If ` T and
`meth(T.`) = 〈Ȳ/C̄〉R(x̄ P̄){L} then Ȳ/C̄; P̄ x̄,T this ` L : R′ and
Ȳ/C̄ ` R′ <: R.

Proof. An induction on the derivation of `meth(T.`) = 〈Ȳ/C̄〉R(x̄ P̄){L}, making
use of the requirement that the global declaration set DDD is well-formed.

The following definition and lemma describe sanity conditions relating evaluation
contexts and typing.

CONTEXT TYPING (` E : T → R)

Define ` E : T → R if for all M:
(∃T ′.` T ′ <: T and ` M : T ′) implies (∃R′.` R′ <: R and ` E [M] : R′).

LEMMA B.6 (CONTEXT TYPING). If ` E [M] : R then ∃T.` M : T and
` E : T → R.

Proof. An induction on ` E [M] : R. �

33

The following lemma describes sanity conditions on substitutions. To state the
lemma succinctly, we introduce a notation for all judgments that satisfy substi-
tutivity. Term typing includes term variables and must be treated separately.

JUDGMENTS

J ::= Judgments
T Well Formed Type
T <: S Subtyping
fields(C) = T̄ f̄ Field Lookup
meth(C.`) = 〈Ȳ/ Ē〉R(P̄ x̄){M} Method Lookup

LEMMA B.7 (SUBSTITUTIVITY). (a) If Ȳ/C̄ `J and ` D̄ and ` D̄ <: C̄[D̄/Ȳ]
then `J [D̄/Ȳ]. (b) If Ȳ/C̄; P̄ x̄ ` M : S and ` D̄ and ` D̄ <: C̄[D̄/Ȳ] and ` N̄ : Q̄
and ` Q̄ <: P̄[D̄/Ȳ] then ` M[D̄/Ȳ , M̄/x̄] : T and ` T <: S[D̄/Ȳ].

Proof. Using Lemmas B.1–B.3, (a) follows by induction on Ȳ/C̄ ` J and (b)
follows by induction on Ȳ/C̄; P̄ x̄ ` M : S. The interesting cases for (b) are TERM-
FIELD and TERM-METHOD which are similar. In the case of TERM-FIELD, we have
Ȳ/C̄; P̄ x̄ `M. fi : Si from hypotheses Ȳ/C̄; P̄ x̄ `M : T and Ȳ/C̄ ` fields(T) = S̄ f̄ .
If T is a ground type, then we proceed by induction using (a) and Lemma B.2.
Otherwise, we have T = Yi, and we must have used FIELD-VAR, so we have Ȳ/C̄ `
fields(Ci) = S̄ f̄ , and since ` Di <: Ci[D̄/Ȳ], we proceed by induction using (a) and
Lemma B.2. The case of TERM-METHOD is similar. �

As usual, weakening follows by induction on the judgment in the supposition.

LEMMA B.8 (WEAKENING). (a) If ∆ `J then ∆,∆′ `J . (b) If ∆; Γ ` M : T
then ∆,∆′; Γ,Γ′ ` M : T .

THEOREM (3.3 PRESERVATION). If ` M : T and M → N then
∃T ′.` T ′ <: T and ` N : T ′.

Proof. By case analysis on M → N. For EVAL-CONTEXT use Lemma B.6. For
EVAL-METHOD use Lemmas B.5, and B.7. �

THEOREM (3.4 PROGRESS). If ` M then either M is a value or ∃N.M → N.

Proof. By induction on ` M. �

B.2 Weak Confluence

We now turn our attention to a proof of weak confluence, for which we first prove
some technical lemmas relating reduction, evaluation contexts and substitution.

LEMMA B.9. If M → N then there exists some L in which x occurs exactly once
and M = L[M′

/x] and N = L[N′
/x] and M′ → N′ without use of EVAL-CONTEXT.

34

Proof. An induction on the derivation of M → N. �

LEMMA B.10. If M → N then L[M/x]→∗ L[N/x].

Proof. An induction on L. �

LEMMA B.11. If M → N and M → L, both without use of EVAL-CONTEXT, then
N = L.

Proof. A case analysis of M. �

LEMMA B.12. If new C(M̄)→∗ N then N = new C(N̄) and M̄ →∗ N̄.

Proof. Follows from observing that the only rule which could have derived new

C(M̄)→ N is EVAL-CONTEXT. �

LEMMA B.13. If L[M/x]→ N without use of EVAL-CONTEXT then either:

(1) L = x,
(2) N = N′[M/x] and L[M′

/x]→ N′[M′
/x] for any M′, or

(3) M = new C(M̄) and N = N′[M̄/x̄] and L[new C(N̄)/x] → N′[N̄/x̄] for any N̄ of the
same length as M̄.

Proof. A case analysis of the derivation of L[M/x]→ N. �

THEOREM (3.5 WEAK CONFLUENCE). If M → N1 and M → N2 then
∃L.N1 →∗ L and N2 →∗ L.

Proof. We first use Lemma B.9 to get that M = Li[M
′
i/xi] and Ni = Li[N

′
i/xi] and M′

i →
N′

i without use of EVAL-CONTEXT and xi occurs exactly once in Li. We then have
three cases to consider:

(1) If L1 = L[M
′
2/x2] and L2 = L[M

′
1/x1] then by Lemma B.10:

N1 = L1[
N′

1/x1] = L[M
′
2/x2][N

′
1/x1] = L[N

′
1/x1][M

′
2/x2]→∗ L[N

′
1/x1][N

′
2/x2] = L[N

′
1/x1,

N′
2/x2]

and symmetrically:

N2 = L2[
N′

2/x2] = L[M
′
1/x1][N

′
2/x2]→∗ L[N

′
2/x2][M

′
1/x1] = L[N

′
1/x1,

N′
2/x2]

as required.
(2) If M′

1 = M1[
M′

2/x2] and L2 = L1[M1/x1] then by Lemma B.13 we have three sub-
cases to consider:
(a) If M1 = x2 then M′

1 = M′
2, so by Lemma B.11 we have:

N1 = L1[
N′

1/x1] = L1[x2/x1][N
′
2/x2] = L1[M1/x1][N

′
2/x2] = L2[

N′
2/x2] = N2

35

(b) If N′
1 = L′1[

M′
2/x2] and M1[

N′
2/x2]→ L′1[

N′
2/x2] then by Lemma B.10 we have:

N1 = L1[
N′

1/x1] = L1[
L′1[

M′
2/x2]/x1]

= L1[
L′1/x1][M

′
2/x2]→∗ L1[

L′1/x1][N
′
2/x2] = L1[

L′1[
N′2/x2]/x1]

and similarly we have:

N2 = L2[
N′

2/x2] = L1[M1/x1][N
′
2/x2] = L1[M1[

N′2/x2]/x1]→∗ L1[
L′1[

N′2/x2]/x1]

as required.
(c) If M′

2 = new C(M̄2) (and hence, by Lemma B.12, N′
2 = new C(N̄2) where

M̄2 →∗ N̄2) and N′
1 = L′1[

M̄2/x̄2] and M1[new C(N̄2)/x2] → L′1[
N̄2/x̄2], then we

proceed as for the previous sub-case.
(3) If M′

2 = M2[
M′

1/x1] and L1 = L2[M2/x2] then we proceed as for the previous case.

Note that this proof only requires Lemmas B.9–B.13, and so can be re-used for
other languages satisfying these properties. �

C Proofs for Type-Carrying AFGJ

C.1 Preservation and Progress

We give the proof of preservation; the proof of progress is much as before.

We begin with lemmas giving properties of pointcuts.

LEMMA C.1 (CUT). If ρ � φ and φ � ψ then ρ � ψ .

Proof. An induction on the derivation of ρ � φ , with an inner induction on the
derivation of φ � ψ . �

LEMMA C.2 (POINTCUT SUBSTITUTIVITY). If φ � ψ then φ [Ū/X̄] � ψ[Ū/X̄].

Proof. An induction on the proof of φ � ψ . �

The following lemma states that proceed substitutions are well behaved.

LEMMA C.3 (PROCEED SUBSTITUTIVITY). If R proceed(P̄) ` L : S and
P̄ x̄ ` M.`〈V̄ 〉[Ā](x̄, N̄) : R then ` L[M.`〈V̄ 〉[Ā](N̄)/proceed] : S.

Proof. An induction on the judgment typing L. �

The proof of preservation proceeds, as before, by induction on the definition of
evaluation. The most interesting case is EVAL-ADVICE, which we consider in the

36

rest of this section. Given

` M.`〈V̄ 〉[a〈Ū〉, Ā](N̄, N̄′) : R (C.1)

our goal is to show that for some R′

` L[Ū/X̄,M/target, N̄/x̄,M.`〈V̄ 〉[Ā](N̄′)/proceed] : R′

` R′ <: R

where we may assume that the following holds.

DDD 3 advice a〈X̄/ Ē〉S(P̄ x̄):φ{L} (C.2)

The typing of the advised call (C.1) must follow from TERM-ADVISED, therefore
we must have

M = new C(· · ·) (C.3)
`C.`〈V̄ 〉 advisedby a〈Ū〉, Ā (C.4)
` M.`〈V̄ 〉(N̄, N̄′) : R (C.5)

From (C.4), ` C.`〈V̄ 〉 advisedby Ā. Applying TERM-ADVISED to this and (C.5)
gives us

` M.`〈V̄ 〉[Ā](N̄, N̄′) : R (C.6)

Using Assumption 3.2, the declaration of a in (C.2). must be typed. The only ap-
plicable rule is DEC-ADVICE, therefore we must have

φ � exe S C.*(P̄,*) (C.7)
X̄/ Ē; P̄ x̄,C target,S proceed(P̄) ` L : S′ (C.8)
X̄/ Ē ` S′ <: S (C.9)

Note from (C.3) and (C.5), using TERM-METHOD and Lemma B.4, that C must be
well formed and thus must not contain type variables. From (C.7) and Lemma C.2
(Pointcut substitutivity), we have

φ [Ū/X̄] � exe S[Ū/X̄] C.*(P̄[Ū/X̄],*) (C.10)

From (C.4), ` C.`〈V̄ 〉 advisedby a〈Ū〉, therefore the premises in the definition of
advised by must hold.

` Ū <: Ē[Ū/X̄] (C.11)
`meth(C.`) = 〈Ȳ 〉S′′(Q̄, Q̄′) · · · (C.12)
exe S′′[V̄/Ȳ] C.`〈V̄ 〉(Q̄[V̄/Ȳ], Q̄′[V̄/Ȳ]) � φ [Ū/X̄] (C.13)

Applying Lemma C.1 (Cut) to (C.10) and (C.13), we have

exe S′′[V̄/Ȳ] C.`〈V̄ 〉(Q̄[V̄/Ȳ], Q̄′[V̄/Ȳ]) � exe S[Ū/X̄] C.*(P̄[Ū/X̄],*)

37

and thus

Q̄[V̄/Ȳ] = P̄[Ū/X̄] and S′′[V̄/Ȳ] = S[Ū/X̄] (C.14)

Applying TERM-METHOD twice to (C.5) and (C.12), we have

Q̄[V̄/Ȳ] x̄ ` M.`〈V̄ 〉(x̄, N̄′) : S′′[V̄/Ȳ]
` N̄ : Q̄[V̄/Ȳ]

From this and (C.14) we have

P̄[Ū/X̄] x̄ ` M.`〈V̄ 〉(x̄, N̄′) : S[Ū/X̄] (C.15)
` N̄ : P̄[Ū/X̄] (C.16)

Applying TERM-METHOD again, we have

` M.`〈V̄ 〉(N̄, N̄′) : S[Ū/X̄]

and comparison with (C.5) yields

S[Ū/X̄] = R (C.17)

Applying TERM-ADVISED to (C.15) yields

P̄[Ū/X̄] x̄ ` M.`〈V̄ 〉[Ā](x̄, N̄′) : S[Ū/X̄] (C.18)

Using (C.11), we can apply a type substitution to (C.8) and (C.9). Further using
(C.17) to replace S[Ū/X̄] with R yields:

P[Ū/X̄] x̄,C target,R proceed(P̄[Ū/X̄]) ` L[Ū/X̄] : S′[Ū/X̄] (C.19)
` S′[Ū/X̄] <: R (C.20)

Applying OBJECT and weakening to (C.3) we have

P̄[Ū/X̄] x̄ ` M : C

Using this and (C.16), we can apply substitutivity (Lemma B.7) to (C.19), yielding

R proceed(P̄[Ū/X̄]) ` L[Ū/X̄,M/target, N̄/x̄,] : S′[Ū/X̄]

Finally, we can use (C.18) to apply pointcut substitutivity (Lemma C.3), yielding

` L[Ū/X̄,M/target, N̄/x̄,M.`〈V̄ 〉[Ā](N̄′)/proceed] : S′[Ū/X̄]

This, combined with (C.20) fulfills our obligation.

38

C.2 Weak Confluence

For confluence, the following lemma is sufficient to establish Proposition 5.1 (De-
terministic advice lookup), which in turn establishes Theorem 5.7 (AFGJ Conflu-
ence).

LEMMA C.4. If dcfv(φ) = {X̄} and exe R T.`〈V̄ 〉(P̄) � φ [Ū/X̄,Ū ′
/X̄ ′] and

exe R T.`〈V̄ 〉(P̄) � φ [R̄/X̄, R̄′/X̄ ′] then Ū = R̄.

Proof. By induction on φ . �

PROPOSITION (5.1 DETERMINISTIC ADVICE LOOKUP). If
` T.`〈V̄ 〉 advisedby a〈Ū〉 and ` T.`〈V̄ 〉 advisedby a〈Ū ′〉 then Ū = Ū ′.

Proof. Follows directly from Lemma C.4. �

THEOREM (5.7 AFGJ WEAK CONFLUENCE). If ` M : T , for some T , and
M → N1 and M → N2 then ∃L.N1 →∗ L and N2 →∗ L.

Proof. Follows the same structure as the proof of Theorem 3.5. The only tricky
case in establishing the Lemmas B.9–B.13, is Lemma B.11, which makes use of
Proposition 5.1 in the case of EVAL-ADVICE. �

D Proofs for Type-Erased AFGJ

In this section, we prove Theorem 6.5 (Parametricity of Reduction). We first prove
substitutivity of advice lookup.

PROPOSITION D.1 (SUBSTITUTIVITY OF ADVICE LOOKUP). Suppose
X̄/ D̄
 ok and X̄/ D̄
 c〈S̄〉 and ` T̄ and ` T̄ <: D̄[T̄/X̄]. Then
X̄/ D̄ ` c〈S̄〉.`〈V̄ 〉 advisedby a〈Q̄〉 implies
` c〈S̄[T̄/X̄]〉.`〈V̄ [T̄/X̄]〉 advisedby a〈Q̄[T̄/X̄]〉.

Proof. From the definition of advice lookup, we have:

DDD 3 advice a〈Ȳ/ Ē〉:φ · · ·
X̄/ D̄
 R c〈S̄〉.`〈V̄ 〉(P̄)
exe R c〈S̄〉.`〈V̄ 〉(P̄) � φ [Q̄/Ȳ]
X̄/ D̄ ` Q̄ <: Ē[Q̄/Ȳ]

and so by Lemma C.2 (Substitutivity of pointcut satisfaction):

(exe R c〈S̄〉.`〈V̄ 〉(P̄))[T̄/X̄] � φ [Q̄/Ȳ][T̄/X̄]

39

so by Lemma B.7 (Substitutivity of method lookup, of well formed types and of
subtyping):

` R[T̄/X̄] c〈S̄[T̄/X̄]〉.`〈V̄ [T̄/X̄]〉(P̄[T̄/X̄])
` Q̄[T̄/X̄]
` Q̄[T̄/X̄] <: Ē[Q̄[T̄/X̄]/Ȳ]

so by the definition of advice lookup:

` c〈S̄[T̄/X̄]〉.`〈V̄ [T̄/X̄]〉 advisedby a〈Q̄[T̄/X̄]〉

as required. �

We now prove inverse substitutivity of advice lookup, which allows us to deduce the
erasure theorem. The proof of inverse substitutivity requires similar results for sub-
typing and pointcut satisfaction. We make use of an auxiliary ‘well formed method
typing’ judgment.

WELL FORMED METHOD TYPING (∆ ` R T.`〈V̄ 〉(P̄))

∆ ` T,V̄
∆ `meth(T.`) = 〈Ȳ/C̄〉R(P̄) · · ·
∆ ` V̄ <: C̄[V̄/Ȳ]
∆ ` R[V̄/Ȳ] T.`〈V̄ 〉(P̄[V̄/Ȳ])

LEMMA D.2 (WELL FORMED RETURN TYPE). If ∆ ` R T.`〈V̄ 〉(P̄) then ∆ ` R.

Proof. An induction on the derivation of ∆ `meth(T.`) = 〈Ȳ/C̄〉R′(P̄) · · ·.

LEMMA D.3 (MONOTONICITY OF METHOD LOOKUP). If ∆ ` T <: T ′ and
∆ ` R T.`〈V̄ 〉(P̄) and ∆ `meth(T ′.`) = · · · then ∆ ` R′ T ′.`〈V̄ 〉(P̄) where
∆ ` R <: R′.

Proof. An induction on the derivation of ∆ ` T <: T ′.

LEMMA D.4 (INVERSE SUBSTITUTIVITY OF SUBTYPING). Suppose X̄/ D̄
 ok
and X̄/ D̄ ` c〈S̄〉 and ` T̄ and ` T̄ <: D̄[T̄/X̄]. Then ` c〈S̄[T̄/X̄]〉 <: d〈Ū〉 implies
X̄/ D̄ ` c〈S̄〉 <: d〈Q̄〉 and Q̄ = Ū [T̄/X̄].

Proof. An induction on the derivation of ` c〈S̄[T̄/X̄]〉 <: d〈Ū〉. �

LEMMA D.5 (ERASURE TYPING IMPLIES WELL FORMED ENVIRONMENT). If
Ȳ/ Ē
 φ and Ȳ are distinct then Ȳ/ Ē ` ok

LEMMA D.6 (INVERSE SUBSTITUTIVITY OF POINTCUT SATISFACTION).
Suppose X̄/ D̄
 ok and X̄/ D̄
 R c〈S̄〉.`〈V̄ 〉(P̄) and Ȳ/ Ē
 ok and Ȳ/ Ē
 φ and
` T̄ and ` T̄ <: D̄[T̄/X̄] and ` Ū and ` Ū <: Ē[Ū/Ȳ]. Then

40

(exe R c〈S̄〉.`〈V̄ 〉(P̄))[T̄/X̄] � φ [Ū/Ȳ] implies Ū = Q̄[T̄/X̄] and X̄/ D̄ ` Q̄ and
X̄/ D̄ ` Q̄ <: Ē[Q̄/Ȳ] and exe R c〈S̄〉.`〈V̄ 〉(P̄) � φ [Q̄/Ȳ].

Proof. An induction on the derivation of Ȳ/ Ē
 φ . The interesting cases are con-
junction and the base cases:

Case PC-AND

From PC-AND we have φ = φ1 && φ2 and (Ȳ/ Ē) = (Ȳ1/ Ē1,Ȳ2/ Ē2) where Ȳi/ Ēi
 φi
and Ȳ1 and Ȳ2 are disjoint. We use Lemma D.5 (Erasure typing implies well formed
environment) to get that Ȳi/ Ēi
 ok, so we can use induction to find appropriate
Q̄i and define Q̄ = (Q̄1, Q̄2): it is routine to verify that Q̄ satisfies the required
conditions. Note that this case relies on Ȳ1 and Ȳ2 being disjoint: if they were not,
then the substitution [Q̄/Ȳ] would not be well-defined.

Case PC-EXE-CLASS

From PC-EXE-CLASS, we have:

φ = exe R′ d〈Ȳ1〉.`〈Ȳ2〉(P̄′)

Ȳ/ Ē = Ȳ1/ Ē1,Ȳ2/ Ē2

DDD 3 class d〈Ȳ1/ Q̄1〉 · · ·
`meth(d〈Ȳ1〉.`) = 〈Ȳ2/ Q̄2〉R′(P̄′) · · ·

Ȳ1/ Q̄1,Ȳ2/ Q̄2 ` Q̄1, Q̄2 <: Ē1, Ē2

and we can split Ū into Ū1,Ū2 such that:

` Ū1,Ū2 <: (Ē1, Ē2)[Ū/Ȳ]

(exe R c〈S̄〉.`〈V̄ 〉(P̄))[T̄/X̄] � φ [Ū/Ȳ] can only come from an axiom, in which case:

R[T̄/X̄] = R′[Ū/Ȳ]
c = d
S̄[T̄/X̄] = Ȳ1[Ū/Ȳ] = Ū1

V̄ [T̄/X̄] = Ȳ2[Ū/Ȳ] = Ū2

P̄[T̄/X̄] = P̄′[Ū/Ȳ]

Since X̄/ D̄
 R c〈S̄〉.`〈V̄ 〉(P̄), and and using the above, we have:

X̄/ D̄ ` S̄,V̄
X̄/ D̄ ` S̄ <: Q̄1[S̄/Ȳ1] <: Ē1[S̄/Ȳ1]
X̄/ D̄ ` V̄ <: Q̄2[S̄/Ȳ1][V̄/Ȳ2] <: Ē2[S̄/Ȳ1][V̄/Ȳ2]
R = R′[S̄/Ȳ1][V̄/Ȳ2]
P̄ = P̄′[S̄/Ȳ1][V̄/Ȳ2]

41

Hence we can define:

Q̄ = S̄,V̄

and we have:

Ū = Ū1,Ū2 = S̄[T̄/X̄],V̄ [T̄/X̄] = Q̄[T̄/X̄]
X̄/ D̄ ` Q̄
X̄/ D̄ ` Q̄ <: Ē[Q̄/Ȳ]
exe R′ c〈S̄〉.`〈V̄ 〉(P̄) � (exe R′ c〈Y1〉.`〈Y2〉(P̄′))[Q̄/Ȳ] = φ [Q̄/Ȳ]

as required.

Case PC-EXE-VAR

From PC-EXE-VAR, we have:

φ = exe Y4 Y1.`〈Ȳ3〉(P̄′)

Ȳ/ Ē = Y1/E1,Ȳ2/ Ē2,Ȳ3/ Ē3,Y4/E4

E1 = d〈Ȳ2〉
DDD 3 class d〈Ȳ2/ Ē2〉 · · ·
`meth(d〈Ȳ2〉.`) = 〈Ȳ3/ Q̄3〉Q4(P̄′) · · ·

Y1/d〈Ȳ2〉,Ȳ2/ Ē2,Ȳ3/ Q̄3,Y4/Q4 ` Q̄3,Q4 <: Ē3,E4

and we can split Ū into U1,Ū2,Ū3,U4 such that:

`U1,Ū2,Ū3,U4 <: (E1, Ē2, Ē3,E4)[Ū/Ȳ]

(exe R c〈S̄〉.`〈V̄ 〉(P̄))[T̄/X̄] � φ [Ū/Ȳ] can only come from an axiom, in which case:

R[T̄/X̄] = Y4[Ū/Ȳ] = U4

c〈S̄[T̄/X̄]〉= Y1[Ū/Ȳ] = U1

V̄ [T̄/X̄] = Ȳ3[Ū/Ȳ] = Ū3

P̄[T̄/X̄] = P̄′[Ū/Ȳ]

We have:

` c〈S̄[T̄/X̄]〉= U1 <: E1[Ū/Ȳ] = d〈Ū2〉

so by Lemma D.4 (Inverse substitutivity of subtyping):

X̄/ D̄ ` c〈S̄〉 <: d〈Q̄2〉= Ē1[Q̄2/Ȳ2]
Q̄2[T̄/X̄] = Ū2

42

and so by Lemma B.1 (Subtyping preserves well-formed type):

X̄/ D̄ ` Q̄2

X̄/ D̄ ` Q̄2 <: Ē2[Q̄2/Ȳ2]

Since X̄/ D̄
 R c〈S̄〉.`〈V̄ 〉(P̄), we use Lemmas D.2 (Well formed return type)
and D.3 (Monotonicity of method lookup): to get:

X̄/ D̄ ` c〈S̄〉,V̄ ,R
X̄/ D̄ ` R′ d〈Q̄2〉.`〈V̄ 〉(P̄)
X̄/ D̄ ` R <: R′

and by definition of X̄/ D̄ ` R′ d〈Q̄2〉.`〈V̄ 〉(P̄) we have:

X̄/ D̄ ` V̄ <: Q̄3[Q̄2/Ȳ2, V̄/Ȳ3] <: Ē3[Q̄2/Ȳ2, V̄/Ȳ3]
R′ = Q4[Q̄2/Ȳ2, V̄/Ȳ3] <: E4[Q̄2/Ȳ2, V̄/Ȳ3]
P̄ = P̄′[Q̄2/Ȳ2, V̄/Ȳ3]

Plugging the above together, we have:

X̄/ D̄ ` c〈S̄〉, Q̄2,V̄ ,R
X̄/ D̄ ` c〈S̄〉, Q̄2,V̄ ,R <: (E1, Ē2, Ē3,E4)[c〈S̄〉/Y1, Q̄2/Ȳ2, V̄/Ȳ3,R/Y4]
P̄ = P̄′[c〈S̄〉/Y1, Q̄2/Ȳ2, V̄/Ȳ3,R/Y4]

so we can define:

Q̄ = c〈S̄〉, Q̄2,V̄ ,R

and we have:

Ū = U1,Ū2,Ū3,U4 = c〈S̄[T̄/X̄]〉, Q̄2[T̄/X̄],V̄ [T̄/X̄],R[T̄/X̄] = Q̄[T̄/X̄]
X̄/ D̄ ` Q̄
X̄/ D̄ ` Q̄ <: Ē[Q̄/Ȳ]
exe R c〈S̄〉.`〈V̄ 〉(P̄) � (exe Y4 Y1.`〈Ȳ3〉(P̄′))[Q̄/Ȳ] = φ [Q̄/Ȳ]

as required. �

PROPOSITION D.7 (INVERSE SUBSTITUTIVITY OF ADVICE LOOKUP). Suppose
X̄/ D̄
 ok and X̄/ D̄
 R c〈S̄〉.`〈V̄ 〉(P̄) and ` T̄ and ` T̄ <: D̄[T̄/X̄]. Then
` c〈S̄[T̄/X̄]〉.`〈V̄ [T̄/X̄]〉 advisedby a〈Ū〉 implies Ū = Q̄[T̄/X̄] and
X̄/ D̄ ` c〈S̄〉.`〈V̄ 〉 advisedby a〈Q̄〉.

43

Proof. From the definition of advice lookup, we have:

DDD 3 advice a〈Ȳ/ Ē〉:φ · · ·
(exe R c〈S̄〉.`〈V̄ 〉(P̄))[T̄/X̄] � φ [Ū/Ȳ]
` Ū
` Ū <: Ē[Ū/Ȳ]

and since X̄/ D̄
 ok, we have by DEC-ADVICE and Lemma B.4 (Well formed term
implies well formed environment):

Ȳ/ Ē
 ok

Ȳ/ Ē
 φ

and so by Lemma D.6 (Inverse substitutivity of pointcut satisfaction):

Ū = Q̄[T̄/X̄]
X̄/ D̄ ` Q̄
X̄/ D̄ ` Q̄ <: Ē[Q̄/Ȳ]
exe R c〈S̄〉.`〈V̄ 〉(P̄) � φ [Q̄/Ȳ]

so by the definition of advice lookup:

` c〈S̄〉.`〈V̄ 〉 advisedby a〈Q̄〉

as required. �

THEOREM (6.5 PARAMETRICITY OF REDUCTION). Suppose X̄/ D̄
 M : T and
` S̄ and ` S̄ <: D̄[V̄/X̄]. Then ` M[S̄/X̄]→ L implies that L = N[S̄/X̄] and for all S̄′

such that ` S̄′ <: D̄[S̄′/X̄] we have that ` M[S̄′/X̄]→ N[S̄′/X̄].

Proof. Interesting case is EVAL-LOOKUP, in which case:

M M= new C(M̄).`〈V̄ 〉(N̄)

L M= (new C(M̄))[S̄/X̄].`〈V̄ [S̄/X̄]〉[Ā](N̄[S̄/X̄])

Ā M=
[

a〈Ū〉
∣∣∣∣ DDD 3 advice a · · ·
`C[S̄/X̄].`〈V̄ [S̄/X̄]〉 advisedby a〈Ū〉

]
Since X̄/ D̄
 M : T we have X̄/ D̄
 ok, X̄/ D̄ `C, so we can use Propositions D.7
(Inverse substitutivity of advice lookup) and D.1 (Substitutivity of advice lookup)
to get:

Ā M= B̄[S̄/X̄]

B̄ M=
[

a〈Q̄〉
∣∣∣∣ DDD 3 advice a · · ·
`C.`〈V̄ 〉 advisedby a〈Q̄〉

]

44

and so:

L M= N[S̄/X̄]
N M= new C(M̄).`〈V̄ 〉[B̄](N̄)

Moreover, for any S̄′ such that ` S̄′ <: D̄[S̄′/X̄] we have:

M[S̄′/X̄]→ L′

L′ M= (new C(M̄))[S̄/X̄].`〈V̄ [S̄/X̄]〉[Ā′](N̄[S̄/X̄])

Ā′ M=
[

a〈Ū ′〉
∣∣∣∣ DDD 3 advice a · · ·
`C[S̄′/X̄].`〈V̄ [S̄′/X̄]〉 advisedby a〈Ū ′〉

]
and again, we can use Propositions D.7 (Inverse substitutivity of advice lookup)
and D.1 (Substitutivity of advice lookup) to get:

Ā′ M= B̄[S̄′/X̄]

and hence:

L′ = N[S̄′/X̄]

as required. �

45

