
Open Bisimulation for Aspects

Radha Jagadeesan Corin Pitcher James Riely
DePaul University

{rjagadeesan,cpitcher,jriely}@cs.depaul.edu

Abstract
We define and study bisimulation for proving contextual equiva-
lence in an aspect extension of the untyped lambda-calculus. To
our knowledge, this is the first study of coinductive reasoning prin-
ciples aimed at proving equality of aspect programs. The language
we study is very small, yet powerful enough to encode mutable
references and a range of temporal pointcuts (including cflow and
regular event patterns).

Examples suggest that our bisimulation principle is useful. For
an encoding of higher-order programs with state, our methods
suffice to establish well-known and well-studied subtle examples
involving higher-order functions with state.

Even in the presence of first class dynamic advice and expres-
sive pointcuts, our reasoning principles show that aspect-aware in-
terfaces can aid in ensuring that clients of a component are un-
affected by changes to an implementation. Our paper generalizes
existing results given for open modules to also include a variety of
history-sensitive pointcuts such as cflow and regular event patterns.

Our formal techniques and results suggest that aspects are
amenable to the formal techniques developed for stateful higher-
order programs.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—semantics; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features—modules,
packages; F.3.2 [Logics and Meanings of Programs]: Semantics
of Programming Languages—operational semantics

General Terms languages, equational reasoning

Keywords aspect-oriented programming, contextual equivalence,
open bisimulation, modularity, modular reasoning

1. Introduction
Aspects have emerged as a powerful tool in the design and develop-
ment of systems [10, 31, 49, 41, 32, 5]. A (much-overused!) stan-
dard profiling example from the AspectJ tutorials suffices to intro-
duce the basic vocabulary. Suppose class L realizes a useful library,
and we want to obtain timing information about a method foo()

of L. With aspects this can be done by writing advice specifying
that, whenever foo is called, the current time should be logged,
foo should be executed, and then the current time should again be
logged. Aspects permit the profiling code to be localized in the ad-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
AOSD 07 March 12-16, 2007, Vancouver, Canada.
Copyright © 2007 ACM 1-59593-615-7/07/03. . . $5.00
Reprinted from AOSD 07, [Unknown Proceedings], March 12-16, 2007, Vancouver,
Canada., pp. 1–21.

vice, transferring the responsibility for coordinating the advice and
base code to a compiler or runtime environment. This ensures that
the developer of the library need not worry about advice that may
be written in the future — in [20] this is called obliviousness. How-
ever, in writing the logging advice, one must identify the pieces
of code, using pointcuts, that need to be logged — in [20] this is
called quantification. Aspect-orientation ideas for representing and
composing crosscutting concerns such as logging are paradigm-
independent and have been developed for object-oriented [31, 59]
imperative [15] and functional languages [61, 18].

Our focus in this paper is on the intersubstitutivity of programs
written in an aspect-oriented extension of a functional language:
when can one program fragment be substituted for another with-
out altering the observable behavior of the program? A basic tool
that has been used to address this question for other programming
paradigms has been coinduction, in the form of bisimulation prin-
ciples. While the origins of bisimulation trace back to concurrency
theory (see [55, 56] for a comprehensive historical survey and
detailed bibliography), bisimulation principles have proven to be
quite useful to address program equality in several paradigms, e.g.,
higher-order languages (see [50, 22] for a detailed treatment with
historical context), even in the presence of existential types [58] or
state [36, 29], and object-oriented languages [23, 34].

This paper brings aspect-based languages within the ambit of
this technique. Our formal techniques and results suggest that as-
pects are no more intractable than stateful higher-order programs.
In first order languages with first order references, when reason-
ing about programs, the environment has only two ways to inter-
act with a program: either via global shared variables or by invok-
ing the program (that can of course result in changes in encapsu-
lated private state of the program). In higher-order languages with
higher-order references, a program can also “leak” local state ex-
ternally via higher-order mechanisms providing the environment a
third way to interact with a program. Our results suggest that mech-
anisms that address this feature of higher-order languages with state
may be adapted to an aspect framework with dynamic aspects.

Our main technical contributions are as follows:

Bisimulation. We study a core untyped lambda calculus, en-
hanced with aspects and named functions. Advice is first class
in our calculus: it can be created and added dynamically while a
program is running. The language can code mutable higher-order
references and expressive pointcuts such as cflow and regular event
patterns.

We describe a bisimulation principle based on a labelled tran-
sition system for aspect programs. We show that bisimulation is
sound and complete for contextual congruence.

We demonstrate the usability of the bisimulation principle via
examples using the encoding of mutable variables — we show
that several of the program equalities suggested by Meyer and
Sieber [45] are validated by our bisimulation principle.

1

Application to Open Modules. Aspect-Aware Interfaces [33] en-
hance the usual signature information of modules with the point-
cuts that are exported by the module and visible to the clients of
the module. This enhancement of traditional signatures facilitates
extra reasoning by providing bounds on the use of advice. An Open
Module [6] delineates conditions about when it is permissible to re-
place the implementation of a module with another.

The formal treatment of Open Modules [6] only permits call
pointcuts, whereas the implementation of Open Modules in As-
pectJ [48] also permits cflow pointcuts. Recent research on more
expressive pointcut languages motivate the desirability and imple-
mentability of more expressive pointcuts, e.g., those match regu-
lar patterns against the whole computation history [9]. We use our
bisimulation principle to bridge this expressiveness gap.

To address these issues, our core calculus supports mechanisms
to delimit the scope of the program where a function can be ad-
vised. We do this by providing named primitive pointcuts. Each
function and advice declaration is associated with a primitive point-
cut. Advice applies to a function only if its associated primitive
pointcut is the same as that of the function. We use normal scoping
mechanisms to control the knowledge of primitive pointcuts. The
use of named primitive pointcuts as a separate construct permits the
scope of the “advise”-access to vary separately from the standard
scope of direct access to the function reference.

This framework permits the use of our bisimulation principle to
establish conditions under which implementations can be changed
without affecting clients, even in the presence of dynamic aspects
and an expressive collection of history-sensitive pointcuts. The
pointcuts addressable by our approach include those that permit
triggering of code if the current history matches a nested word
language [7, 8] — this includes cflow and regular event patterns.

Organization of this paper. After a discussion of related work,
we present the core language in Section 3, including a definition of
contextual equivalence and examples. In Section 4, we describe the
LTS and our notion of bisimulation; this section also contains ex-
amples that illustrate the use of the bisimulation. In Section 5, we
state the foundational properties that hold. Section 6 presents an
extended example, implementing access control and type enforce-
ment. In this extended abstract, we elide all proofs, referring the
reader to the full version [28] for details.

2. Related Work
Core calculi for aspect-based languages have been explored in a va-
riety of settings: e.g., [26, 13] are based on class-oriented calculi; in
[14], a parametric description of a wide range of aspect languages,
is based on the object calculus [1]; and [51] integrates aspect and
object-oriented languages. Our calculus builds on descriptions of
aspects in higher-order functional languages [18, 61].

[63] describes a denotational semantics for a calculus with dy-
namic join points, pointcut designators, and advice. Our focus is on
operational reasoning and proof rules: we refer the reader to [36]
for a comparison of the operational and denotational approaches to
stateful higher-order languages.

[44] provide the semantics of dynamic join points by translating
into a core functional language with simple matching features. Our
approach complements this work by providing reasoning tools for
a core functional language with aspects.

Formal static reasoning via type systems has been explored for
functional [42] and object-oriented [27] aspect languages. Typing
considerations are orthogonal to our primary focus, and we elide
them to lighten the presentation.

Model-checking techniques have been explored to analyze the
behavior of individual aspect programs [40, 57, 60]. Our paper is
complementary to this research: we envision our study in this pa-

per as providing formal foundations and support to compositional
proof principles of use to model-checking tools for aspect pro-
grams. The utility of compositional methods in model-checking as-
pect programs is already suggested in [40].

There has also been research into facilitating reasoning by con-
trolling obliviousness. For example, information flow methods have
been used to create type systems that ensure that aspects do not af-
fect the return value [16] — for some security applications, these
superficially drastic sounding restrictions are appropriate. In this
general spirit, albeit with less impact on obliviousness, the named
primitive pointcuts of our calculus can be viewed as ways to control
interference between aspects and between aspects and other code.
Our primitive pointcuts are directly inspired by Open Modules [6]
(see also [47]) and are a formal device to model some features of
Aspect-Aware Interfaces [33]. There are two different views about
where such names can originate: (a) as programming annotation,
written by the programmer (a view arguably in tension with un-
inhibited obliviousness), or (b) a tool derived annotation, derived
from an analysis of the context of the program. In this paper, we
do not take a viewpoint on this debate; instead, we focus on the
support to reasoning that is afforded by such annotations.

Broadly speaking, bisimulation approaches to higher-order lan-
guages fall into two main categories, depending on the kinds of
tests that are permitted.

The first approach is usually termed applicative bisimulation.
Some of the historical landmarks on this route are the initial defi-
nition of applicative bisimulation for lazy lambda calculus [4], the
presentation using a labelled transition system [21] and a general
method to show that applicative bisimulation is a congruence [24].
In this approach, two terms, say M1,M2, that agree on convergence
behavior are tested for bisimilarity by providing them identical ar-
guments and testing the resulting computation (M1N and M2N)
coinductively for bisimilarity. Applicative bisimulation tests terms
only once. However, imperative features may require arguments to
be tested multiple times — such extensions were developed by [29].

The second approach, often termed “contextual bisimulation”,
was initially introduced for higher-order process algebras [52].
[58] develops this approach for a language including existential
types; [36] develops this general framework for a higher-order
language with imperative features. Class equivalences [35], and
the object calculus [34] are also tackled by these methods. In
this style, two lambda terms, say M1,M2, are tested by providing
them arguments that are derived from identical contexts (say D[·])
with holes filled by bisimilar terms (say N1,N2) and testing the
resulting computation (M1D[N1] and M2D[N2]) coinductively for
bisimilarity. The complexity and number of tests is controlled by
restricting attention to value contexts, i.e., D[·] such that D[N1] and
D[N2] are values.

Our approach is inspired by open bisimulation [54], and ENF-bi-
simulation [38, 39]. In comparison to applicative bisimulation, the
more elementary congruence proofs of our approach suggest that
our open-bisimulation based approach addresses stateful features
more directly. In contrast to contextual approaches, our methods
do not need to address the contextual closure of programs and
equivalences of values in this closure. However, the price paid
by our approach is the explicit maintenance of extra contexts and
transitions for book-keeping mechanisms. We develop congruence
results and bisimulation-upto results to lighten this burden. In the
following technical sections, we present a detailed comparison of
our definitions with the two approaches.

In summary, the examples in the paper suggest that our treat-
ment is good enough to capture and formalize intuitions crystal-
lized by observation of the source code. However, we do not have
any results that support the (semi-)automatic derivation of witness-
ing relations. That investigation remains open to future study.

2

3. Language
Our calculus builds on descriptions of aspects in higher-order func-
tional languages [18, 61]. Advice may be loaded dynamically; sev-
eral recent aspect language implementations support such dynamic
aspects, eg, [11]. Primitive pointcuts are named and scoped: a pro-
grammer may limit the scope over which a function is advisable by
controlling the scope of the associated primitive pointcut. In this
respect, our language has some of the expressiveness of the module
language of [6], in a simpler setting. Each function declaration is
associated with a primitive pointcut and advice applies to a function
only if its associated primitive pointcut is that of the function. One
may view possession of the name of a function as a form of read
access and possession of the primitive pointcut of a function as a
form of write access. We formalize this intuition when encoding
references in Example 6.

The language is an untyped lambda calculus extended with
function declarations in the style of ML and with advice over de-
clared functions. The difference between abstractions and declared
functions can be detected contextually. For example, consider λ_.0
and fun f@p=λ_.0; f, which declares f at primitive pointcut p and
returns f. The first expression results immediately in an abstrac-
tion. The second results in the name f, which is only resolved to
an abstraction when applied. The difference is observable when the
primitive pointcut p is used to declare advice, as, for example, in
the context adv p=λ_.1; [–] (); here [–] is the “hole” to be filled by
a term. The context declares advice at p then applies the hole to the
unit value; evaluation results in 0 when the hole is filled with λ_.0,
but 1 when filled with fun f@p = λ_.0; f. A function declared at
a bound primitive pointcut is unadvisable outside the scope of the
binder; thus, λ_.0 and pcd p; fun f@p = λ_.0; f are contextually
indistinguishable.

In the rest of this section, we formalize the syntax (Section 3.1)
and dynamics (Sections 3.2 and 3.3) of this core calculus. Sec-
tion 3.4 defines contextual equivalence. Section 3.5 provides sim-
ple examples to illustrate the definitions. Section 3.6 discusses open
modules and temporal pointcuts.

3.1 Syntax
We divide names into two countably infinite and mutually dis-
joint sets: variables and primitive pointcuts. In this study, primitive
pointcuts are second-class entities; we discuss the motivation for
this decision in Example 10.

SYNTAX

f ,g,h,x,y,z,φ ,ψ,θ Variable Names
p,q,r Primitive Pointcut Descriptors

A,B ::= Declarations
pcd p Primitive Pointcut Descriptor (dn = {p})
fun f@p=U Function (dn = {f}, f bound in U)
adv p=λ z.U Advice (dn = {}, z bound in U)

U,V,W ::= Values
x Variable
λx.M Abstraction (x bound in M)

M,N,L ::= Terms
U Value
A;M Declaration (dn(A) bound in M)
let x=M;N Sequence (x bound in N)
U V Application

The name declared by a declaration is given by the function
dn, defined in the syntax table above. We assume the usual notion
of free names, recovered by the function fn. We identify terms up
to renaming of bound names and write M[x := U] for the capture-

avoiding substitution of U for x in M. Thus pcd p;M is identical to
pcd q;M[p := q] for any q 6∈ fn(M).

We use the following discipline for variable names, when feasi-
ble. (The distinctions, while useful in many cases, are blurred when
discussing congruence.)

• z is used for proceed variables bound in the body of advice;
• x-y are used for variables bound in abstractions and let-expres-

sions, other than as a proceed variable;
• f -h are used for variables bound by function declarations;
• φ -θ are used for free function variables.

Variables x-y are resolved, in the standard way, during evaluation
(Section 3.3). Variables z and f -h are resolved during function
lookup (Section 3.2). The variables φ -θ are unresolvable; these are
used in the LTS semantics (Section 4).

In examples, we use the unit value (), booleans, integers and
pairs of values. These can be encoded in the standard way (where
() is any value). The extension of the equational theory to dis-
tinguish these types is unsurprising and requires additional book-
keeping. We also use other well-known combinators, such as the
divergent term Ω and the fixpoint combinator fix.

We use syntax sugar for application in the style of Moggi [46];
for example, M N M= let x =M; let y =N;x y. We adopt the same
convention for operators on booleans, naturals and pairs. We write
_ for a bound variable that does not occur free in its scope; we
abbreviate let _=M;N as M;N and λ_.M as λ.M.

In examples, we sometimes write fun f =U as shorthand for
pcd p; fun f@p=U , when p is not of interest. We also occasionally
write declarations as terms, with the meaning that A, as a term,
abbreviates A;().

3.2 Lookup
In this subsection, we describe function lookup, which determines
the body of an advised function from a declaration sequence. We
write ~A for declaration sequences, with “·” representing the empty
sequence, and “;” the element separator. An evaluation configura-
tion is a pair of a declaration sequence and a term, written ~A/M.

Example 1. Let ~A be defined as follows.
~A = adv p=λz.V; V = λy.(z y)+1

fun f@p=W; where W= λ.5
adv p=λz.U U = λx.(z x)∗3.

When one looks up f in the context of ~A, the result is
~A(f) = U

[
z := V[z :=W]

]
= λx.((λy.((λ.5) y)+1) x)∗3.

The top-level term is U: the last (or most recently) declared advice
which effects f (via the primitive pointcut p). The proceed variable
z of U is bound to the rest of the advice which effects f, in this case
V. Substitutions layer in this way to the last piece of advice, which
proceeds to the function body, in this case W.

Evaluation of f() proceeds as follows:

·/~A; f()−�~A/((λy.((λ.5) y)+1)())∗3
−�~A/(((λ.5)())+1)∗3
−�~A/18.

Lookup is a partial function on names. For example, using the dec-
larations above, ~A(g) is undefined, and thus the evaluation config-
uration ~A/g() is stuck. 2

Example 2. Note that advice may ignore the definition of the un-
derlying function or of other advice — both referenced via z. As an
example, consider

~B = adv p=λz.V; V = λ.7
fun f@p=W; where W= λ.5
adv p=λz.U U = λx.(z x)∗3.

3

In this case

~B(f) = U
[
z := V[z :=W]

]
= λx.((λ.7) x)∗3

and evaluation of f() proceeds as follows.

·/~B; f()−�~B/((λ.7)())∗3−�~B/21 2

Lookup is defined using two auxiliary functions: body and
advise. Whereas we identify terms up to renaming of bound names,
the same does not hold for names declared in a declaration se-
quence. Instead, we require that declaration sequences be well
formed, ie, that each name is declared at most once. (This treat-
ment is motivated by the definition of body, by which a primitive
pointcut may escape its scope.)

Definition 3 (Well formedness). A declaration sequence “~A;B” is
well formed if dn(B) does not occur in ~A and ~A is well formed. The
empty sequence is also well formed.

An evaluation configuration ~A/M is well formed if ~A is well
formed. 2

Note that in a well-formed evaluation configuration ~A/M, there
may be names that occur free in M that are not declared in ~A (cf.
Example 1).

The partial function body(f , ~A) is defined whenever f is declared
in ~A; when defined, body returns both the value of the function and
the primitive pointcut at which f is declared in ~A.

body(f , ·) M= undefined
body(f , pcd · · ·;~A) M= body(f , ~A)

body(f , fun f@p=U;~A) M= 〈p, U〉
body(f , fun g@p=U;~A) M= body(f , ~A), where f 6= g

body(f , adv · · ·;~A) M= body(f , ~A)
The total function advise(p, U, ~A) returns a value that applies to

U the advice declared in ~A for p.

advise(p, U, ·) M= U
advise(p, U, pcd · · ·;~A) M= advise(p, U, ~A)
advise(p, U, fun · · ·;~A) M= advise(p, U, ~A)

advise(p, U, adv p=λ z.V;~A) M= advise(p, V [z :=U], ~A)
advise(p, U, adv q=λ z.V;~A) M= advise(p, U, ~A), where p 6= q

Finally, the partial function ~A(f) is defined as follows.

~A(f) M=

{
advise(p, V, ~A) if body(f , ~A) = 〈p, V 〉
undefined otherwise

3.3 Dynamics
Evaluation is defined inductively as a binary relation between well
formed configurations, using four axiom schemas. Following [19],
the definition uses contexts.

EVALUATION (~A/M −→ ~A′/M′)
E ,F ,G ::= [–] | let x=E ;N Evaluation Contexts

~A/E [B;M] −→ ~A;B/E [M] if dn(B) /∈ dn(~A)∪ fn(E)
~A/E [let x=U;N]−→ ~A/E

[
N[x :=U]

]
~A/E [f V] −→ ~A/E

[
U V

]
if ~A(f) = U

~A/E [(λx.M) V] −→ ~A/E
[
M[x :=V]

]
The first axiom is structural, regulating the scope of declara-

tions. Recall that we allow renaming of bound variables in terms,
but not declaration sequences. Since the set of names is infinite,
evaluation configurations of the form ~A/E [B;M] may always re-
duce, fixing a “fresh” name for dn(B).

The axiom for sequencing is standard, reducing let x = M;N
only when M is a value.

There are three possibilities for an application ~A/E [U V]: (1) If
U is a function name f and ~A(f) is defined, then evaluation proceeds
to ~A/E [~A(f) V]. (2) If U is an abstraction then evaluation proceeds
call-by-value using U ; this is the standard beta-reduction axiom.
(3) Otherwise evaluation is stuck.

Write −� for the reflexive transitive closure of −→.

Example 4. Consider the following evaluation configuration:

·/fun id@p=λx.x;adv p=λz.λy.z z y;(λ f.f 5) id.
Using the axiom for declarations twice and the axiom for applica-
tion once, this reduces to

fun id@p=λx.x;adv p=λz.λy.z z y/id 5.

Note that id is treated as a pure name when passed as an argument;
it is only resolved at the point of application, where the axioms for
lookup and beta-reduction yield

fun id@p=λx.x;adv p=λz.λy.z z y/(λy.(λx.x) (λx.x) y) 5
−� fun id@p=λx.x;adv p=λz.λy.z z y/5. 2

3.4 Contextual Equivalence
Contextual equivalence is defined with respect to a primitive no-
tion of observation; two terms are related if they yield the same
observations in all contexts. Following [17, 30], we assume a dis-
tinguished function name and take a call to this function to be a
primitive observation.

Definition 5. A (general) context is any term with a single hole:

C ::= [–] | A;C | let x=C ;N | let x=M;C .

Write M if M −� E [signal U] for some evaluation context E and
value U . For terms M and N in which signal does not occur, define
M 5 N if for every context C , C [M] implies C [N] . Two terms M
and N are contextually equivalent (M ≡ N) if M 5 N and N 5 M.2

As a simple example, consider (adv p = λ.λ.1); f();Ω and
(adv p=λ.λ.2); f();Ω. In our setting, these can be distinguished
by the context

(fun g@p=0);(fun f = if g() = 1 then signal() else Ω); [–].

3.5 Simple Examples
Example 6 (References). We show how to code ML-style ref-
erences as syntax sugar in the language of terms. The example
demonstrates the well-known fact that dynamically loaded advice
is a form of mutability.

We model references as a pair of functions, where the first is
used for reading and the second for writing; the first is locally
advisable, whereas the second is not.

ref U M= pcd p;(fun f@p=λ.U);(f,λx.adv p=λ.λ.x)

!U M= (fst U)()
U:=V M= (snd U) V;()

We can code the imperative factorial as

fun fac= (λx.(let y= ref 1);(fun loop=U); loop x), where
U = λx.if (x≤ 1) then (!y) else (y:=!y ∗x; loop (x−1)).

Eliding the definitions of fac, loop, and p, fac 2 evaluates as

·/fac 2−� fun f@p=λ.1/loop 2
−� fun f@p=λ.1;adv p=λ.2/loop 1
−� fun f@p=λ.1;adv p=λ.2/f()
−� fun f@p=λ.1;adv p=λ.2/2.

Garbage collecting the declarations, the result is 2, as expected. 2

Example 7 (Contexts may need to test a value more than once).
It is important to note that contexts may store values and test them
more than once. For example, the terms

λ.0 and let b= ref tru;(λ.if !b then b:=fls;0 else 1)

4

can be distinguished by the context

let x= [–];x(); if x() = 0 then signal() else Ω. 2

Example 8 (Contexts can observe advice order). To show some
of the subtleties of contextual reasoning, here is an example where
a context inserts itself in the middle of an advice list.

E = fun f@p=W; let x= [–];adv p=λz.V;x()

Consider

E [adv p=λz.U1;(λ.adv p=λz.U2; f 0)]
which evaluates to

· · ·;U2

[
z := V[z := U1[z :=W]]

]
.

Here the context has inserted the advice V between two bits of user
advice U2 and U1. Using V = λx.if x = 1 then signal() else Ω,
the context can distinguish the following pairs of advice from the
term; however, this difference cannot be detected simply by running
f without using V.

U1 = λx.z (x+2) U′1 = λx.z (x+1)
U2 = λx.z (x+1) U′2 = λx.z (x+2) 2

Example 9 (Indistinguishability of functions). Functions with
the same body declared at the same primitive pointcut are indis-
tinguishable. The following terms are contextually equivalent for
any M.

fun f@p=λx.M; fun g@p=λx.M;(f,g)

fun h@p=λx.M;(h,h) 2

3.6 Open Modules and Temporal Pointcuts
In this subsection, we consider encodings of open modules, as
proposed by Aldrich [6]. Open modules extend ML-style modules
to support two methods for controlling aspects:

• a distinction between internal and external function calls —
only external calls are advisable from outside the module; and

• explicit pointcut declaration in module interfaces — only de-
clared pointcuts may be used externally.

The first feature is handled in the operational semantics of [6]
by renaming the function and creating a fresh declaration of the
original name to invoke it. This kind of renaming can be achieved
in compilation; here, we write programs directly in the form such a
compiler would produce.

The second feature is more subtle, and we address it in two
ways.

• We provide distinct binders for functions and primitive point-
cuts; these may be viewed respectively as read and write capa-
bilities, which may be handled independently. We treat primi-
tive pointcuts as second class, since they are intended to delimit
the static scope of mutability.

• We allow dynamically loaded advice. In addition to encoding
state (discussed in the previous example), dynamically loaded
advice allows us to create expressive “pointcuts” and to com-
municate them selectively (as abstractions) — Examples 12, 13.

Example 10 (Open Modules). To get a sense of our approach,
consider a concrete example: a math module with one advisable
function fac. Internal and external calls to fac are distinguished so
that only external calls may be advised.

module type MATH = sig
val fac : int � int
pointcut pfac : int � int

end;;
module Math : MATH = struct

let rec fac = fun n � if n<1 then 1 else n*fac(n-1)
pointcut pfac = call(fac)

end;;
open Math;;
let main = fun _� fac 5;;

We view the module as providing two functions: the first is fac
itself; the second is the pointcut pfac. A call to pfac will place
advice on external calls to fac. In a module system, the calls
to pfac occur in the compiler, rather than at runtime, but this
phase distinction is an implementation convenience rather than a
necessity.

The example can be coded in our language as follows.

fun Math=λ.

fun fac′ =λn.if n<1 then 1 else n*fac′(n-1);
pcd pfac′;
fun fac@pfac′ = fac′;
(fac,λy.adv pfac′ =λz.λx.y z x);

let (fac,pfac)=Math ();
fun main=λ.fac 5

The functions fac and pfac, recovered from Math, correspond ex-
actly to the functions provided by the module above. For example,
to count the number of calls to fac, one might call in main:

let c= ref 0;
pfac (λz.λx.c:=!c+1;z x) 2

Remark 11 (Modularity results). In the above example, whereas
fac is publicly advisable, fac′ is private to Math. To see that internal
calls to fac′ are unadvisable, note that one could exchange the body
of fac′ given here with that from Example 6 and the result would be
contextually equivalent to the original. In fact the following general
result holds. Let

C = pcd p; fun f@p= [–]; f
D = fun g@q= [–].

Then,

C [U]≡ C [V] implies D
[
C [U]

]
≡D

[
C [V]

]
.

This follows immediately from the fact that ≡ is a congruence
(section 5). This general result allows any function to be defined
in such a way that external calls are advisable, while internal ones
are not. The remarkable power of contextual reasoning guarantees
that the internal body can be substituted with any locally equivalent
body without effecting the overall observable behavior. 2

The previous encoding can be extended to richer pointcut lan-
guages, while still maintaining the modularity results1.

Example 12 (c�ow). The AspectJ pointcut call(f) && c�ow(g)
detects calls to f in the context of a call to g. Such a pointcut is
exported from the following module.

fun Fc�owG=λ.

pcd pf; fun f@pf = · · ·;
pcd pg; fun g@pg= · · ·;
let b= ref fls; // call to g active
adv pg=λz.λx.let b′ =!b;b:= tru; let y= z x;b:=b′;y;
(f,g,λy.adv pf =λz.λx.if !b then y z x else z x);

let (f,g,pf_c�ow_g)=Fc�owG ();

The local boolean reference b is used to record whether a call to
g is active. Whenever g is called, the advice at pg sets b to tru,

1 A comment on modelling subclassing. Enrich pointcuts with a preorder.
If one takes p ≤ q to mean that advice placed on q applies equally for p,
then correct behavior with respect to subclassing is achieved by ensuring
that overriding methods are defined at smaller roles.

5

proceeds to the body of g, then resets b. Whenever f is called the
advice at pf first checks b before proceeding to the body of f.

A user may advise “f in the context of g”, by calling the
pf_c�ow_g with advice λz.λx.· · ·. However, no other pointcuts
are exposed. This generalizes the technique of Aldrich, and in-
deed the congruence results (c.f. Remark 11) apply equally to such
terms. 2

Nested word languages [8, 7] are a subset of context free lan-
guages with good closure properties that capture sensitivity to both
the call-stack (as in cflow) and other history (as in regular pat-
terns [9]). Pointcuts based on nested word languages arise naturally
in examples in security (access control) and document processing
(XML transducers). Since the operational semantics of nested word
languages pushes exactly one stack symbol upon reading a call
symbol and pops exactly one stack symbol upon reading a return
symbol, such pointcut languages are addressable by implementa-
tion methods developed for cflow and regular patterns. The next
example illustrates the ingredients of a systematic translation from
temporal pointcuts specified via nested-word languages.

Example 13 (History-sensitive access control). Abadi and Four-
net [2] argue for history-sensitive access control mechanisms more
expressive than the stack inspection mechanisms found in Java and
C#. For example, consider a policy stating that advice on a sensi-
tive function rm (e.g., for file deletion) should be executed only if
an (untrusted) function un has never been invoked in the past, and
no call to f is still active. This policy for an access control failure is
specified as a nested word language over symbols drawn from calls
to, and returns from, un, rm and f. Using EBNF syntax:

balanced ::=
(
(call(.) balanced ret(.))

)
*

opencalls ::=
(
balanced | call(.)

)
*

The specified property can then be written as:(
(.* call(un) .*︸ ︷︷ ︸

un called

) | (opencalls call(f) opencalls︸ ︷︷ ︸
call(f) active

)
)

call(rm).

Following Example 12, we can export a pointcut matching the
negation of this property of the call history.

fun Hsac=λ.

pcd pun; fun un@pun= · · ·;
pcd pf; fun f@pf = · · ·;
pcd prm; fun rm@prm= · · ·;
let b1 = ref fls; // call to f active
adv pf =λz.λx.let b′ =!b1;b1 := tru; let y= z x;b1 :=b

′;y;

let b2 = ref fls; // call un occurred
adv pun=λz.λx.b2 := tru;z x;

(f,un, rm,λy.adv prm=λz.λx.if !b1 or !b2 then z x else y z x);
let (f,un, rm,pf_hsac)=Hsac ();

Advice attached using pf_hsac applies only in the specified condi-
tions, and no other pointcuts are exposed. The congruence results
(c.f. Remark 11) apply equally to such terms. 2

4. Labeled Transition System and Bisimulation
In this section, we present the bisimulation relation following the
LTS style pioneered by Gordon [21, 22], in particular in the style
of presentation of Jeffrey and Rathke for Concurrent ML [29]. In
contrast to this prior work, our intuitions are guided by open bisim-
ulation and address aspect features. The technical consequence of
this difference is that our proof that bisimulation is a congruence
is a direct proof based on a direct analysis of substitutions rather
than following these papers in being based on Sangiorgi [53] or
Howe [24].

The rest of this section is organized as follows. In Section 4.1,
we describe the ideas of our LTS for the restricted case of the
pure untyped lambda calculus without aspects or declarations. This
treatment of a familiar calculus is intended to motivate the LTS use
of symbolic functions and advice that are defined by the environ-
ment and provide core intuitions for the following subsections. In
Section 4.2 we adapt the operational semantics of earlier sections
to deal with symbolic data such as functions and advice. In the Sec-
tion 4.3, we provide a description of the LTS for the full calculus,
and follow with a definition of the bisimulation relation in Sec-
tion 4.4. Section 4.5 makes the intuitions of our model concrete by
a series of examples.

4.1 An introduction to open bisimulation
In this subsection, we provide an snapshot of our approach by
briefly describing an LTS for the pure untyped call-by-value
lambda calculus.

We briefly recall the LTS approach [21] to applicative bisimula-
tion for the pure untyped call-by-value lambda calculus

• A non-value term M has a τ transition to M′ if M reduces in one
step to M′.

• A value U (eg. λx.M) has a transition labeled U ′ to the appli-
cation U U ′.

Two terms are bisimilar if the associated transition systems are
bisimilar, i.e., if their convergence properties agree and each ap-
plicative test yields bisimilar terms.

Our approach is inspired by open bisimulation [54], and ENF-
bisimulation [38, 39]. (The reader can view this subsection, in
isolation, as a presentation of ENF-bisimulation-upto-η using an
LTS.) Following our conventions, we use φ and ψ for variables
that occur free in terms.

• A non-value term M has a τ transition to M′ if M reduces in one
step to M′.

• Values U have transitions labeled φ (where φ is fresh) to the
application U φ — applicative tests are carried out with fresh
names.

• Terms can now be of the form E [φ U], for some evaluation
context E , where φ is an uninterpreted symbol. These terms
have additional transitions:

A transition labeled fcall φ to U
Transitions labeled ret ψ to E [ψ] for a fresh environment
variable ψ .

Again, two terms are bisimilar if the associated transition systems
are bisimilar. The second rule is crucial to enforce the idea (similar
to ENF-bisimulation [38, 39]) that if the application φ U is bisimilar
to the application ψ V then φ = ψ and U is bisimilar to V .

4.2 Symbolic functions and symbolic advice
The LTS must allow functions and advice to be defined by the en-
vironment, influencing a term. To accommodate context functions,
we need only extend our notion of well-formedness to allow oc-
currences of free variables representing these functions. As noted
earlier, we use φ , ψ to indicate these free variables; we sometimes
refer to these as symbolic function names because they are uninter-
preted in the term.

To accommodate context advice, we assume a countably infinite
set of symbolic advice names, α , β , disjoint from the sets of
variable names and primitive pointcuts.

SYMBOLIC ADVICE

α,β Symbolic Advice Names

6

A,B ::= · · · | adv p=α Symbolic Advice Declaration
U,V,W ::= · · · | α<U> Symbolic Advice Call

Note that if A = fun f@p = φ , then by our previous definition
of lookup ~A(f) = 〈p, φ〉; thus no extensions are required to handle
symbolic functions. For symbolic advice, we extend the definition
of advise as follows.

advise(p, U, adv p=α;~A) M= advise(p, α<U>, ~A)
advise(p, U, adv q=α;~A) M= advise(p, U, ~A), where p 6= q

Example 14 (Evaluation with symbolic names). Let
~A = pcd p; fun f@p=φ;adv p=α;adv p=λz.λx.(z x)∗3.

Evaluation of f() proceeds as follows.
~A/f()−�~A/(λx.(α<f> x)∗3)()

−�~A/(α<f>())∗3
At this point, evaluation is stuck. Intuitively, control is given to
the context that defined α . The LTS presented next will provide
transitions which cover such cases, potentially exposing f. Note
that if evaluation arrives at an application f(), the result will be
φ ; again evaluation is stuck, this time giving the context control
through the undefined body of φ . 2

4.3 The LTS
For namespace management, we define a symbol environment,
which binds all symbolic function and advice names, and an sym-
bol declaration, which may declare primitive pointcuts, functions
and advice.

LTS SYNTAX

M,N ::= ~A/~E /M/~U Configuration
Γ ::= · | φ ,Γ | α,Γ Symbol Environment
∆ ::= · | A,∆ Symbol Declaration

κ ::= τ | κ All Labels
κ ::= Visible Labels

fcall φ Term calls context function φ

acall α Term calls context advice α

ret φ Context returns to term with result φ (dn = {φ})
app φ Context calls term with argument φ (dn = {φ})
put Context saves value
get i Context restores value
fun f@p=φ Context declares function (dn = {f ,φ})
adv p=α Context declares advice (dn = {α})

In a configuration ~A/~E /M/~U , we refer to M as the active term.
With respect to evaluation configurations, the new elements are

the list of contexts ~E and the list of values ~U . The contexts ~E
model the call stack: it will be used in a manner consistent with
the stack discipline. The list ~U includes all values that have been
released/leaked to the environment during evaluation of the term.
Thus, the values in ~U are available for the environment to inspect
and use. Formally, ~U is a way to account for the imperative/state
features of the calculus. These modelling ideas follow prior re-
search [29, 30, 58, 36].

We define the LTS relative to a symbol environment Γ and
symbol declaration ∆. In Section 4.4, we will define bisimilarity as
Γ;∆ ` M ∼ N. The symbol environment is used to manage names
in the LTS, in particular to ensure two bisimilar terms may always
make transitions with the same labels. The symbol declaration,
likewise, ensures that both contexts in a bisimulation have the same
observation power. (We describe how to derive an initial state from
a term in Definition 17.)

The target symbol environment/declaration of a transition is
determined by the source symbol environment/declaration and the
label of the transition.

Definition 15 (LTS state). In a configuration ~A/~E /M/~U , dn(~A)
are bound in ~E /M/~U . (The let binders in ~E are not in scope in
M or ~U and thus are not binding.)

A state of the LTS is a triple Γ;∆ ` M, where the names listed
in Γ are bound in ∆ and M and dn(∆) are bound in M. A state is
well formed if no name occurs free, and no name is declared more
than once in Γ,∆,~A. 2

By way of contrast with evaluation configurations, note that we
require a well formed LTS state to be closed. In the sequel, we
assume that all LTS states are well-formed.

LTS
Γ;∆ ` ~A/~E /M/~U τ−→ Γ;∆ ` ~B/~E /N/~U if ∆,~A/M −→ ∆,~B/N

Γ;∆ ` ~A/~E /F [φ V]/~U fcall φ−−−−→ Γ;∆ ` ~A/~E ,F/V/~U if φ ∈ Γ

Γ;∆ ` ~A/~E /F [α<V>W]/~U acall α−−−−→ Γ;∆ ` ~A/~E ,F/W/~U ,V
if α ∈ Γ

Γ;∆ ` ~A/~E ,F/V/~U ret φ−−−→ Γ,φ ;∆ ` ~A/~E /F [φ]/~U

Γ;∆ ` ~A/~E /V/~U app φ−−−→ Γ,φ ;∆ ` ~A/~E /V φ/~U

Γ;∆ ` ~A/~E /V/~U put−−→ Γ;∆ ` ~A/~E /V/~U ,V

Γ;∆ ` ~A/~E /V/~U get i−−−→ Γ;∆ ` ~A/~E /Ui/~U if 1 ≤ i ≤ |~U |
Γ;∆ ` ~A/~E /V/~U fun f@p=φ−−−−−−→ Γ,φ ;∆, fun f@p=φ ` ~A/~E /V/~U , f

if p ∈ Γ∪dn(∆)

Γ;∆ ` ~A/~E /V/~U adv p=α−−−−−→ Γ,α;∆ ` ~A;adv p=α/~E /V/~U
if p ∈ Γ∪dn(∆)

The fact that configurations must be well-formed ensures that,
in the rules for ret and app transitions, the name φ must be fresh
(i.e., must not occur in Γ∪dn(∆)∪dn(~A); likewise for the names φ

and f in the rule for fun and α in the rule for adv.

Call-By-Value invariant. The LTS rules enforce a call-by-value
invariant. This is seen by noting that precedence is afforded to
internal reductions of the term. So, all rules except the first three
are applicable to state Γ;∆ ` ~A/~E /M/~U only if M is a value.

Applicative tests. app φ performs applicative tests. Rather than
providing a term as an argument for the applicative test, this rule
provides a fresh symbolic argument φ .

Stack of evaluation contexts. In the pure lambda calculus setting
of Section 4.1, the rules for fcall and ret reflect the absence of
interference between the caller and the callee in a purely functional
language — the testing of the evaluation context and the callee
argument is done separately. Thus, there was no need to track the
evaluation context in the LTS for the pure lambda calculus.

In contrast, the LTS for the full calculus has to permit the
environment an opportunity to inspect the arguments before the
term continues evaluation — this is meaningful for the full calculus
because of state changes caused by the dynamic laying down of
advice. This is done in our LTS by the use of the stack of evaluation
contexts E .

fcall φ pushes the current evaluation context into E . The active
term becomes the argument to the call, V , ret φ returns a symbolic
value φ to the top evaluation frame, F , of the stack ~E ,F and
moves it into the current-term position, popping F from the top
of the stack. (This stack discipline would have to be liberalized to
address a language with control operators.)

Note that calls to signal (from Section 3.4) are treated like any
other call, and thus generate labels of the form fcall signal.

7

Symbolic advice tests. In the rule for acall, since environment
advice is invoked with the arguments V , they are added to the list ~U
of values that are available for the environment to inspect and use.
As in the case for fcall, the active term is changed to the argument,
in this case W .

Environment value tests. put and get enable the movement of
values between ~U , the list of values leaked to the environment, and
the active position of the configuration. put permits an evaluated
value to be saved for use by the environment. get permits the
environment to interact with a saved argument by moving it into
the active term position. This rule leaves a copy of the restored
term in ~U . The label on this rule carries the position i in ~U that is
being restored. Conceptually, put and get ensure that ~U is closed
under structural rules.

New name tests. The rules for fun and adv permit the environ-
ment to add new function names and new advice. The first rule is
necessary for bookkeeping; it allows the context to create an un-
bounded number of new function names; new names are added to
the list of values ~U to maintain the invariant that functions declared
in ∆ can be inspected by the environment. The second rule is needed
for more than bookkeeping. Since the order of advice matters, the
rule for adv p=α also has to insert it into the list of advice decla-
rations being carried in ~A.

4.4 Bisimulation
Define −� to be the reflexive transitive closure of τ−→. On visible
labels define the weak labeled transition relation κ−� as −� κ−→.

Note in the definition of the LTS (Γ;∆ `M κ−→ Γ′;∆′ `M′), that
the symbol environment and declaration in the residual (Γ′;∆′) are
uniquely determined by the initial state (Γ;∆) and label (κ). This
leads us to define bisimulation as a family of relations between con-
figurations, written Γ;∆ ` M ∼ N. It is technically convenient to
require that bisimilar configurations have equal length lists of con-
texts and values. (Alternatively, we could prove that these invari-
ants hold for bisimulations derived from the initial configurations
of Definition 17.)

Definition 16. We say that a configuration ~A/~E /M/~U has sort
〈Γ,∆,m,n〉 if Γ;∆ ` ~A/~E /M/~U is well-formed, the length of ~E is
m, and the length of ~U is n.

We define similarity, ., as the largest family of 〈Γ,∆,m,n〉-
indexed relations over configurations such that

Γ;∆ ` M . N and Γ;∆ ` M κ−� Γ
′;∆

′ ` M′

imply that for some N′

Γ;∆ ` N κ−� Γ
′;∆

′ ` N′ and Γ
′;∆

′ ` M′ . N′.

Γ;∆-bisimilarity, ∼ is defined as two way similarity:

Γ;∆ ` M ∼ N if Γ;∆ ` M . N and Γ;∆ ` N . M. 2

Bisimulation is insensitive to the addition of irrelevant new names
to Γ, i.e., If

Γ;∆ ` ~A/~E /M/U,~U ∼ ~B/ ~F/N/V,~V

and Γ′∩Γ = /0, then:

Γ,Γ′;∆ ` ~A/~E /M/U,~U ,U ∼ ~B/ ~F/N/V,~V ,V

Symmetrically, bisimulation is also insensitive to the removal of
irrelevant new names from Γ, i.e., names in Γ that are not free in
the rest of the configuration can be removed.

As usual, indexed-bisimulation can be formalized as the greatest
fixed point of a product lattice [50]. Bisimulation on configurations
relates to terms as follows.

Definition 17. Write Γ;∆ ` M ∼ N if

Γ;∆ ` ·/·/M/~f ∼ ·/·/N/~f

where~f are the function names bound in ∆, in declaration order.
Let fn(M,N) = {~φ ,~p}. Write M ∼ N if

~φ ,~α;pcd ~p;adv ~p=~α ` M ∼ N. 2

The function symbols ~φ detect function calls by the term. The prim-
itive pointcut declarations pcd ~p bind the free primitive pointcuts
in the term. The advice declarations adv ~p=~α detect any call to a
new function declared at a visible primitive pointcut (by the term).
Functions can be introduced by fun transitions to detect any new
advice declared at a visible primitive pointcut (by the term).

4.5 Simple Examples
The first examples show that bisimulation yields a βv,ηv theory.

Example 18 (βv preserves bisimilarity). A standard LTS proof
shows that prefixing by τ preserves bisimilarity. So, since:

Γ;∆ ` ~A/~E /(λx.M) U/~U τ−→ Γ;∆ ` ~A/~E /M[x :=U]/~U

we have:

Γ;∆ ` ~A/~E /(λx.M) U/~U ∼ ~A/~E /M[x :=U]/~U

Thus, βv
2 preserves bisimilarity. 2

Example 19 (ηv preserves bisimilarity). ηv holds, i.e., in the case
where x is not free in U :

Γ;∆ ` ~A/~E /U/~U ∼ ~A/~E /λx.Ux/~U

The key case in this proof is to note that the transition

Γ;∆ ` ~A/~E /U/~U app φ−−−→ Γ,φ ;∆ ` ~A/~E /U φ/~U

on the LHS is matched by the following sequence from the RHS:

Γ;∆ ` ~A/~E /λx.Ux/~U app φ−−−→ Γ,φ ;∆ ` ~A/~E /(λx.Ux) φ/~U

and

Γ,φ ;∆ ` ~A/~E /(λx.Ux) φ/~U τ−→ Γ,φ ;∆ ` ~A/~E /U φ/~U 2

Bisimulation is not a trivial relation: for example, it distin-
guishes the Church booleans from one another, and likewise the
Church numerals. In combination with the two examples above,
this provides some justification for our use of the traditional encod-
ing of algebraic datatypes such as booleans and natural numbers.

As demonstrated in Example 18, the order of evaluation and
multiplicity of use of “internal” functions are not necessarily de-
tectable. Bisimulation can, however, detect the order and multiplic-
ity of calls to symbolic functions created by the environment.

Example 20 (Detecting order). Consider the following terms.

let x=φ(); let y=ψ();()

let y=ψ(); let x=φ();()

The LTSs for these terms are immediately distinguished by the
initially enabled transition, namely fcall φ for the first term and
fcall ψ for the second. 2

Example 21 (Detecting multiplicity). Consider the following terms.

let x=φ(); let y=φ();()

let y=φ();()

The LTSs for the first term may perform the following sequence of
transitions: fcall φ , ret ψ , fcall φ . The second term can match the
first two of these transitions, but not the third. 2

2 We use βv,ηv for the call-by-value versions of β ,η .

8

These distinctions hold even if all terms involved in the above
examples are purely functional, i.e., no aspects. Thus, even for
this fragment, our approach makes more distinctions relative to
applicative bisimulation and contextual bisimulation for a purely
functional language.

Of course, these distinctions are motivated and necessary for the
full language with imperative features.

Example 22 (The use of get and put rules). Consider:

M =~A;U ~A = pcd p; fun f@p=λ.fls;

N = λ.tru U = λ.let x=not(f ());(adv p=λ.λ.x);x
Because of the state changes caused by the aspect in U, M is
distinguished from N via the context

E = let y= [–];y();y()

since E [M] yields fls and E [N] yields tru.
Clearly, this distinction relies crucially on the use of M twice.

Applicative bisimulation thus fails to distinguish the terms because
it only tests the functions against identical arguments once. In the
contextual-bisimulation based work of Koutavas and Wand [36],
applicative tests are made against arguments in the contextual clo-
sure of the putative bisimulation and the terms are distinguished. In
the following example, we essentially show that the LTS is expres-
sive enough to code the distinguishing context E by using put,get
tests to permit multiple tests of terms.

Using the definitions above, the behavior of E can be sim-
ulated in the LTS using the put,get rules as follows. Consider
the initial configuration ·; · ` ·/·/M/·, which has τ transitions to
·; · ` ~A/·/U/·. This configuration in turn has a put labeled transi-
tion to:

·; · `~A/·/U/U

which in turn has an app φ labeled transition to:

φ ; · `~A/·/U φ/U

A few τ transitions from this configuration yields:

φ ; · `~A;adv f =λ.λ.tru/·/tru/U

To reevaluate U, we use a get 1 transition to get:

φ ; · `~A;adv f =λ.λ.tru/·/U/U

An app ψ labeled transition yields:

φ ,ψ; · `~A;adv f =λ.λ.tru/·/U ψ/U

This second evaluation of U takes place in the context of the aspect
that has been laid down. A few τ transitions from this configuration
yields:

φ ,ψ; · `~A;adv f =λ.λ.tru;adv f =λ.λ.fls/·/U ψ/U 2

Much of the related work is formalized in terms of references,
rather than advisable functions. In the next example, we discuss
some of the subtleties, using the work of Meyer and Sieber [45] as
the basis for comparison.

Example 23 (References versus advisable functions). For a free
reference variable x, Meyer-Sieber [45] validate the equivalence
!x;!x

MS= !x. In our language, this translates roughly to the inequiv-
alence demonstrated in Example 21. The difference arises from
the weak assumptions one can make about functions relative to
references; indeed the equivalence is valid in our language for
bound references, where stronger assumptions are manifest:

let x= ref 0;!x;!x∼ let x= ref 0;!x.

Unwinding the definition of references, this is roughly

pcd p; fun f@p=λ.0; f(); f()∼ pcd p; fun f@p=λ.0; f().

But the equivalence does not hold when p is available to the con-
text, since calls to f are then observable. Let ∆ = pcd p, fun f@p=
λ.0. Then

·;∆ ` f(); f() 6∼ f().

Interestingly, the equivalence does hold after an assignment, ie,
declaration of non-proceeding advice. Let A= adv p=λ.λ.1, then

·;∆ ` A; f(); f()∼ A; f()

which corresponds to (x:=1;!x;!x) MS= (x:=1;!x).
Note also that for pure references !x;Ω

MS= Ω, whereas the
corresponding result for functions does not hold: f();Ω 6MS= Ω. 2

4.6 A reasoning principle
To simplify reasoning about bisimilarity, we develop an upto-
principle that eliminates the need to:

• Include terms that do not interact with the state, if they occur in
the same position on each side of the bisimulation.

• Replicate values in bisimulations, e.g., arising from a get 1 then
a put transition.

The following definition formalizes the replication of values to
a relation on configurations.

Definition 24. R•
dup ⊇ R is defined inductively as follows. If

Γ;∆ ` ~A/~E /M/U,~U R ~B/ ~F/N/V,~V , then:

• Γ,Γ′;∆ ` ~A/~E /M/U,~U ,U R•
dup

~B/ ~F/N/V,~V ,V
• Γ,Γ′;∆ ` ~A/~E /M/~U R•

dup
~B/ ~F/N/~V 2

We say that a term (resp. evaluation context) is state-free over
a symbol environment Γ;∆ if every free name is contained in Γ

and the term (resp. evaluation context) contains no declaration sub-
terms. The following definition formalizes the addition of identical
state-free evaluation contexts / values to a relation on configura-
tions.

Definition 25. R•
sf ⊇ R is defined inductively as follows. If L

(resp. W , E) is a state-free term (resp. value, context) for Γ,Γ′;∆,
and Γ;∆ ` ~A/~E /M/~U R ~B/ ~F/N/~V , then:

• Γ,Γ′;∆ ` ~A/~E /L/~U R•
sf

~B/ ~F/L/~V .
• Γ,Γ′;∆ ` ~A/~E /M/W,~U R•

sf
~B/ ~F/N/W,~V .

• Γ,Γ′;∆ ` ~A/E , ~E /M/~U R•
sf

~B/E , ~F/N/~V . 2

Let R• = R•
dup ∪R•

sf. Let �� be the reflexive, transitive closure
of the least symmetric relation containing τ−→. The following upto-
technique is used to prove equivalences in Section 4.7.

Lemma 26. Let R be a 〈Γ,∆,m,n〉-indexed relation on configura-
tions. Suppose:

Γ;∆ ` M R N and Γ;∆ ` M κ−� Γ
′;∆

′ ` M′

implies there exists N′ such that:

Γ;∆ ` N κ−� Γ
′;∆

′ ` N′ and Γ
′;∆

′ ` M′ (��;R•;��) N′.

Then ��;R•;��⊆∼. 2

One very useful consequence of the lemma is that ∼•⊆∼3.

4.7 Examples with local store and higher-order functions
Examples 27 and 28 illustrate equivalences involving local state
and higher-order functions—originally due to Meyer and Sieber

3 A remark on a closure property of bisimulation. The results of section 5
imply that ∼ is sound for a more general version of definition 25: i.e.,
if fn(U),E are bound in Γ,∆ and Γ;∆ ` ~A/~E /M/~U ∼ ~B/ ~F/N/~V then,
Γ;∆ ` ~A/E , ~E /M/U,~U ∼ ~B/E , ~F/N/U,~V . However, this more general
property of ∼ is not necessarily sound as part of an upto-proof technique.

9

[45]. The proofs provided here exemplify the techniques needed
to address examples 1–5 and example 7 from [45]. Example 6
involves the equality of locations, and requires extra machinery
to code and reason about. To better illustrate the LTS, examples
are written in our language directly rather than using the syntactic
sugar for references in Example 6.

Example 27 (Local Store). Recall that dynamic aspects general-
ize local store. This example shows that local declaration of a prim-
itive pointcut and function at that primitive pointcut(providing local
store) does not affect computation. Consider the terms:

M = x N = pcd p; fun f@p=λ.0;x

We wish to prove λx.M ∼ λx.N. By congruence, lemma 32, it
suffices to show M∼ N. Define the relation R as :

x; · ` (·/·/x/·) R (~A/·/x/·)
where ~A = pcd p; fun f@p=λ.0.

The only possible transition labels are app φ and put.

x; · ` ·/·/x/·

R
�O
�O
�O

app φ
// x,φ ; · ` ·/·/x φ/·

R•
sf�O

�O
�O

x; · `~A/·/x/·
app φ

// x,φ ; · `~A/·/x φ/·

x; · ` ·/·/x/·

R
�O
�O
�O

put
// x; · ` ·/·/x/x

R•
sf�O

�O
�O

x; · `~A/·/x/·
put

// x; · `~A/·/x/x
By Lemma 26, x; · ` (·/·/x/·)∼ (·/·/~A;x/·). 2

Example 28 (Higher-Order Functions). This example demon-
strates reasoning about a call to an unknown procedure.

M = x (λ.());()
N = pcd p; fun f@p=λ.0;

x (λ.(let y= f ();(adv p=λ.λ.y+2);()));
if ((f () mod 2)=0) then () else Ω

In M, the external procedure x is invoked with a functional argu-
ment without side effects. In N, x is invoked with an argument that
advises the local function f—corresponding to incrementing a lo-
cal reference by two—thus maintaining the invariant that a call to f
yields an even number.

In our proof, we prove the local invariant of evenness separately,
without referring to the external function call. The bisimulation
principle allows us to modularly add the external function.

By lemma 32, to prove λx.M ∼ λx.N it suffices to show that
M∼ N. Let:

U = λ.()

E = [–];()
~A = pcd p; fun f@p=λ.0

V = λ.(let y= f ();(adv p=λ.λ.y+2);())
F = [–]; if ((f () mod 2)=0) then () else Ω

~B0 is the empty advice list
~Bn =~Bn−1;(adv p=λ.λ.2n)

So, M = E [x U] and N = ~A;F [x V]. We first prove two purely
local results without the external call, to show that the tests under
consideration (as given by E ,F) do not distinguish ~A;~Bm and
~A;~Bn for any m,n.

• For any m,n, the configurations ·; · ` ~A,~Bm/E /V/V and ·; · `
~A,~Bn/F/V/V are bisimilar.

• For any m,n, the configurations ·; · ` ~A,~Bm/E /V/V and ·; · `
~A,~Bn/E /U/U are bisimilar.

Let m,n range over all non-negative integers. Define:

·; · ` (~A,~Bm/F/V/V) R (~A,~Bn/E /V/V) (1)
·; · ` (~A,~Bm/E /V/V) R (~A,~Bn/E /U/U) (2)

There are three possibilities for the transition system labels that we
discuss below. For each, we address 1. The proof for 2 is identical
and omitted.

Case put,get 1: For κ ∈ {put,get 1}:

·; · `~A,~Bm/E /V/V

R
�O
�O
�O

κ // ·; · `~A,~Bm/E /V/V,V

R•
dup

�O
�O
�O

·; · `~A,~Bn/F/V/V
κ // ·; · `~A,~Bn/F/V/V,V

Case app φ : Use the operational semantics. Since:

·; · `~A,~Bn/F/V/V app φ−−−� ·; · `~A,~Bn+1/F/()/V
·; · `~A,~Bm/E /V/V app φ−−−� ·; · `~A,~Bm+1/E /()/V

·; · `~A,~Bm/E /V/V

R
�O
�O
�O

app φ
// φ ; · `~A,~Bm+1/E /()/V

(��;R•;��)
�O
�O
�O

·; · `~A,~Bn/F/V/V
app φ

// φ ; · `~A,~Bn+1/F/()/V

Case ret φ : Use the invariant that for any m, the function call f ()
in advice context ~A,~Bm evaluates to an even number.

·; · `~A,~Bm/E /V/V

R
�O
�O
�O

ret φ
// φ ; · `~A,~Bm/E /()/V

(��;R•;��)
�O
�O
�O

·; · `~A,~Bn/F/V/V
ret φ

// φ ; · `~A,~Bn/F/()/V

Therefore, by Lemma 26, R, and hence R•, is contained in bisim-
ilarity. Now, using transitivity of bisimilarity yields:

·; · ` (~A/E /U/·)∼ (~A/F/V/·)
Since x is not free in either configuration, we have:

x; · ` (~A/E /U/·)∼ (~A/F/V/·)
From example 27, since ∼•

sf ⊆∼, and E ,U are state-free for x:

x; · ` (~A/E /U/·)∼ (·/E /U/·)
Using transitivity of ∼:

x; · ` (~A/F/V/·)∼ (·/E /U/·)
Since

x; · ` ·/·/E [x U]/· fcall x−−−� x; · ` ·/E /U/·
x; · ` ·/·/~A;F [x V]/· fcall x−−−� x; · `~A/F/V/·

the required result,

x; · ` (·/·/~A;F [x V]/·)∼ (·/·/E [U]/·)
follows since both sides have only weak fcall x transitions to bisim-
ilar targets. 2

5. Results
Bisimilarity is sound and complete relative to observational con-
gruence. The proofs are found in the full paper (see [28]). In this
section, we merely give the reader a very high level tour of the re-
sults.

The soundness proof has three parts.

• First, we prove that the ηv-relation is a precongruence. This
permits us to assume that all values in the ~U portion of the

10

configuration are abstractions. Several of the later proofs are
simplified by this assumption.

• Secondly, we prove a substitution lemma that validates sub-
stitution of equals-for-equals for contexts that do not capture
variables: the reader might want to view this semantically as
an instance of the composition principles underlying game se-
mantics [3, 25], and syntactically as our (admittedly peculiar!)
variant of the delayed substitutions of the SECD machine [37].

• With this key ingredient in place, the rest of the soundness proof
becomes manageable, and dare we say, largely self-explanatory.

The following notion of compatibility captures some useful
properties of the initial configurations of Definition 17 and those
reachable from them.

Definition 29. A pair of LTS configurations Γ;∆ ` ~A/~E /M/~U and
Γ;∆ ` ~B/ ~F/N/~V are compatible if: (a) All advice in ∆ is symbolic
advice of the form adv p =α . (b) If pcd p ∈ ∆, then there exists
adv p = α ∈ ∆. (c) If fun f@p = φ ∈ ∆ then there exists 1 ≤ i ≤
min(|~U |, |~V |) such that ~U i =~V i = f 2

The next two lemmas provide the infrastructure required to
reason separately about the active term and the remaining pieces
of a configuration. Lemma 30 permits the substitution of identical
terms for values in the active term spot of bisimilar configurations,
while maintaining bisimilarity. Lemma 31 is dual.

Lemma 30. Suppose Γ;∆ ` ~A/~E /U/~U and Γ;∆ ` ~B/ ~F/V/~V are
compatible and fn(L)⊆ Γ∪dn(∆). Then:

Γ;∆ ` ~A/~E /U/~U ∼ ~B/ ~F/V/~V
implies:

Γ;∆ ` ~A/~E /L/~U ∼ ~B/ ~F/L/~V . 2

Lemma 31. Suppose Γ;∆ ` ·/·/M/~U and Γ;∆ ` ·/·/N/~V are com-
patible and Γ;∆ ` ~A/~E /()/~W is well-formed. Then:

Γ;∆ ` ·/·/M/~U ∼ ·/·/N/~V
implies:

Γ;∆ ` ~A/~E /M/~U , ~W ∼ ~A/~E /N/~V , ~W . 2

These lemmas constitute the basic machinery of the proof that
bisimilarity is a congruence (and is therefore sound for contextual
equivalence).
Theorem 32 (Congruence of Bisimilarity). Let U1 ∼ U ′

1, U2 ∼
U ′

2 and U ∼U ′. Let M ∼ M′, M1 ∼ M′
1 and M2 ∼ M′

2. Then:

• U1 U2 ∼U ′
1 U ′

2
• λx.M ∼ λx.M′

• let x=M1;M2 ∼ let x=M′
1;M′

2
• fun f@p=U;M ∼ fun f@p=U ′;M′

• pcd p;M ∼ pcd p;M′

• adv p=λ z.U;M ∼ adv p=λ z.U ′;M′ 2

The following theorem states that bisimilarity is sound and com-
plete for observational equivalence. The soundness follows imme-
diately from lemma 32. Completeness proceeds via a definablity ar-
gument: we show that every distinguishing trace (= finite sequence
of visible levels) between two terms, we can construct a context
that witnesses the trace. This construction proceeds via an analysis
of normal forms for such traces.
Theorem 33 (Completeness). M ≡ N if and only if M ∼ N. 2

6. Access Control and Type Enforcement
In this section we demonstrate how Type Enforcement (TE) [12,
62] policies—a form of history-sensitive mandatory access con-
trol popularized in the NSA’s Security-Enhanced Linux (SELinux)

[43]—can be encoded as temporal advice and how security proper-
ties of the resulting system can be established using open bisimu-
lation. TE policies associate types with code and other resources to
be protected; henceforth we call these “TE types” to avoid confu-
sion with the usual notion of type found in programming languages.
Also, the runtime system associates a current TE type with running
code, which determines its privileges: access control decisions are
based upon the current TE type and the TE type associated with
the resource being accessed. The current TE type evolves as new
code is invoked, based upon the current TE type, the TE type asso-
ciated with the new code, the TE policy, and constraints imposed
by the caller. The mechanism permits access control policies that
are sensitive to the history of the code that has been executed and
constraints imposed by that code.

Example 34 (Web-Server). As an example policy, consider a
web-server permitted to listen on ports 80 and 8080 if run by a
system administrator, but only upon port 8080 if executed by an
ordinary user. When fine-grained access control policies are avail-
able, the system administrator might also be prohibited from using
any other program to listen on ports 80 or 8080. In this scenario,
access privileges depend on both the original identity (system ad-
ministrator or user) and the code (the web-server) that is running.

To encode the web-server policy, we allow the current TE type
to range over {adm,usr,ws_adm,ws_usr}, the TE type for the
web-server code is ws_exe, and the TE types associated to the ports
are {port80,port8080}. Initially the current TE type is adm or usr,
then when the web-server is executed, the policy causes the current
TE type to change from adm to ws_adm, or from usr to ws_usr. In
addition, the policy permits

• adm and usr to execute code of TE type ws_exe;
• ws_adm to access ports of TE type port80,port8080;
• ws_usr to access ports of TE type port8080.

With this policy, we expect that code running as usr cannot be
influenced by new connections on port 80, even after executing
other code. 2

The TE mechanism can be implemented with advice—when
protected resources are functions that can be advised. To define the
advice, we require:

• A finite set of current TE types T and a finite set of TE types E
for executable code, assumed disjoint without loss of generality.

• An “allow” relation allow⊆ T×E×T describes when code can
execute/access a function and transition to a new TE type, i.e.,
if the current TE type is t then a function marked with TE code
type e can be invoked successfully and transition to current TE
type t′ if allow(t,e, t′).

• An “automatic transition” map auto : T ×E → T describes TE
type transitions that occur automatically when a new function is
executed4, i.e., if the current TE type is t and a function marked
with TE code type e is invoked successfully, then it is executed
with TE type auto(t,e).

• A finite set of primitive pointcuts Q and a map type : Q → E.

We consider declarations Acurr(t) representing a private variable
curr storing the current TE type initialized with t. The scope of
the private variable curr extends over advice Aq, one for each
primitive pointcut q, which checks whether a call to a function at q
is permitted and updates the current TE type before the call takes

4 For reasons of space, we do not model the behavior of the SELinux API
(setexeccon) that allows a caller to choose, subject to “allow”, a TE type
other than the default “automatic” TE type. However, there are no inherent
problems with such modeling.

11

place. A free variable fail is invoked when an access control check
fails. The coding for updating the current TE type uses the same
strategy adopted for cflow in Example 12, i.e., the caller’s current
TE type is stored before proceeding, and restored afterwards.

Acurr(t)
M= pcd p, fun curr@p=λ.t

~AQ
M= (Aq |q ∈ Q)

Aq
M= adv q=λ z.λx.Lz,x,q

Lz,x,q
M= let next=auto(!curr, type(q));

if allow(!curr, type(q),next) then
let prev=!curr;curr:=next;
let y= z x;curr:=prev;y

else fail ()

With the TE policy described in Example 34, and using TE code
types as primitive pointcuts, suppose we are given a function
webserver@ws_exe that starts a webserver on a port given as an
argument, and functions listen80@port80, listen8080@port8080 that
create listening sockets on ports 80 and 8080 respectively. In such
a context, the advice implementing the TE policy prevents the web-
server from accessing port 80 when invoked with a current TE type
of usr, i.e., if webserver attempts to invoke listen80 in the following
program, the advice implementing the TE policy will cause fail to
be invoked instead, because the invocation of webserver will cause
the current TE type to change to ws_usr.

Acurr(usr);~AQ;webserver (80)

In this example, we see that the body of listen80@port80 is irrele-
vant to computation beginning with TE type usr. To formalize this
non-interference property, we first define reachability reach(t,e) of
a TE type e from a TE type t to be the least relation such that:

• ∃t′. allow(t,e, t′) implies reach(t,e)
• ∃t′,e′. allow(t,e′, t′) and reach(t′,e) implies reach(t,e)

Reachability reach(t,q) of a primitive pointcut from a TE type t is
then defined to hold exactly when reach(t, type(q)). In the example
above, the TE code type port80 is not reachable from usr.

Now Proposition 35 demonstrates that we can take a program
that declares functions at public primitive pointcuts, impose aspects
for type enforcement on those public primitive pointcuts, then ar-
bitarily change the bodies of functions declared at primitive point-
cuts unreachable from the initial TE type without changing the be-
havior of the program.

Proposition 35. Consider a list of variables Γ, a TE type tinit ∈ T,
a finite set of function names F, a map pcd : F →Q, and values Uf ,
U ′

f for each f ∈ F such that:

• fail ∈ Γ

• ~A1 = (pcd q |q ∈ Q)
• ~A2 = Acurr(tinit),~AQ
• ~B = (fun f@pcd(f)=Uf | f ∈ F)
• ~B′ = (fun f@pcd(f)=U ′

f | f ∈ F)
• For f ∈ F, fn(Uf)∪ fn(U ′

f)⊆ Γ∪Q
• For f ∈ F, if reach(tinit,pcd(f)) then Uf = U ′

f .
• fn(M)⊆ Γ∪Q∪F

Then:
Γ;~A1 ` ~A2;~B;M ∼ ~A2;~B′;M 2

PROOF (SKETCH). By open bisimulation in combination with re-
sults from Section 5. Recall that an advice declaration is symbolic
if it has form adv q=α and that a function declaration fun f@q=U
is symbolic if U is a variable. The relation R contains:

Γ;~A1,~C1 ` (~A2,~B,~C2/·/N/~V) R (~A2,~B′,~C2/·/N′/~V ′)

Whenever Γ, ~A1, and ~A2 satisfy the conditions in the statement of
the result, and there exists a TE type t ∈ T , a set F1 ⊆ F, and binary
relations on values S1,S2 such that:

• ~C1 consists of symbolic function and advice declarations with
free primitive pointcuts in Q and free variables in Γ.

• For f ∈ F, reach(t,pcd(f)) iff f 6∈ F1.
• ~B = (fun f@pcd(f)=Uf | f ∈ F1)
• ~B′ = (fun f@pcd(f)=U ′

f | f ∈ F1)
• For f ∈ F1, fn(Uf)∪ fn(U ′

f)⊆ Γ∪Q
• ~C2 consists of symbolic advice with free primitive pointcuts in

Q and free variables in Γ, interleaved with advice updating curr
such that !curr returns t.

• S1 is the least set such that:
x ∈ Γ implies (x,x) ∈ S1
α ∈ Γ and (W,W ′) ∈ S1 implies (α<W>,α<W ′>) ∈ S1
f 6∈ F1 and (W,W ′) ∈ S1 implies
(λx.Lz,x,q[z :=W],λx.Lz,x,q[z :=W ′]) ∈ S1
f ∈ F1 and fn(W)∪ fn(W ′)⊆ Γ∪Q implies
(λx.Lz,x,q[z :=W],λx.Lz,x,q[z :=W ′]) ∈ S1

• S2 = S1∪{(f , f) | f ∈ dn(~C1)∪F1}
• (N,N′) ∈ S2 or there exists x ∈ Γ and (W,W ′) ∈ S2 such that

N = W x and N′ = W ′ x.
• ~V and ~V ′ have the same length, and, for all i, (Vi,V ′

i) ∈ S2.

It can be verified that R• is a bisimulation. To prove the main result,
we reason backwards, with the aim of reducing the result to an
instance of the bisimulation R• established above. The first step is
to reduce the desired conclusion to:

Γ1;~A1,~C0 ` (·/·/~A2,~B,M/·)∼ (·/·/~A2,~B′,M/·)

Symbolic advice on public primitive pointcuts is added. Note that
there are no function declarations in ~A1, so no function names need
to be placed into the value lists. Fresh variables are added to Γ:
Γ1 = Γ,(αq |q ∈ Q) and ~C0 = (adv q = αq |q ∈ Q). Now, since
reduction is included in bisimilarity, it suffices to show:

Γ1;~A1,~C0 ` (~A2,~B/·/M/·)∼ (~A2,~B′/·/M/·)

Without loss of generality we assume that the function declarations
~B and ~B′ factor as ~B = ~B1,~B2 and ~B = ~B′1,~B

′
2, where ~B1 and ~B′1 con-

sist of function declarations at primitive pointcuts reachable from
tinit (i.e., if f is declared in ~B1 or ~B′1, then reach(tinit,pcd(f))), and
~B2 and ~B′2 consist of function declarations at primitive pointcuts
unreachable from tinit. By hypothesis, ~B1 = ~B′1.

Γ1;~A1,~C0 ` (~A2,~B1,~B2/·/M/·)∼ (~A2,~B1,~B′2/·/M/·)

We introduce fresh variables Γ2 = Γ1,(xf | f ∈ dn(~B1)), symbolic
function definitions ~B3 = (fun f@pcd(f) = xf | f ∈ dn(~B1)), and a
value list with the original common function bodies ~W = (Uf | f ∈
dn(~B1)). Using the substitution result used in the the proof of
congruence (see [28]), we need only show:

Γ2;~A1,~C0 ` (~A2,~B3,~B2/·/M/~W)∼ (~A2,~B3,~B′2/·/M/~W)

A simple bisimulation proof shows that the function declarations
and the policy advice declarations can be swapped, and by moving
~A2,~B3,~B2 and ~A2,~B3,~B′2 back to M, Lemma 31 can be applied
because fn(~W)⊆ Γ∪Q. This yields that it suffices to show:

Γ2;~A1,~C0 ` (~A2,~B3,~B2/·/M/·)∼ (~A2,~B3,~B′2/·/M/·)

A simple bisimulation proof shows that this follows from (adding
function names from dn(~B1) to the value lists to ensure compatibil-
ity):

Γ2;~A1,~C1 ` (~A2,~B2/·/M/dn(~B3))∼ (~A2,~B′2/·/M/dn(~B3))

12

where we take ~C1 = ~C0,~B3. Now Lemma 30 cannot be applied im-
mediately, because fn(M)∩ dn(~B2) may not be empty (note that
dn(~B2) = dn(~B′2)), so we separate those function names by intro-
ducing fresh variables Γ3 = Γ2,(yf | f ∈ dn(~B2)) and considering L
such that fn(L)⊆ fn(Γ3)∪dn(~A1,~C1) and M = L[(yf | f ∈ dn(~B2)) :=
(f | f ∈ dn(~B2))]. Again, by the substitution result used in the proof
of congruence, we need only show:

Γ2;~A1,~C1 ` (~A2,~B2/·/L/dn(~B3),dn(~B2))∼ (~A2,~B′2/·/L/dn(~B3),dn(~B2))

Or equivalently, regarding F as a list:

Γ2;~A1,~C1 ` (~A2,~B2/·/L/F)∼ (~A2,~B′2/·/L/F)

Since fn(L)⊆ fn(Γ3)∪dn(~A1,~C1), Lemma 30 tells us that it suffices
to prove, for some x ∈ Γ2 (known to be non-empty):

Γ2;~A1,~C1 ` (~A2,~B2/·/x/F)∼ (~A2,~B′2/·/x/F)

This follows from the fact that R• is a bisimulation. 2

Thus we have shown how a non-interference property of advice
implementing a history-sensitive access control policy can be es-
tablished via open bisimulation.

7. Conclusion
This paper is a step towards leveling the formal playing field be-
tween aspects and other programming paradigms.

We have described a first (to our knowledge) description of
bisimulation for aspect languages. As an indication of its use, we
have demonstrated its utility towards bridging a formal gap that
exists between the foundations and realizations of Open Modules.

Our bisimulation principle combines techniques used to address
mobile processes (open bisimulation), names in the nu-calculus
(via tracking leaked secrets in the LTS) and the lambda calculus
(ENF-bisimulation). To this mixture, we contribute new techniques
to show that bisimilarity is a congruence. Even though we have
taken a purely untyped and operational view in this paper, the in-
frastructure that we have developed holds promise as foundations
to address issues of semantic types and logical relation based rea-
soning for aspect languages.

Our results suggest that aspects are no more difficult to address
formally and reason about than well-studied classical issues of
higher-order imperative programs. These results complement on-
going research in the aspect community on the design and imple-
mentation of aspect languages.

Acknowledgements. We gratefully acknowledge suggestions by
anonymous referees. James Riely was supported by NSF Career
0347542. Radha Jagadeesan and Corin Pitcher were supported by
NSF Cybertrust 0430175.

References
[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer Verlag,

1996.

[2] M. Abadi and C. Fournet. Access control based on execution history.
In Proceedings of the Network and Distributed System Security
Symposium Conference, 2003.

[3] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for
PCF. Inf. Comput., 163(2):409–470, 2000.

[4] S. Abramsky and C.-H. L. Ong. Full abstraction in the lazy lambda
calculus. Inf. Comput., 105(2):159–267, 1993.

[5] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa.
Abstracting object-interactions using composition-filters. In Object-
based distributed processing, LNCS, 1993.

[6] J. Aldrich. Open modules: Modular reasoning about advice. In A. P.
Black, editor, ECOOP, volume 3586 of Lecture Notes in Computer
Science, pages 144–168. Springer, 2005.

[7] R. Alur. The benefits of exposing calls and returns. In M. Abadi and
L. de Alfaro, editors, CONCUR, volume 3653 of Lecture Notes in
Computer Science, pages 2–3. Springer, 2005.

[8] R. Alur and P. Madhusudan. Adding nesting structure to words.
In O. H. Ibarra and Z. Dang, editors, Developments in Language
Theory, volume 4036 of Lecture Notes in Computer Science, pages
1–13. Springer, 2006.

[9] P. Avgustinov, E. Bodden, E. Hajiyev, L. Hendren, O. Lhoták,
O. de Moor, N. Ongkingco, D. Sereni, G. Sittampalam, and J. Tibble.
Aspects for trace monitoring. In K. Havelund, M. Nunez, G. Rosu,
and B. Wolff, editors, Formal Approaches to Testing Systems and
Runtime Verification (FATES/RV), Lecture Notes in Computer
Science. Springer, 2006.

[10] L. Bergmans. Composing Concurrent Objects - Applying Compo-
sition Filters for the Development and Reuse of Concurrent Object-
Oriented Programs. Ph.D. thesis, University of Twente, 1994.

[11] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann. Virtual
machine support for dynamic join points. In AOSD, pages 83–92,
2004.

[12] W. E. Boebert and R. Y. Kain. A practical alternative to hierarchical
integrity policies. In Proceedings of the Eighth National Computer
Security Conference, 1985.

[13] C. Clifton and G. T. Leavens. MiniMAO1: An imperative core
language for studying aspect-oriented reasoning. Science of Computer
Programming, 2006. To appear.

[14] C. Clifton, G. T. Leavens, and M. Wand. Parameterized aspect
calculus: A core calculus for the direct study of aspect-oriented
languages. At
http://www.cs.iastate.edu/~cclifton/papers/TR03-13.pdf,
2003.

[15] Y. Coady, G. Kiczales, M. J. Feeley, and G. Smolyn. Using AspectC
to improve the modularity of path-specific customization in operating
system code. In ESEC / SIGSOFT FSE, pages 88–98, 2001.

[16] D. S. Dantas and D. Walker. Harmless advice. In J. G. Morrisett and
S. L. P. Jones, editors, POPL, pages 383–396. ACM, 2006.

[17] R. De Nicola and M. Hennessy. Testing equivalences for processes.
Theoretical Computer Science, 34(1–2):83–133, Nov. 1984.

[18] C. Dutchyn, D. B. Tucker, and S. Krishnamurthi. Semantics and
scoping of aspects in higher-order languages. Science of Computer
Programming, 2006. To appear. Preliminary version "Pointcuts and
advice in higher-order languages" in AOSD 03.

[19] M. Felleisen, D. P. Friedman, E. Kohlbecker, and B. Duba. A syntactic
theory of sequential control. Theor. Comput. Sci., 52(3):205–237,
1987.

[20] R. Filman and D. Friedman. Aspect-oriented programming is
quantification and obliviousness. In Workshop on Advanced
Separation of Concerns, 2000.

[21] A. D. Gordon. Bisimilarity as a theory of functional programming.
Electr. Notes Theor. Comput. Sci., 1, 1995.

[22] A. D. Gordon. Operational equivalences for untyped and polymorphic
object calculi. In A. D. Gordon and A. M. Pitts, editors, Higher-Order
Operational Techniques in Semantics, Publications of the Newton
Institute, pages 9–54. Cambridge University Press, 1998.

[23] A. D. Gordon and G. D. Rees. Bisimilarity for a first-order calculus
of objects with subtyping. In POPL, pages 386–395, 1996.

[24] D. J. Howe. Proving congruence of bisimulation in functional
programming languages. Inf. Comput., 124(2):103–112, 1996.

[25] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II,
and III. Inf. Comput., 163(2):285–408, 2000.

[26] R. Jagadeesan, A. Jeffrey, and J. Riely. An untyped calculus of
aspect oriented programs. In Conference Record of ECOOP 03:
The European Conference on Object-Oriented Programming, volume
2743 of Lecture Notes in Computer Science, 2003.

13

http://www.cs.iastate.edu/~cclifton/papers/TR03-13.pdf

[27] R. Jagadeesan, A. Jeffrey, and J. Riely. Typed parametric polymor-
phism for aspects. Science of Computer Programming, 2006. To
appear.

[28] R. Jagadeesan, C. Pitcher, and J. Riely. Open bisimulation for aspects
(full version). Available at http://www.teasp.org/bisimulation,
2007.

[29] A. Jeffrey and J. Rathke. A theory of bisimulation for a fragment of
concurrent ML with local names. Theor. Comput. Sci., 323(1-3):1–48,
2004. Preliminary version appeared in IEEE LICS 1999.

[30] A. Jeffrey and J. Rathke. Java Jr: Fully abstract trace semantics for a
core Java language. In ESOP, volume 3444 of LNCS, pages 423–438.
Springer, 2005.

[31] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of AspectJ. Lecture Notes in Computer
Science, 2072:327–355, 2001.

[32] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In European
Conference on Object-Oriented Programming (ECOOP), 1997.

[33] G. Kiczales and M. Mezini. Aspect-oriented programming and mod-
ular reasoning. In ICSE ’05: Proceedings of the 27th international
conference on software engineering, pages 49–58, New York, NY,
USA, 2005. ACM Press.

[34] V. Koutavas and M. Wand. Bisimulations for untyped imperative
objects. In P. Sestoft, editor, Proc. ESOP 2006, volume 3924 of
Lecture Notes in Computer Science, pages 146–161. Springer, Mar.
2006.

[35] V. Koutavas and M. Wand. Proving class equivalence. submitted for
publication, July 2006.

[36] V. Koutavas and M. Wand. Small bisimulations for reasoning about
higher-order imperative programs. In J. G. Morrisett and S. L. P.
Jones, editors, POPL, pages 141–152. ACM, 2006.

[37] P. J. Landin. The mechanical evaluation of expressions. Computer
Journal, 6(4):308–320, Jan. 1964.

[38] S. Lassen. Eager normal form bisimulation. In LICS, pages 345–354.
IEEE Computer Society, 2005.

[39] S. Lassen. Head normal form bisimulation for pairs and the lambda-
mu calculus. In LICS, 2006. In the proceedings of the 21st IEEE
Symposium on Logic in Computer Science (LICS 2006). To appear.

[40] H. C. Li, S. Krishnamurthi, and K. Fisler. Modular verification of
open features using three-valued model checking. Autom. Softw. Eng.,
12(3):349–382, 2005.

[41] K. J. Lieberherr. Adaptive Object-Oriented Software: The Demeter
method with propagation patterns. PWS Publishing Company, 1996.

[42] J. Ligatti, D. Walker, and S. Zdancewic. A type-theoretic interpre-
tation of pointcuts and advice. Science of Computer Programming,
2006. To appear.

[43] P. A. Loscocco and S. D. Smalley. Meeting critical security objectives
with Security-Enhanced Linux. In Proceedings of the 2001 Ottawa
Linux Symposium, 2001.

[44] H. Masuhara, G. Kiczales, and C. Dutchyn. A compilation and
optimization model for aspect-oriented programs. In G. Hedin,
editor, CC, volume 2622 of Lecture Notes in Computer Science,
pages 46–60. Springer, 2003.

[45] A. R. Meyer and K. Sieber. Towards fully abstract semantics for local
variables. In POPL, pages 191–203, 1988.

[46] E. Moggi. Notions of computation and monads. Information and
Computation, 93(1):55–92, 1991.

[47] S. Nakajima and T. Tamai. Lightweight formal analysis of aspect-
oriented models. In UML2004 Workshop on Aspect-Oriented
Modeling, 2004.

[48] N. Ongkingco, P. Avgustinov, J. Tibble, L. Hendren, O. de Moor, and
G. Sittampalam. Adding open modules to AspectJ. In AOSD ’06:
Proceedings of the 5th international conference on Aspect-oriented

software development, pages 39–50, New York, NY, USA, 2006.
ACM Press.

[49] H. Ossher and P. Tarr. Multi-dimensional separation of concerns
and the hyperspace approach. In Proceedings of the Symposium on
Software Architectures and Component Technology: The State of the
Art in Software Development, 2001.

[50] A. M. Pitts. Operationally-based theories of program equivalence.
In P. Dybjer and A. M. Pitts, editors, Semantics and Logics of
Computation, Publications of the Newton Institute, pages 241–298.
Cambridge University Press, 1997.

[51] H. Rajan and K. J. Sullivan. Classpects: unifying aspect- and object-
oriented language design. In G.-C. Roman, W. G. Griswold, and
B. Nuseibeh, editors, ICSE, pages 59–68. ACM, 2005.

[52] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order
and Higher-Order Paradigms. PhD thesis CST–99–93, Department
of Computer Science, University of Edinburgh, 1992.

[53] D. Sangiorgi. Expressing Mobility in Process Algebras: First Order
and Higher Order Paradigms. PhD thesis, University of Edinburgh,
1993.

[54] D. Sangiorgi. A theory of bisimulation for the pi-calculus. Acta Inf.,
33(1):69–97, 1996.

[55] D. Sangiorgi. Bisimulation: From the origins to today. In LICS, pages
298–302. IEEE Computer Society, 2004.

[56] D. Sangiorgi. The bisimulation proof method: Enhancements and
open problems. In R. Gorrieri and H. Wehrheim, editors, FMOODS,
volume 4037 of Lecture Notes in Computer Science, pages 18–19.
Springer, 2006.

[57] M. Sihman and S. Katz. Model checking applications of aspects and
superimpositions. In Foundations of Aspect Languages, 2003.

[58] E. Sumii and B. C. Pierce. A bisimulation for type abstraction and
recursion. In J. Palsberg and M. Abadi, editors, POPL, pages 63–74.
ACM, 2005.

[59] P. L. Tarr and H. Ossher. Hyper/J: Multi-dimensional separation of
concerns for Java. In ICSE, pages 729–730, 2001.

[60] N. Ubayashi and T. Tamai. Aspect-oriented programming with
model checking. In AOSD ’02: Proceedings of the 1st international
conference on Aspect-oriented software development, pages 148–154,
New York, NY, USA, 2002. ACM Press.

[61] D. Walker, S. Zdancewic, and J. Ligatti. A theory of aspects. In
C. Runciman and O. Shivers, editors, ICFP, pages 127–139. ACM,
2003.

[62] K. M. Walker, D. F. Sterne, M. L. Badger, M. J. Petkac, D. L.
Shermann, and K. A. Oostendorp. Confining root programs with
Domain and Type Enforcement (DTE). In Proceedings of the Sixth
USENIX UNIX Security Symposium, 1996.

[63] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice
and dynamic join points in aspect-oriented programming. TOPLAS,
26(5):890–910, September 2004.

14

http://www.teasp.org/bisimulation

A. Overview of Proofs
This section provides a sketch of the soundness and completeness
results for the bisimulation relative to observational congruence.
The remaining sections of the appendix contains detailed sketches
of all relevant results. In this section, we focus on the technical
novelties of our analysis.

A.1 Soundness
In this subsection, we show that ∼ is a congruence. From this it is
straightforward to show that M ∼ N implies M ≡ N.

This proof has three parts. Appendix B proves that the η-
relation is a precongruence. This permits us to assume that all val-
ues in the ~U portion of the configuration are abstractions. Several of
the proofs in this subsection rely on this assumption. Secondly, we
prove a substitution lemma that validates substitution of equals-for-
equals for contexts that do not capture variables: the reader might
want to view this semantically as an instance of the composition
principles underlying game semantics [3, 25], and syntactically as
our (admittedly peculiar!) variant of the delayed substitutions of the
SECD machine [37]. With this key ingredient in place, the rest of
the soundness proof becomes manageable, and dare we say, largely
self-explanatory.

A substitution result. The substitutions that we consider provide
two kinds of substitution information on a LTS configuration:

• What value from the list of values in a configuration is substi-
tuted for a variable? This information is indicated by the posi-
tional index in ~U in a LTS configuration.

• Which contexts in the the list of evaluation contexts need to
be substituted into the enclosing context? This information is
specified by an integer stack.

Definition 36. An extended substitution, σ , is a pair of a partial
function from variables to integers and an integer stack.

If φ is in the domain of the partial function of σ , we will
use σ(φ) for the value of the partial function of σ . We will use
σ] (φ 7→ k) for the operation of extending the domain of the
partial function of σ to include φ : this operation is undefined if
φ is already in the domain of the partial function.

We use empty(σ) to return the emptiness of the stack; top(σ) to
return the top value of the stack; and sum(σ) to return the sum of
the values on the stack. We use pushone(σ) to return a new stack
with 1 pushed onto the top; pop(σ) to return a new stack without
the top element. 2

We define the function Zm to compress the top (rightmost) m
elements of a context sequence; the return value is a pair with the
compressed context and remainder. We also define the function Zσ ,
which compresses a context sequence iteratively using the stack in
σ — the argument to Zσ must be a sequence of evaluation contexts
of length sum(σ); the result is a sequence whose length equals the
length of σ . For example, suppose the stack of σ is n1,1,n2, where
ni is the length of ~E i and Gi is the result of compressing ~E i. Then
Ztop(σ)(~E 1F ~E 2) = 〈~E 1F , G2〉, and Zσ (~E 1F ~E 2) = G1FG2. The
definitions are as follows.5

Z(·)(G) = G
Z(~E F)(G) = Z(~E)(F [G])

Zm(E1 . . .En) = 〈(E1 . . .En−m), Z(En−m+1 . . .En−1)(En)〉

Zσ (~E) =

{
~E if empty(σ)
~F ′G if Ztop(σ)(~E) = 〈 ~F , G 〉 and ~F ′ = Zpop(σ)(~F)

5 To avoid confusion, we elide sequence element separators here.

Definition 37. σ is valid for Γ;∆ ` M if:

• (sorting) If α is an advice variable, ~Uσ(α) is of the form λ z.U ;
• (acyclicity) there is a total ordering of Γ, say φ1, . . . ,φn satisfy-

ing: for any 1 ≤ k ≤ n; φk is not free in σ(φ j) for j ≥ k,
• the domain of σ is a subset of Γ; and
• sum(σ) is less than the length of ~E , where M = _/~E /_/_.

If σ is valid for Γ;∆`~A/~E /M/~U , we define [Γ;∆`~A/~E /M/~U]σ =
Γ′;∆′ ` ~A′/~E ′′/M′/~U ′ where (a) for every metavariable χ , χ ′ is
derived by substituting φ by σ(φ) in the configuration — the sub-
stitution in carried out following the total order of the variables
testifying to the validity of σ — and (b) ~E ′′ = Zσ (E ′). 2

Definition 38. Write Γ;∆ `M /σ N if there exists Γ;∆ `M′ . N′

such that σ is valid for Γ;∆ `M′ and for Γ;∆ `N′ and Γ;∆ `M =
[Γ;∆ ` M′]σ and Γ;∆ ` N = [Γ;∆ ` N′]σ . 2

Two configurations are related by /σ if they are in the σ -image of
configurations that are related by ..

Proposition 39. The relation / =
⋃

σ /σ is a simulation.
PROOF SKETCH. See Appendix C. 2

Identity inclusion lemmas. The notion of compatibility captures
some useful properties of the initial configurations of Definition 17
and those reachable from them.

A pair of LTS configurations Γ;∆ ` ~A/~E /M/~U and Γ;∆ `
~B/ ~F/N/~V are compatible if: (a) All advice in ∆ is symbolic advice
of the form adv q=α . (b) If pcd q∈ ∆, then there exists adv q=α ∈
∆. (c) If fun f@q=φ ∈ ∆ then there exists 1≤ i≤min(|~U |, |~V |) such
that ~U i =~V i = f

The next two lemmas provide the infrastructure required to
reason separately about the active term and the remaining pieces
of a configuration. Lemma 30 permits the substitution of identical
terms for values in the active term spot of bisimilar configurations,
while maintaining bisimilarity.

For proofs, see Appendices D and E.
Suppose Γ;∆ ` ~A/~E /U/~U and Γ;∆ ` ~B/ ~F/V/~V are compati-

ble and fn(L)⊆ Γ∪dn(∆). Then

Γ;∆ ` ~A/~E /U/~U ∼ ~B/ ~F/V/~V
implies

Γ;∆ ` ~A/~E /L/~U ∼ ~B/ ~F/L/~V . 2

Lemma 31 is dual.
Suppose Γ;∆ ` ·/·/M/~U and Γ;∆ ` ·/·/N/~V are compatible

and Γ;∆ ` ~A/~E /()/~W is well-formed. Then

Γ;∆ ` ·/·/M/~U ∼ ·/·/N/~V
implies

Γ;∆ ` ~A/~E /M/~U , ~W ∼ ~A/~E /N/~V , ~W . 2

Given this machinery, the proof that bisimulation is a congru-
ence (and is therefore sound for contextual equivalence) is quite
routine. Appendix F contains a sketch of the proof.

A.2 Completeness
We show that M ≡ N implies M ∼ N by demonstrating the con-
trapositive. Let s, t range over traces of visible labels s, t ::=
κ1, . . . ,κn, with empty trace ε .

Definition 40. A complete normal trace is a trace that is generable
by the following grammar over labels:

START ::= TERM*,put, CTXT*

TERM ::= fcall φ ,put, CTXT*, ret ψ | acall α,put, CTXT*, ret ψ

CTXT ::= get i,app φ , TERM*,put | fun f@q=φ | adv q=α

A normal trace is a prefix of a complete normal trace.

15

Proposition 41. (a) If Γ;∆ ` M . N and Γ;∆ ` M s−� then Γ;∆ `
N s−�. (b) If Γ;∆ ` M 6. N then for some normal trace s and label
κ ∈ {fcall,acall}: Γ;∆ ` M s−� κ−� and Γ;∆ ` N s−� κ−X−�. 2

In Appendix G we show how to construct a term Cs
t [Γ;∆ `

M] to satisfy the following lemmas (upto a structural equivalence
that allows reordering of unrelated declarations). Intuitively, the
configuration M is in the process of performing actions s, t with
its (supplied) context; actions s are completed, whereas t have yet
to be performed.

Proposition 42. Let s,κ, t be a normal trace. If Γ;∆ ` M κ−�
Γ′;∆′ ` M′ then Cs

κ,t [Γ;∆ ` M]−� Cs,κ
t [Γ′;∆′ ` M′]. 2

Proposition 43. Let s,κ be a normal trace, where κ ∈{fcall,acall},
and let Γ;∆ ` M be an LTS state in which signal does not occur.
(a) If Γ;∆ ` M κ−� then Cs

κ [Γ;∆ ` M] . (b) If Γ;∆ ` M κ−X−� then
¬(Cs

κ [Γ;∆ ` M]) . 2

Starting from Definition 17, completeness follows by induction on
the length of trace s from Proposition 41b, using Propositions 42
and 43.

B. η equality is a congruence
In this section, we sketch the proof that η equality is a congruence.

Definition 44. We define a relation Rη

1 on configurations as fol-
lows: Γ;∆ ` M Rη

1 N if N is got from M by replacing a value sub-
term U (with x not free) by λx.Ux.

Let Rη
? be the reflexive and transitive closure of Rη

1 . 2

We overload Rη

1 (rep. Rη
?) and also use them as a relation between

terms (resp. evaluation contexts, etc).

Lemma 45. Rη
? is a bisimulation.

PROOF. Suffices to prove that Rη

1 is a bisimulation upto Rη
? .

We first consider the case for τ-transitions.
Let ~A Rη

1
~A′, E [·] Rη

1 E ′[·], U Rη

1 U ′, V Rη

1 V ′, N Rη

1 N′. Then:

• ~A/E
[
N[x :=U]

]
Rη

?
~A′/E ′[N′[x :=U ′]]

• ~A(U)Rη
?
~A′(U ′), if U is an abstraction or U = U ′.

So, if NRη

1 N′, and ~A/N −�~A1/N1 then ~A′/N′ −�~A′1/N′
1 such that:

~A1/N1 Rη
?

~A′1/N′
1.

Thus, if

Γ;∆ ` ~A/~E /M/~U Rη

1 Γ;∆ ` ~A′/~E ′/M′/~U ′

and

Γ;∆ ` ~A/~E /M/~U τ−→ Γ;∆ ` ~A1/~E /M1/~U

then:

Γ;∆ ` ~A′/~E ′/M′/~U ′ τ−� Γ;∆ ` ~A′1/~E /M′
1/~U ′

such that

Γ;∆ ` ~A1/~E /M1/~URη
? Γ;∆ ` ~A′1/~E ′/M′

1/~U ′

We next consider the case for fcall x transition:

Γ;∆ ` ~A/~E /F [φ V]/~U fcall φ−−−−→ Γ;∆ ` ~A/~E ,F/V/~U

The key case to consider for this transition is the one that replaces
φ by its one-step eta expansion λy.φy to yield Γ;∆ `~A′/~E ′/M′/~U ′

with ~A = ~A′; ~E = ~E ′;M′ = F [λy.φy V];~U = ~U ′. The required
matching fcall x transition is validated after one βv transition.

All the other cases of transitions with non-τ labels are straight-
forward and are omitted. 2

C. Proof of substitution lemma
Our aim is to show that / is a simulation.

Since the LTS transitions never reduce Γ or the list of carried
values, the critical point of interaction is the stack of the substi-
tution. The following lemma addresses the cases when the stack
of evaluation contexts is altered: when a new frame is added due to
the call transitions, an extra frame is added to the substitution stack;
when an evaluation frame is taken off due to the return transition,
σ ’s stack determines the appropriate number of frames that actu-
ally need to be removed. The extra conditions for enabling non-τ
transitions cases account for the priority given by the LTS to τ tran-
sitions. (The proof of Lemma 48 demonstrates how the top of the
stack in σ is incremented.)

Lemma 46. Let σ be valid for Γ;∆ ` M and suppose
Γ;∆ ` M κ−→ Γ′;∆′ ` M′.

• If κ = τ then [Γ;∆ ` M]σ τ−→ [Γ′;∆′ ` M′]σ .
• If κ ∈ {app,put,get, fun,adv} and [Γ;∆ ` M]σ τ−X−→ then

[Γ;∆ ` M]σ κ−→ [Γ′;∆′ ` M′]σ .
• If κ ∈ {fcall φ ,acall α} and φ ,α 6∈ dom(σ) then

[Γ;∆ ` M]σ κ−→ [Γ′;∆′ ` M′]pushone(σ).
• If κ = ret φ and φ 6∈ dom(σ) then let M = ~A/~E /M/~U and

M′ = ~B/ ~F/N/~V . Let Ztop(σ)(~E) = 〈 ~F , G 〉. Then
[Γ;∆ ` ~A/ ~F ,G /M/~U]σ κ−→ [Γ,φ ;∆ ` ~B/ ~F/G [φ]/~V]pop(σ).

The next two lemmas together show that for any σ , /σ is
a simulation-upto / . The first lemma addresses the case when
the left-hand configuration is in a stuck state. The second lemma
addresses the remaining cases.

Lemma 47. If

• Γ;∆ ` ~A1/~E 1/M1/~U1 /σ
~A′1/~E ′

1/M′
1/

~U ′
1, and

• Γ;∆ ` ~A1/~E 1/M1/~U1
κ−→ Γ2;∆2 ` ~A2/~E 2/M2/~U2

then there exists σ ′ such that:

• Γ;∆ ` ~A′1/~E ′
1/M′

1/
~U ′

1
κ−� Γ2;∆2 ` ~A′2/~E ′

2/M′
2/

~U ′
2

• Γ2;∆2 ` ~A2/~E 2/M2/~U2 /σ ′ ~A′2/~E ′
2/M′

2/
~U ′

2
PROOF. Since Γ;∆ ` ~A1/~E 1/M1/~U1 /σ

~A′1/~E ′
1/M′

1/
~U ′

1 there ex-
ists: Γ;∆ ` ~A/~E /M/~U . ~A′/~E ′/M′/~U ′ such that:

• σ is valid for Γ;∆ ` ~A/~E /M/~U and Γ;∆ ` ~A′/~E ′/M′/~U ′

• [~A/~E /M/~U]σ = ~A1/~E 1/M1/~U1 and
• [~A′/~E ′/M′/~U ′]σ = ~A′1/~E ′

1/M′
1/

~U ′
1

There is a non-τ labeled transition from Γ;∆ ` ~A1/~E 1/M1/~U1.
So, there are only three possible forms for M1:

1. M1 = [U]σ
2. M1 = [F [x V]]σ , and σ(x) ↑
3. M1 = [F [α<V>W]]σ , and σ(α) ↑

We consider the cases in turn below:

2. Using Γ;∆ ` ~A/~E /M/~U . ~A′/~E ′/M′/~U ′:

Γ;∆ ` ~A′/~E ′/M′/~U ′ τ−� Γ;∆ ` ~B′/~E ′/F ′[x V ′]/~U ′

such that

Γ;∆ ` ~A/~E /F [x V]/~U . ~A′/~E ′/F ′[x V ′]/~U ′

Using fcall x transition on both:

Γ;∆ ` ~A/~E ,F/V/~U . ~A′/~E ′,F ′/V ′/~U ′

From Lemma 46, σ is valid for Γ;∆ ` ~B′/~E ′/F ′[x V ′]/~U ′ and

[Γ;∆ ` ~A′/~E ′/M′/~U ′]σ τ−� [Γ;∆ ` ~B′/~E ′/F ′[x V ′]/~U ′]σ
Since σ(x) ↑, fcall x transition is enabled after σ substitution,
and result follows from Lemma 46.

16

3. Similar to (2.)
1. Using Γ;∆ ` ~A/~E /U/~U . ~A′/~E ′/M′/~U ′:

Γ;∆ ` ~A′/~E ′/M′/~U ′ τ−� Γ;∆ ` ~B′/~E ′/U ′/~U ′

such that
Γ;∆ ` ~A/~E /U/~U . ~A′/~E ′/U ′/~U ′

The applicable LTS transitions are ret ·,app ·,get ·,put and the
advise transition.
We illustrate with put: the cases for app ·,get · are essentially
identical.
Using put on both sides, we get:

Γ;∆ ` ~A/~E /U/~U ,U . ~A′/~E ′/U ′/~U ′,U ′

Substitution of values into values preserves values. So, put
transition is enabled after σ substitution on both sides. Result
follows using Lemma 46 on both sides of the above.
The case for ret · differs only in the stack management of
extended substitutions as handled by Lemma 46. 2

The following lemma relies on the mimicking of internal τ-
reductions using LTS transitions. One way to view the case of
the proof for lambda-application is as our version of the delayed
substitutions of the SECD machine [37].

Lemma 48. Let κ 6= τ . If

• Γ;∆ ` [~A/~E /M/~U]σ /σ [~A′/~E ′/M′/~U ′]σ , and
• Γ;∆ ` ~A1/~E 1/M1/~U1

κ−� Γ2;∆2 ` ~A2/~E 2/M2/~U2,

then there exists σ ′ such that

• Γ;∆ ` ~A′1/~E ′
1/M′

1/
~U ′

1
κ−� Γ2;∆2 ` ~A′2/~E ′

2/M′
2/

~U ′
2, and

• Γ2;∆2 ` ~A2/~E 2/M2/~U2 /σ ′ ~A′2/~E ′
2/M′

2/
~U ′

2
PROOF. Let the weak transition κ−� have n τ transitions before κ .
Proof is by induction on n. Base case n = 0 has been addressed in
Lemma 47. Assume proof for n <= k. Consider n = k +1.

Since Γ;∆ ` ~A1/~E 1/M1/~U1 /σ
~A′1/~E ′

1/M′
1/

~U ′
1 there exists:

Γ;∆ ` ~A/~E /M/~U . ~A′/~E ′/M′/~U ′ such that:

• σ is valid for Γ;∆ ` ~A/~E /M/~U and Γ;∆ ` ~A′/~E ′/M′/~U ′

• [~A/~E /M/~U]σ = ~A1/~E 1/M1/~U1 and
• [~A′/~E ′/M′/~U ′]σ = ~A′1/~E ′

1/M′
1/

~U ′
1

There are two cases corresponding to whether the τ transition is
enabled before substitution or not.
Transition enabled before substitution. The first case is when

Γ;∆ ` ~A/~E /M/~U τ−→ Γ;∆ ` ~B/~E /N/~U

In this case, by Lemma 46

[Γ;∆ ` ~A/~E /M/~U]σ τ−→ [Γ;∆ ` ~B/~E /N/~U]σ
Since Γ;∆ ` ~A/~E /M/~U . ~A′/~E ′/M′/~U ′, there exists:

Γ;∆ ` ~A′/~E ′/M′/~U ′ τ−� Γ;∆ ` ~A′/~E ′/N′/~U ′

such that
Γ;∆ ` ~B/~E /N/~U . ~B′/~E ′/N′/~U ′

and by Lemma 46, σ is valid for Γ;∆ ` ~A′/~E ′/N′/~U ′ and:

[Γ;∆ ` ~A′/~E ′/M′/~U ′]σ τ−� [Γ;∆ ` ~A′/~E ′/N′/~U ′]σ
In this case, result follows from the induction hypothesis, since the
transition κ−�: [Γ;∆ ` ~B/~E /N/~U]σ κ−� Γ2;∆2 ` ~A2/~E 2/M2/~U2 has
only k τ transitions.
Transition enabled by substitution. There are two possible forms
for M1:

1. M1 = [F [x V]]σ , and σ(x) is defined.
2. M1 = [F [α<V>W]]σ , and σ(α) is defined.

We consider the first case below. Let σ(x) = i, and the value at
i′th position in ~U is λy.N.

This proof first evaluates the function body: we address the
evaluation of N with V substituted for the formal y.

Consider the following sequence of transitions:

Γ;∆ ` ~A/~E /F [x V]/~U
fcall x−−−→ Γ;∆ ` ~A/~E ,F/V/~U

put−−→ Γ;∆ ` ~A/~E ,F/V/~U ,V
get i−−−→ Γ;∆ ` ~A/~E ,F/λy.N/~U ,V

app φ−−−→ Γ,φ ;∆ ` ~A/~E ,F/λy.N φ/~U ,V
τ−→ Γ,φ ;∆ ` ~A/~E ,F/N[y := φ]/~U ,V
τ−� Γ,φ ;∆ ` ~B/~E ,F/L/~U ,V

Since Γ;∆ ` ~A/~E /M/~U . ~A′/~E ′/M′/~U ′:

• M′ = F ′[x V ′]
• There is a similar sequence resulting in

Γ,φ ;∆ ` ~B′/~E ′,F ′/L′/~U ′,V ′

Let σ3 = inctop((σ] (φ 7→ |(~U ,~V)|))). Since φ is new, and one
internal extra evaluation context has been exposed:

• σ3 is valid for Γ,φ ;∆ ` ~B/~E ,F/L/~U ,V and
• σ3 is valid for Γ,φ ;∆ ` ~B′/~E ′,F ′/L′/~U ′,V ′.

The number of τ reductions from [Γ,φ ;∆ ` ~B/~E ,F/L/~U ′,V ′]σ3

is <= k. So, induction hypothesis applies and we deduce the exis-
tence of a σ4 such that:

• [Γ,φ ;∆ ` ~B/~E ,F/L/~U ,V]σ3
τ−� [Γ,φ ;∆ ` ~C/~E ,F/K/~U ,V]σ4

• [Γ,φ ;∆`~B′/~E ′,F ′/L′/~U ,V]σ3
τ−� [Γ,φ ;∆` ~C′/~E ′,F ′/K′/~U ′,V ′]σ4

• σ4 is valid for Γ,φ ;∆ ` ~C/~E ,F/K/~U ,V
• σ4 is valid for Γ,φ ;∆ ` ~C′/~E ′,F ′/K′/~U ′,V ′.
• Γ,φ ;∆ ` ~C/~E ,F/K/~U ,V . ~C′/~E ′,F ′/K′/~U ′,V ′

There are no τ transitions in the resulting configurations using σ4.
There are now two cases, depending on whether [K]σ4 is a value
or not. If it is not a value, we are in a form that can appeal to
Lemma 47.

If [K]σ4 is a value, say W , consider:

Γ,φ ;∆ ` ~C/~E ,F/W/~U ,V
put−−→ Γ,φ ;∆ ` ~C/~E ,F/W/~U ,V,W

ret ψ−−−→ Γ,φ ,ψ;∆ ` ~C/~E /F [ψ]/~U ,V,W
This sequence can be mimicked from Γ,φ ;∆` ~C′/~E ′,F ′/W ′/~U ′,V ′

to yield Γ,φ ,ψ;∆ ` ~C′/~E ′/F ′[ψ]/~U ′,V ′,W ′ and the induction hy-
pothesis applies to the following data:

• σ5 = pop(σ4)] (ψ 7→ |~U ′,V ′,W ′|)
• [Γ,φ ,ψ;∆ ` ~C/~E ,F/F [ψ]/~U ,V,W]σ5

• [Γ,φ ,ψ;∆ ` ~C′/~E ′,F ′/F ′[ψ]/~U ′,V ′,W ′]σ5

yielding the overall required result for the case when M1 =
[F [x V]]σ .

We now address the case for advice application, i.e., M1 =
[F [α<V>W]]σ . Let σ(α) = i. Let the value at i′th position in ~U
be λ z.λx.X . Consider the following sequence of transitions:

Γ;∆ ` ~A/~E /F [α<V>W]/~U
acall α−−−−→ Γ;∆ ` ~A/~E ,F/W/~U ,V

put−−→ Γ;∆ ` ~A/~E ,F/V/~U ,V,W
get i−−−→ Γ;∆ ` ~A/~E ,F/λ z.λx.X/~U ,V,W

app φ−−−→ Γ,φ ;∆ ` ~A/~E ,F/λ z.λx.X φ/~U ,V,W
τ−→ Γ,φ ;∆ ` ~A/~E ,F/λx.X [z := φ]/~U ,V,W

app ψ−−−� Γ,φ ,ψ;∆ ` ~A/~E ,F/X [x := ψ][z := φ]/~U ,V,W
The rest of the proof, mimics the case for application described
above and is omitted. 2

17

D. Identity extension for terms
This section sketches the proof of Lemma 30. We first sketch an
auxiliary lemma concerning the addition of a fresh public PCD and
initial advice to bisimilar configurations.

Lemma 49. If Γ;∆ ` ~A/~E /M/~U ∼ ~B/ ~F/N/~V and q, α are fresh,
then: Γ,α;∆,pcd q,adv q=α ` ~A/~E /M/~U ∼ ~B/ ~F/N/~V .
PROOF. A straightforward bisimulation proof using lemma 26. The
bisimulation contains not only the configuration with the addition
of α and pcd q,adv q = α , but also functions and advice (at q)
that can be added by the environment. The values resulting from
looking up those functions are identical on both sides and state-
free, and thus lemma 26 allows them to be safely ignored. 2

For the proof sketch of Lemma 30 in the rest of this section, we
assume that:

• Γ;∆ ` ~A/~E /M/~U ∼ ~B/ ~F/N/~V
• M,N are values.
• All names in fn(L) are bound in Γ;∆.
• Γ;∆ ` ~A/~E /M/~U and Γ;∆ ` ~B/ ~F/N/~V are compatible.

The proof proceeds by structural induction on L.

Case x, x not bound in ∆. Let R be a relation witnessing
Γ;∆ ` ~A/~E /M/~U ∼ ~B/ ~F/N/~V . Consider the set O consisting
of terms that are variables or applications of variables, ie. of the
form x1,x2, . . . ,x1 x1,x1 x2,x2 x1,x2 x2,

Consider a relation S as follows: Γ′;∆′ ` ~A′/~E ′/M′/~U ′ and
Γ′;∆′ ` ~B′/ ~F ′/N′/~V ′ are related by S if:

• Γ′;∆′ ` ~A′/~E ′/M′/~U ′ and Γ′′;∆′ ` ~B′/ ~F ′/N′/~V ′ are compati-
ble.

• There exists configurations Γ′;∆′ ` ~A1/~E 1/M1/~U1 and Γ′;∆′ `
~B1/ ~F 1/N1/~V 1 related by R, such that

None of the elements of O are bound in ∆′.
~U ′ (resp,~V ′) are obtained by interleaving ~U1 (resp.~V 1) with
a sequence of terms from set O.

Either both M′ = M1 and N′ = N1 hold; or M′ = M = L
where L ∈ O.

Proof follows since S is easily seen to be a bisimulation.

Case f , f bound in ∆. Γ;∆ ` ~A/~E /M/~U and Γ;∆ ` ~B/ ~F/N/~V
have no τ-reductions.

Using assumption “Public functions as values”, let i be the index
of the value list that has f in ~U and~V . Using transition get i, we get:

Γ;∆ ` ~A/~E /f/~U ∼ ~B/ ~F/f/~V

Case U V . The induction hypothesis on U yields:

Γ;∆ ` ~A/~E /U/~U ∼ ~B/ ~F/U/~V

and hence using put:

Γ;∆ ` ~A/~E /U/~U ,U ∼ ~B/ ~F/U/~V ,U

Using induction hypothesis on V yields:

Γ;∆ ` ~A/~E /V/~U ,U ∼ ~B/ ~F/V/~V ,U

and hence using put

Γ;∆ ` ~A/~E /V/~U ,U,V ∼ ~B/ ~F/V/~V ,U,V

A hand-crafted bisimulation proof as used in the first base case
(L = x, x not bound in ∆) shows that:

Γ,x1,x2;∆ ` ~A/~E /x1 x2/~U ,U,V ∼ ~B/ ~F/x1 x2/~V ,U,V

Consider substitution σ with empty stack and partial function given
by {xi 7→ i+ |~U | | i = 1,2}. Using Proposition 39 yields the required
result.

Case pcd q;L. Applying lemma 49 to:

Γ;∆ ` ~A/~E /U/~U ∼ ~B/ ~F/V/~V

gives:

Γ,α;∆,pcd q,adv q=α ` ~A/~E /U/~U ∼ ~B/ ~F/V/~V

By the induction hypothesis on L:

Γ,α;∆,pcd q,adv q=α ` ~A/~E /L/~U ∼ ~B/ ~F/L/~V

A bisimulation proof establishes:

Γ,α;∆`~A,pcd q,adv q=α/~E /L/~U ∼ ~B,pcd q,adv q=α/ ~F/L/~V

And, with W = λ z.λx.z x, a second bisimulation proof using
lemma 26 yields:

Γ,α;∆`~A,pcd q,adv q=α/~E /L/~U ,W ∼~B,pcd q,adv q=α/ ~F/L/~V ,W

Substitution of W for α using Proposition 39 gives:

Γ;∆`~A,pcd q,adv q=W/~E /L/~U ,W ∼~B,pcd q,adv q=W/ ~F/L/~V ,W

A final bisimulation proof shows:

Γ;∆ ` ~A/~E /pcd q;L/~U ∼ ~B/ ~F/pcd q;L/~V

Case fun f@q=U;L. Using induction on U we deduce that:

Γ;∆ ` ~A/~E /U/~U ∼ ~B/ ~F/V/~V

and hence:

Γ;∆ ` ~A/~E /U/~U ,U ∼ ~B/ ~F/U/~V ,U

Using fun f@q=φ on both sides, we get:

Γ,φ ;∆, fun f@q=φ ` ~A/~E /L/~U ,U ∼ ~B/ ~F/L/~V ,U

Consider substitution σ with empty stack and partial function given
by {φ 7→ 1+ |~U |}. Using Proposition 39 yields the required result.

Case adv q =U;L. Similar to above, but using adv q =α transi-
tions instead of fun f@q=φ .

Case let x=L1;L2. Using induction on L1 we deduce:

Γ;∆ ` ~A/~E /L1/~U ∼ ~B/ ~F/L1/~V

We need to show that:

Γ;∆ ` ~A/~E /let x=L1;L2/~U ∼ ~B/ ~F/let x=L1;L2/~V

L1 is evaluated first. So, we use Γ;∆ ` ~A/~E /L1/~U ∼ ~B/ ~F/L1/~V
to mimic transitions between the configurations till we end up
with L1 evaluated to a value on both sides: i.e., the configurations
that we have to show to be bisimilar are of the form: Γ′;∆′ `
~A′/~E /let x =U;L2/~U ′ and Γ′;∆′ ` ~B′/ ~F/let x =U;L2/~V ′ where
we know that

Γ;∆ ` ~A′/~E /U/~U ′ ∼ ~B′/ ~F/V/~V ′

and hence

Γ;∆ ` ~A′/~E /U/~U ′,U ∼ ~B′/ ~F/V/~V ′,V

By induction hypothesis on L2,

Γ,x;∆ ` ~A/~E /L2/~U ′,U ∼ ~B/ ~F/L2/~V ′,V

Consider substitution σ with with empty stack and partial function
given by {x 7→ 1 + |~U |}. Using Proposition 39 yields the required
result.

18

Case λx.L. Consider the relation that consists of all compati-
ble pairs of configurations (Γ;∆ ` ~A/~E /M′/~U ,Γ;∆ ` ~B/ ~F/N′/~V)
such that there exists:

Γ,x;∆ ` ~A/~E /L1/~U ′ ∼ ~B/ ~F/L2/~V ′

such that:

• ~U ′ (resp.~V ′) is got from ~U (resp.~V) by deleting all occurrences
of λx.L.

• The possibilities for L1,L2 are as follows

L1 = M′ and L2 = N′

Both M′,N′ are values, and one of the following hold:

− L1 = L2 = λx.L

− L1 = L2 = L[x := φ]

The required result follows from showing that this relation is a
bisimulation. The straightforward proof to show this uses inductive
hypothesis on L at all configurations having L1 = L2 = L[x := φ] in
the active term position.

Inclusion of identical values and identical evaluation contexts.
Since the first time when values from the value list (or contexts
from the context list) can be moved into active position is when
the term in the active position has become a value, and hence in
the realm of applicability of Lemma 30, the addition of identical
contexts and values can be done in slightly more general situations.

Corollary 50 (to Lemma 30). If:

• Γ;∆ ` ~A/~E /M/~U ∼ ~B/ ~F/N/~V
• All names in fn(U),E ,E ′ are bound in Γ,∆
• Γ;∆ ` ~A/~E /M/~U and Γ;∆ ` ~B/ ~F/N/~V are compatible.

then:

Γ;∆ ` ~A/E ′, ~E ,E /M/~U ,U ∼ ~B/E ′, ~F ,E /N/~V ,U 2

Corollary 50 is used in the proof of Lemma 31 given in Section E.

E. Inclusion of identical contexts
In this section we sketch the proof of Lemma 31. The proof relies
on the following auxiliary lemma that uses initial advice in ∆ of
the form adv q =β to add further advice of the form adv q =α or
adv q =W . The new advice appears after adv q = β but before all
other advice on q.

Lemma 51. If:

• Γ;∆ ` ~A/~E /M/~U ∼ ~B/ ~F/N/~V
• Γ;∆ ` ~A/~E /M/~U and Γ;∆ ` ~B/ ~F/N/~V are compatible.
• α ∈ Γ and pcd q ∈ ∆.

Then:

Γ;∆ ` adv q=α;~A/~E /M/~U ∼ adv q=α;~B/ ~F/N/~V

Moreover, if lam p. U is well-formed over Γ;∆, then:

Γ;∆ ` adv q=λ z.U;~A/~E /M/~U ∼ adv q=λ z.U;~B/ ~F/N/~V

PROOF SKETCH. The proof for the first part proceeds by moving
the rightmost advice in ∆ of the form adv q = β into the private
declarations ~A, ~B (a bisimulation proof), then using inclusion of
identical values (Corollary 50) and substitution (Proposition 39)
to replace adv q = β with adv q = λ z.λx.α<γ<z>> x, where γ is
fresh. A second bisimulation proof shows that the above advice is
equivalent to adv q=γ;adv q=α . A final bisimulation proof shows
that γ can be renamed to β (which was substituted away) and then

moved back into the public declaration list to recover the original
∆. The second part follows from the first by inclusion of identical
values (Corollary 50) λ z.U and then substituting (Proposition 39)
λ z.U for α . 2

For the sketch of Lemma 31, we assume without loss of gen-
erality that in Γ;∆ ` ~A/~E /()/~W , that is to be added to Γ;∆ `
·/·/M/~U ∼ ·/·/N/~V , the declarations ~A have the form ~A1,~A2,~A3
where (~p and~r may be bound in ~A1 or ∆):

~A1 = pcd~q
~A2 = fun~f@~p= ~W ′

~A3 = adv~r = ~W ′′

Using Lemma 49, ~A1 can be added along with initial advice ~A4 =
adv~q=~α:

Γ,~α;∆,~A1,~A4 ` ·/·/M/~U ∼ ·/·/N/~V

Function definitions with symbolic bodies can be added using
fun f@q = x transitions since the PCDs ~q are public, so with
~A5 = fun~f@~p= x:

Γ,~α,~x;∆,~A1,~A4,~A5 ` ·/·/M/~U ,~f ∼ ·/·/N/~V ,~f

Using Corollary 50 to add values and evaluation contexts, we have:

Γ,~α,~x;∆,~A1,~A4,~A5 ` ·/~E /M/~U ,~f , ~W , ~W ′ ∼ ·/~E /N/~V ,~f , ~W , ~W ′

Using Lemma 51 in an induction working from the right to the left
of ~A3, we can add the advice ~A3 to both sides:

Γ,~α,~x;∆,~A1,~A4,~A5 `~A3/~E /M/~U ,~f , ~W , ~W ′∼~A3/~E /N/~V ,~f , ~W , ~W ′

The function declarations ~A5 can be moved to the private declara-
tion lists and the~f value list removed by a bisimulation proof. Then
the real function bodies ~W ′ can be substituted for~x to recover ~A2:

Γ,~α;∆,~A1,~A4 ` ~A2,~A3/~E /M/~U , ~W ∼ ~A2,~A3/~E /N/~V , ~W

Finally, the ~A1 and ~A4 can be moved to the private declaration
lists by a bisimulation proof, then the advice ~A4 eliminated by
substitution:

Γ;∆ ` ~A1,~A2,~A3/~E /M/~U , ~W ∼ ~A1,~A2,~A3/~E /N/~V , ~W

This completes the proof.

F. Bisimulation is a congruence (Proof of
lemma 32)

This section contains the proof that bisimulation is a congruence.

Application. Let U1 ∼ U ′
1 and U2 ∼ U ′

2. We need to show that
U1 U2 ∼U ′

1 U ′
2. From:

Γ;∆ ` ·/·/U2/~g ∼ ·/·/U ′
2/~g

we deduce:

Γ;∆ ` ·/·/U2/~g,U2 ∼ ·/·/U ′
2/~g,U ′

2

From this, we deduce:

Γ,x1,x2;∆ ` ·/·/()/~g,U2 ∼ ·/·/()/~g,U ′
2

and using Lemma 30:

Γ,x1,x2;∆ ` ·/·/x1 x2/~g,U2 ∼ ·/·/x1 x2/~g,U ′
2

Now, using Corollary 50 yields

Γ,x1,x2;∆ ` ·/·/x1 x2/~g,U2 ∼ ·/·/x1 x2/~g,U ′
2

Similarly, from Γ;∆ ` ·/·/U1/∼ ·/·/U ′
1/· we get

Γ,x1,x2;∆ ` ·/·/x1 x2/~g,U1 ∼ ·/·/x1 x2/~g,U ′
1

19

Combining:

Γ,x1,x2;∆ ` ·/·/x1 x2/~g,U1,U2 ∼ ·/·/x1 x2/~g,U ′
1,U

′
2

Consider the substitution σ with empty stack and partial function
given by {xi 7→ |~g|+ i}. Proposition 39 yields

Γ;∆ ` [·/·/x1 x2/~g,U1,U2]σ ∼ [·/·/x1 x2/~g,U ′
1,U

′
2]σ

and finishes the proof.

Function declaration. Let U ∼U ′ and M ∼M′. We need to show
that fun f@q=U;M ∼ fun f@q=U ′;M′.

Using Lemma 31, and Γ,φ ;∆ ` ·/·/M/~g∼ ·/·/M′/~g we deduce
that:

Γ,φ ;∆ ` fun f@q=φ/·/()/~g ∼ fun f@q=φ/·/M/~g

Using Corollary 50:

Γ,φ ;∆ ` fun f@q=φ/·/()/~g,U ∼ fun f@q=φ/·/M′/~g,U ′

Consider the substitution σ with empty stack and partial function
given by {φ 7→ |~g|+1}. Proposition 39 finishes the proof.

Advice declaration. As above.

Lambda abstraction. Given L ∼ L′, consider λx.L and λx.L′.
The proof that these terms are bisimilar proceeds by a direct bisim-
ulation argument.

Define a bisimulation candidate R as follows: Γ;∆`~A/~E /M/~U
and Γ;∆ ` ~B/ ~F/N/~V are related by R iff the following holds:

There exists ~U ′,~V ′ such that:

• ~U (resp. ~V) is got by deleting all occurrences of λx.L (resp.
λx.L′) from ~U ′ (resp. ~U) that are at identical indices in ~U ,~U ′.

• One of the following holds:

Either Γ;∆ ` ~A/E /M/~U ′ ∼ ~B/F/N/~V ′,

Or, M = λx.L, N = λx.L′ and for some U,V : Γ;∆ `
~A/E /U/~U ′ ∼ ~B/F/V/~V ′

The key case to consider is an app φ transition in the second
case above leading to configurations: Γ,φ ;∆ ` ~A/~E /L[x := φ]/~U
and Γ,φ ;∆ ` ~A/~E /L′[x := φ]/~U These configurations are proved
bisimilar by Lemma 31 on: Γ,φ ;∆ ` ~A/E /U/~U ′ ∼ ~B/F/V/~V ′.
So, Γ,φ ;∆ ` ~A/~E /L[x := φ]/~U and Γ,φ ;∆ ` ~A/~E /L′[x := φ]/~U are
related by the candidate bisimulation relation.

Let. Given L1 ∼ L′1 and L2 ∼ L′2 we must show that let x = L1;
L2 ∼ let x = L′1;L′2. We do this in two stages and then use the
transitivity of ∼:

let x=L1;L2 ∼ let x=L′1;L2
let x=L′1;L2 ∼ let x=L′1;L′2

For the first stage, we use the bisimulation for L1 ∼ L′1 to construct
a bisimulation for let x = L1;L2 ∼ let x = L′1;L2. The interesting
case is when L1 and L′1 are both values, in which case we can
save those two values into the value lists, use Lemma 30 to add
L2 in the term position in both configurations, and then apply
substitution (Proposition 39) to establish the relationship between
configurations with L2[x := L1] and L2[x := L′1] in the term positions.

For the second stage, a bisimulation proof establishes:

let x=L′1;L2 ∼ let x=L′1;(λx.L2) x
let x=L′1;L′2 ∼ let x=L′1;(λx.L′2) x

Now we know from the previous case that L2 ∼ L′2 implies λx.L2 ∼
λx.L′2. After saving those values into the value lists, use Lemma 30
to add let x = L′1;y x in the term position in both configurations.
Substitution (Proposition 39) establishes the relationship between
configurations with (let x = L′1;y x)[y := λx.L2] and (let x = L′1;
y x)[y := λx.L′2] in the term positions.

primitive pointcut declaration. Given L ∼ L′ we must show that
pcd q;L ∼ pcd q;L′. From L ∼ L′ we know:

Γ,α;∆,pcd q,adv q=α ` ·/·/L/· ∼ ·/·/L′/·
A straightforward bisimulation shows that the declarations pcd q
and adv q=α can be moved to the front of the terms L and L′. Then
the advice adv q=α can be eliminated by substitution of λ z.λx.z x
for α and a bisimulation proof, to leave:

Γ;∆ ` ·/·/pcd q;L/· ∼ ·/·/pcd q;L′/·

G. Completeness
The proof of Proposition 41a is a straightforward induction on the
length of the trace. The proof of Proposition 41b is a rather tedious
analysis of the commutativity of various labels and the resulting
configurations. The essential observation is the following.

Lemma 52. The following categories of LTS states are disjoint:

• Write Γ;∆ ` M ⇑ if Γ;∆ ` M −→ω .
• Write Γ;∆ ` M ⇓ TERM if Γ;∆ ` M κ−� for κ ∈ {fcall,acall}.
• Write Γ;∆ ` M ⇓ CTXT if Γ;∆ ` M κ−� for κ ∈ {put,get, ret,

app, fun,adv}. 2

In rest of this appendix we describe the strategy for building
contexts to satisfy the requirements of Propositions 42 and 43.
Since we are concerned only with normal traces, we adopt the
following abbreviations,

getapp i φ
M= get i,app φ

fcallput φ
M= fcall φ ,put

acallput α
M= acall α,put

with completed normal traces formed by the following grammar.

START ::= TERM*,put, CTXT*

TERM ::= fcallput φ , CTXT*, ret ψ | acallput α, CTXT*, ret ψ

CTXT ::= getapp i φ , TERM*,put | fun f@q=φ | adv q=α

We use the phrase call label for labels fcallput and acallput. We use
the phrase context label for labels getapp, put, fun and adv. Recall-
ing the definition on page 15, let Z(~E)(M) =

(
Z(~E)([–])

)
[M].

Fix s, t, Γ, ∆ and M = ~A/~E /M/~U . We show how to build term

Cs
t [Γ;∆ ` M] = C [Z(~G)(M)].

We refer to as C as the context. We refer to ~G as the stack; this is
an interleaving of the given ~E , the term stack, and a defined ~F , the
context stack.

The context includes function declarations for each name in
Γ∪ dn(s, t), as well as the declarations ∆ and ~A. The context also
includes the following mutable structures.

• The vector values keeps track of the stored values in a con-
figuration. put(values, V) pushes V onto the end of the vector;
get(values, i) returns the ith value from the vector; these func-
tions have standard encodings in the lambda calculus with ref-
erences. In C-

-[_/_/_/U1, . . . ,Un], get(values, i) returns Ui.
• The reference callcount holds the number of call labels occur-

ring in t; thus !callcount is 0 in Cs
ε [–].

The functions for Γ ∪ dn(s, t) are unadvisable, i.e., declared at
a fresh primitive pointcut. (Symbolic advice and functions are
treated similarly; to simplify the presentation, we abuse notation to
allow function declarations at symbolic advice names.) The basic
structure of a function body is a case structure on callcount.

fun φ =λx.callcount--;put(values, x);
case !callcount of · · · default⇒ Ω

fun α =λz.λx.callcount--;put(values, z);put(values, x);
case !callcount of · · · default⇒ Ω

20

We generate additional cases for these function bodies by work-
ing through the trace s, t. The context stacks ~F , mentioned above,
are “suffixes” of these function bodies that have been called (in
s) but have not yet returned (reading s forward); the context stack
includes the actions yet to be performed by these functions (gen-
erated by analyzing t). The term stack ~E includes the suffixes of
functions interrupted by a call label; the context stack ~F includes
the suffixes of functions interrupted by a getapp. Call labels that do
not have matching returns in s, t will end in Ω, both in the function
declaration and in the context stack.

The last element of the trace is treated specially, as initialization.
From Proposition 41, we can assume that the last element is a
call label. Suppose it is fcallput φ (acallput is similar). Then we
add case “0 ⇒ signal ()” to the definition of φ , and the definition
becomes

fun φ =λx.callcount--;put(values, x);
case !callcount of · · · 0 ⇒ signal ();default⇒ Ω.

Now that we have initialized the function declaration, we can
begin to generate new cases by working backwards through s, t.
We generate these using a stack of contexts, called the generating
stack. When we reach the beginning of t (before getting to the end
of s), we record the generating stack, which becomes the context
stack ~F . We continue the backwards processing of s to generate
the remaining function body cases (so that function bodies do not
change from Cs

κ,t [–] to Cs,κ
t [–]).

Initially the generating stack contains a context “[–];Ω” for
every un-returned call label in s, t. Labels are processed as follows:

• We push a new context “[–];ψ” onto the generating stack for
every label ret ψ that we process.

• We pop a context G and add a case “⇒ G [()]” to φ for every
label fcallput φ , and similarly for acallput α . The guard on the
case is derived by counting the number of call labels that have
been processed.

• As we process context labels, we replace the top context of the
generating stack G with a new one, as dictated by the following
table. (We use the name y for the variable holding the return
value from all calls to term functions; using a single variable
name simplifies code generation.)

getapp i φ let y= (get(values, i)) φ;G
put put(values, y);G
fun f@q=φ fun f@q=φ;G
adv q=α adv q=α;G

This strategy generates contexts that satisfy the requirements. We
elide further details.

21

	Introduction
	Related Work
	Language
	Syntax
	Lookup
	Dynamics
	Contextual Equivalence
	Simple Examples
	Open Modules and Temporal Pointcuts

	Labeled Transition System and Bisimulation
	An introduction to open bisimulation
	Symbolic functions and symbolic advice
	The LTS
	Bisimulation
	Simple Examples
	A reasoning principle
	Examples with local store and higher-order functions

	Results
	Access Control and Type Enforcement
	Conclusion
	Overview of Proofs
	Soundness
	Completeness

	 equality is a congruence
	Proof of substitution lemma
	Identity extension for terms
	Inclusion of identical contexts
	Bisimulation is a congruence (Proof of lemma ??)
	Completeness

