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Abstract—Digital forensics reports typically document the
search process that has led to a conclusion; the primary means
to verify the report is to repeat the search process. We believe
that, as a result, the Trusted Computing Base for digital forensics
is unnecessarily large and opaque.

We advocate the use of forensic certificates as intermediate
artifacts between search and verification. Because a forensic
certificate has a precise semantics, it can be verified without
knowledge of the search process and forensic tools used to create
it. In addition, this precision opens up avenues for the analysis
of forensic specifications. We present a case study using the
specification of a ‘“deleted” file.

We propose a verification architecture that addresses the
enormous size of digital forensics data sets. As a proof of
concept, we consider a computer intrusion case study, drawn
from the Honeynet project. Our Coq formalization yields a
verifiable certificate of the correctness of the underlying forensic
analysis. The Coq development for this case study is available at
http://fpl.cs.depaul.edu/projects/forensics/.

I. INTRODUCTION

Eoghan Casey, editor-in-chief of Digital Investigation, a
premier journal in computer forensics, recently editorialized
[Casey 2012]:

Digital forensics can no longer tolerate software that
cannot be relied upon to perform specific functions.
The root of this problem is a lack of clearly defined
software requirements, which compels users and tool
testers to make educated guesses and assumptions
about how we expect digital forensic tools to work.
This makeshift approach results in untested errors
in our tools that can lead to verdicts based on
incorrect information and can damage the reputation
of individual practitioners and the field as a whole.

The Scientific Working Group on Digital Evidence [2013] has
raised similar concerns.

Why is unreliable software “intolerable” in a forensics
context? In common practice, a forensics report is a narrative
description of the search procedure: the report lists the tools
that have been used and provides an argument for the conclu-
sion based on the output of those tools. The validity of the
conclusion depends upon the details of the process by which
those conclusions are derived. If the tools that generate the
output are buggy, then the conclusions themselves are in doubt.
Unreliable software undermines the entire endeavor. Casey’s
argument is about poor tools, but the same argument can be
applied to reasoning made outside the tools.

Rather than viewing this as a problem of software reliability,
we view it as a problem of an overlarge Trusted Computing
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Base (TCB). The problem is that the forensics argument is jus-
tified by the search process itself, rather than an independently
verifiable conclusion. The TCB, therefore, must include all of
the tools used during the search. The situation is particularly
galling when the TCB must include tools that are monolithic
and closed-source, as are many popular forensics applications.
Projects such as NIST’s Computer Forensics Tool Testing
Program (http://www.cftt.nist.gov) have attempted to increase
confidence in specific tools, but this approach inherits the usual
limitations and difficulties associated with software testing.

We have pursued an alternative approach familiar to the CSF
audience: to reduce the size of the TCB. Our starting point is an
analogy with certificates for SAT solvers: one should not trust
the SAT solver that produces a certificate, only the verifier that
checks it. We believe that the forensic search process should
produce forensic certificates that precisely identify the data
required to validate a conclusion, along with proof that the
conclusion follows from that data. Unlike the forensic reports
of current practice, forensic certificates can be verified without
repeating the process of discovery.

In this paper, we summarize the challenges and the solutions
we have discovered. The majority of our work is formalized in
Coq; the development is available at http://fpl.cs.depaul.edu/
projects/forensics/. Specifically, we have formalized parts of
two submissions to the Honeynet Project forensics challenge
[Honeynet Project 2001], by Matt Borland and Jason Lee. We
describe our formalization of Borland’s report in this paper.
Further details may be found in Lubinski [2014].

A. Borland’s Report

The forensic report by Matt Borland was one of the top five
submissions to a Honeynet Project [Honeynet Project 2001]
forensics challenge. The particular challenge was to identify
a rootkit! within a Linux system. The evidence available to
the participants was an image of the Ext2 file system. The
reports for this challenge constitute informal, natural language
arguments for an interpretation of data within the file system
image.

Borland’s challenge report states:

The rootkit was found on deleted inode 23 of the
filesystem. It is a tar/gzipped file containing the tools
necessary for creating a home for the attacker on the
compromised system.

Due to evidence within the installation program
contained within, I will call this rootkit ’lk.tgz.” Here
are its contents:

2001-02-26 14:40:30 last/
2002-02-08 07:08:13 last/ssh

drwxr-xr-x ...
-YWXT-XT-X ...

!'A rootkit typically contains tools used to gain and maintain administrator
or system privileges on a compromised machine.
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-rw-r--r-- ... 2001-02-26 09:29:58 last/pidfile
-rWX--—--- .. 2001-03-02 21:08:37 last/install
“TWX------ . 2001-02-26 09:22:50 last/linsniffer
-TWXr-xr-x ... 1999-09-09 10:57:11 last/cleaner
-rw-r--r-- ... 2001-01-27 09:11:32 last/inetd.conf
-rWXr-xr-x ... 2001-02-26 09:28:40 last/lsattr
-rw-r--r-- ... 2001-01-27 09:11:44 last/services
-rWwXr-xr-x ... 2001-02-26 09:22:55 last/sense
-rw-r--r-- ... 2000-10-22 14:29:44 last/ssh_config
-TW------- .. 2000-10-22 14:29:44 last/ssh_host_key
-rw-r--r-- ... 2000-10-22 14:29:44 last/ssh_host_key.pub
“rW------- .. 2000-10-22 14:29:44 last/ssh_random_seed
-rw-r--r-- ... 2001-02-26 09:29:51 last/sshd_config
~YWX--—---- . 2001-02-26 09:22:59 last/sl2

-I'WXr-Xr-xX ...
“YWXr-Xr-X ...

2001-02-26 09:23:10 last/last.cgi
2001-02-26 09:23:33 last/ps

-rWXr-xr-x ... 2001-02-26 09:23:42 last/netstat
-rwxr-xr-x ... 2001-02-26 09:23:47 last/ifconfig
-TWXr-xr-x ... 2001-02-26 09:23:55 last/top
-rWX------ . 2001-02-26 09:24:03 last/logclear
-rw-r--r-- ... 2001-03-02 21:05:12 last/s
-rWwXr-xr-x ... 2001-02-26 08:46:04 last/mkxfs
[...]

I used icat to extract the first file, specifying the inode
using the following commands:
$ icat honeynet/honeypot.hda8.dd 23 > recovered/file-23

Then using ’file, I am given a guess at the type of

file.

$ file recovered/file-23

recovered/file-23: gzip compressed data, deflated,
last modified: Fri Mar 2 21:09:06 2001, os: Unix

At this point, I could then say:

$ tar tzvf recovered/file-23

Which then lists the contents of the tar/gzipped file,
which in this case returns the listing I included in
my analysis of the rootkit.

This inclusion of tool names, input parameters and output
is typical of forensic reports. In general, these tools interpret
data structures or search for data. The report does not always
contain the entire output from the tool; it is implicit that the
omitted output is irrelevant.

Borland’s report uses ils from The Coroner’s Toolkit to list

the inodes of deleted files, i1s2mac to translate the output, and
mactime to extract access times for the inodes of deleted files.

# ils honeynet/honeypot.hda8.dd > ilsdump.txt
# ils2mac ilsdump.txt > deleted.txt
# mactime -p ../hp/etc/passwd -b deleted.txt 1/1/2001

This kind of tool composition is also typical. Here, the
output of ils is fed to mactime. The examiner must also
massage the data from one format to another using ils2mac
to accomodate the ad hoc formats used by these tools. DFXML
has been proposed as a standard format to simplify this kind
of composition [Garfinkel 2012].

The report also includes expert interpretation. For example,

the contents of the /root/.bash_history file suggest that
new software was installed.

mkdir /var/...; cd /var/...

ftp ftp.home.ro

tar -zxvf emech-2.8.tar.gz

cd emech-2.8

./configure; make; make install
./mech

Knowing that /var is traditionally mounted on a separate
partition, this information is used in conjunction with the
earlier timestamp investigation to form a hypothesis about the
intruder’s activities:

...their ftp to ftp.home.ro would explain the ~7
minutes between login at 8:45 and change of
/etc/ftpaccess at 8:52...

Borland’s report demonstrates the challenges involved in:
(a) identifying the precise semantics of tools and natural lan-
guage statements; and (b) independently verifying the behavior
of tools, their composition, and arguments involving expert
interpretation.

B. Formalizing Borland’s conclusion

Borland’s primary conclusion is that there is a deleted file on
the disk that, when uncompressed, looks like a rootkit. Thus,
our primary definition in Coq is a predicate that explains what
has been found in a file system image:
Definition borland_rootkit (img :

exists (file : File),

isOnDisk file img

/\ isDeleted file

/\ isGzip file img

/\ Tar.looksLikeRootkit (gunzip file img).
This predicate indicates that (a) the file is found on the
image img, (b) the file is deleted, (c) the contents of file
is gzip-compressed, and (d) when decompressed, the result
is a tar archive that is consistent with a rootkit. For this
final predicate, Borland described the contents of the archive
as containing “necessary” files for a rootkit installation; we
used the list of names he provided in our formalization of
looksLikeRootkit.

While file systems must have clear semantics for non-deleted
files, heuristics for recovery of deleted files are often poorly
specified. Fortunately, deletion in an Ext2 file system is not
destructive; the inode is simply marked as unused, and its link
count zeroed. Therefore, we were able to use a very simple
predicate for isDeleted. We discuss the greater issues in
section VI.

The primary challenge of the formalization lies with the
large volume of data common to digital forensics. The Ext2
file system image from the Honeynet challenge is 259MB. This
is an unusually small file system. Nevertheless, it is too large
to load into traditional theorem provers.

To gain a sense of the size limitations in existing theorem
provers, consider the representation of file system images as
maps using AVL trees from the Coq standard library, with
binary integers for the keys and values in the map. In this
representation, creating and looking up a single element in the
map {n+n | 0<n<10*} takes ~10 seconds and 400MB
of RAM to compute, and the same operations for the map
{n+n|0<n<10°} take ~180 seconds and 1.2GB of RAM.

This prompts the question, is it possible to identify a subset
of the file system image that justifies the forensic claim and
can be reasoned about using a theorem prover? And, if so, is it
sound to conclude that the forensic claim holds for the entire
file system image when it holds for the subset?

Img) : Prop :=




In many cases, the answer to both is yes. For example,
consider a statement that a file exists within a file system
image. The subset of the image required includes file system
metadata and the sequence of directory entries leading to the
file. We describe this form of reasoning in section III.

In the case of the Honeynet challenge, our case study shows
that Borland’s forensic claim can be justified using a subset of
~2,400 bytes from the file system image, declared as follows
(offset 1,024 is the beginning of the superblock):

Definition honeynet_partial : Map_N_Byte := [
1024 |-> ("216":Byte), 1025 |-> ("002":Byte),

]

Our main result, then, is predicated on the assumption that
honeynet_partial L honeynet_img

where C is the subset ordering on maps represented as
functions. To make use of this inclusion, the predicates in the
forensic claim must be monotone with respect to C. More com-
plex strategies must be adopted to reason about non-monotonic
predicates, e.g., “there is no file named heist.doc” or the
more subtle “there are precisely 3 web pages in the browser
cache that refer to the heist”.

Similar difficulties arise with decompression. It is certainly
possible to formalize gunzip in Coq, but in practice this is
unattractive due to the volume of data involved. Instead, the
main theorem uses a second map, gunzipped_partial, and
postulates the relationship

gunzipped_partial T gunzip disk file23
where £i1e23 is bound to the particular deleted inode where
the rootkit was found.

Our formalization then consists of Coq proofs in addition
to two verifications that are conducted outside Coq: (a) that
honeynet_partial is a subset of the entire file system image,
and (b) that gunzipped_partial is a subset of the content
obtained by decompressing £ile23.

With these techniques, we have been able to provide a
formal, verifiable interpretation of Borland’s report.

C. Contributions
In this paper, we report the following contributions:

e A general framework for the representation and verification
of forensics certificates. The architecture is discussed in
the next section, techniques for scaling to large data sets
in section III, and generation of compact Coq proofs in
section IV.

e A case study formalization of Borland’s report for the
Honeynet challenge, which we describe in more detail in
section V.

e A novel approach to the specification and analysis of foren-
sic data-recovery heuristics based on providing patches that
restore data structures, presented in section VI.

We discuss related work in section VII.

II. ARCHITECTURE FOR FORENSIC CERTIFICATES

Our approach to obtaining sound, reproducible results is
based on the idea of forensics search tools producing forensic
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Figure 1: Architecture

certificates that are verified by independent software. Im-
portantly, the verification of a forensics certificate can be
conducted:

e after the search has been completed, both by the creator of
the certificate and by independent experts during subsequent
legal proceedings,

e without access to the search software,

e with alternative specification libraries, and

e more efficiently than the original search.

The architecture is depicted in Figure 1. We discuss each major
component below.

Search process: The search process operates on a col-
lection of evidence/sources such as media images containing
volumes or file systems, memory images, log files, etc. An
investigator develops a query and executes search tools itera-
tively, refining the query based on search results.

The search process yields a claim that is supported by
justifying data identified during the search, as well as proofs.
We refer to the composite object as a forensic certificate. We
now consider each component of the forensic certificate.

Forensic Certificate: Claim: The claim is an assertion
about the evidence. We give three simple examples:

(a) a file exists at an absolute path within a file system

(b) a deleted file exists within a file system

(c) there are no occurrences of a particular file within a file
system (deleted or otherwise)

The meaning of (a) is clear. The meaning of (b) is uncertain,
because there is no canonical definition of what it means to
be a deleted file in a file system. In fact, different tools use
different definitions [Casey 2004]. Unlike (a) and (b), (c) is



a negative assertion, and can only be validated by examining
much of the file system image. However, the scope of the
examination is ambiguous, because of the ambiguity of what
it means to be a deleted file. We discuss the variety of claims
for deleted files in more detail in section VI.

We require claims to be formalized in an appropriate logic.
This formalization acts as an unambiguous interface, and thus
facilitates a clear separation between search and independent
verification of results.

Forensic Certificate: Justification: A naive approach to
verifying a claim is to execute a second search using alternative
trusted software, and compare the results with the original
claim. This is the approach taken by traditional testing, e.g.,
http://www.cftt.nist.gov. In addition to the obvious problems
with this technique (availability of alternate tools, need to
compare output with potentially different semantics, etc), it
is also inefficient. Efficiency can be improved by insisting
that search software identifies the values that justify claims.
For example, if a deleted file is claimed, the location of the
file contents and/or a directory entry must be provided as a
justifying value. Thus the problem is shifted from one of search
to one of verification of a claim with justifying values.

Our insight is that the justifying values arise as witnesses for
existential quantifiers and disjunctions in logical specifications
of data structures such as file systems. For example, a logical
formula for “a file exists within a file system” would include
existentials representing the location of the file’s content
and the location of the directory entry for the file, amongst
other metadata structures. Thus logical specifications provide
a design criterion for the justifying data that is used to verify a
search result. This becomes more significant as the complexity
of file system structures grows.

Justifying data need not be limited to parts of the original
evidence, but may also include information found during
computational search. Such justifying data includes param-
eters such as reconstructed RAID parameters and recovered
passwords / keys. More complex examples are possible. For
instance, one may provide a file that is consistent with a
remnant (such as a hash or file fragment) found in the evidence.

The information in DFXML output from forensics search
tools can be seen as justifying values [Garfinkel 2012]. Without
a guiding conclusion, however, it is not clear what part
of the output is important. In the process of developing a
standalone verifier for DFXML output with the NTFS file
system, we discovered that some required values were not
included. (DFXML only lists the first MFT entry for each file,
but there could be many for a single file.)

Forensic Certificate: Proofs: It is possible to write direct
verifiers for families of claims and justifying values, but
such verifiers inherit the complexity of the data structures
(and their specifications), and there is no a priori reason
to trust that they are correct. Instead we require claims to
be verified using a theorem prover. Semi-automated theorem
proving systems such as Coq, Isabelle, etc., allow users to
prove theorems interactively. We avoid this mode of operation,
and instead require that a forensic certificate includes a proof
of each component of the claim, using the justifying values as
witnesses. Proofs are specific to a particular theorem prover,

but justifying values are not. Proofs may use lemmas from a
proof library, which is not part of the TCB because the proofs
in the library can be verified. We discuss methods for creating
proofs in section IV.

Specification Library: The specification library provides
logical specifications of data structures for, e.g., file systems,
volume systems, or memory images. In particular, the spec-
ifications extend to partially-corrupted data structures, such
as definitions for remnants of a deleted file existing in a file
system. In such cases, there are often alternative definitions.
Making these definitions precise resolves ambiguity in forensic
search tools. We discuss reasoning about the correctness of
definitions in the specification library in section VI.

Verification Process: Theorem Prover: The theorem
prover takes as input logical formulas from the claim as well as
the proofs with justifying values. The prover verifies the proof
without human input. If the verification of the proof fails, the
forensic certificate is rejected. Formulas within the claim can
be verified independently of one another, facilitating parallel
or randomized testing of proofs within a set of results where
desirable. Note that the verification process does not require
access to the forensic search tools used to generate the forensic
certificate.

Perhaps surprisingly, the theorem prover does not use the ev-
idence directly: existing theorem provers are unable to manage
the quantity of data found in typical evidence. Instead we rely
on the search process to identify fragments of the evidence that
are relevant to particular propositions in a claim. The theorem
prover manipulates fragments instead of the original evidence.
These fragments are part of the justifying values in the forensic
certificate.

Although the architecture is not tied to a particular theorem
prover, we have used Coq. Thus our claims are written in
a typed, higher-order logic, and proofs are represented as
proof terms. We use computational reflection as a strategy for
generating compact proofs. See section IV.

Verification Process: External Assumption Verifiers: To
detect accidental or deliberate inaccuracies in the fragments,
the verifier must also establish the that the fragments of
evidence used by the theorem prover are consistent with the
original evidence. The task is ill suited to general purpose
theorem provers due to the large quantity of data. We therefore
verify the relationship between fragments and the original
sources with separate tools. We refer to these tools as external
verifiers, because they verify propositions, from the claim, that
are assumptions (hypotheses) for the forensic claims verified
by the theorem prover. The external verifiers make use of
justifying values and the original evidence.

There are many verification tasks with similar qualities,
e.g., calculating cryptographic hashes of part of a media
image; scanning a media image to identify all occurrences of
regular expression matches; etc. Our architecture permits the
introduction of an external verifier for each task.

By design, this part of the verification is low complexity
(e.g., testing whether the fragment is a contiguous subsequence
of an original media image). Nevertheless, the assumption
verifiers are part of the TCB. Confidence in these verifiers can
be established using standard program verification techniques.
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Verification Process: Composition Verifier: The verifica-
tion of a forensic certificate is divided between the theorem
prover and external verifiers for reasons of scale and efficiency.
To ensure validity of the final conclusion, additional deductions
must be verified. These simple first-order deductions can be
verified using a theorem prover that is specialized to reason
about large data. The use of a separate composition verifier
avoids the need to modify the proof-checking kernel of a
sophisticated theorem prover such as Coq.

III. FEASIBILITY OF FORMAL FORENSICS

The simplest formal model of data forensics assumes that
evidence can be referenced directly in formulas used by a the-
orem prover. However, such a simple model is infeasible in an
unmodified prover due to the size of the data to be examined.
While it is possible to modify a prover to provide efficient
access, this would require modifications to the trusted verifier
core of existing provers, prompting soundness concerns.

Instead, as described in the previous section, we factor
verification between a base verifier (such as Coq) and external
verifiers. The external verifiers are trusted to approve or repu-
diate statements of the base logic without formal proof. The
external verifiers are designed to efficiently check properties
of large data sets (for example, that certain bytes are present at
certain addresses). Results from the base verifier and external
verifiers are designed to be easy to compose with simple first-
order deduction.

A. Reasoning via Bounds

Let Img be a map from offsets to bytes, representing a file
system image. Suppose a search tool identifies that property
¢ holds for Img. Let img be a fresh variable and let ¢’ be the
formula obtained by replacing all occurrences of Img by img
in ¢; thus ¢ = ¢’[img:=Img]. Since Img is large in almost
all forensic applications, the formula ¢ will be too large for
existing theorem provers, even when ¢’ is small.

Many properties of interest in digital forensics do not
require that the entire image be examined. For example, file
identification tools often inspect only a few bytes at the start
or end of a file. Similarly, affirming the existence of a file with
a given pathname requires checking the bytes in a sequence
of directory entries and some metadata.

We therefore adopt partial maps as our standard representa-
tion of disk images and seek to keep these as small as possible.
We rely on forensics search tools to isolate the submap
Bnd C Img that is relevant to the property of interest. As usual,
the notation b C i indicates that when b is defined it agrees with
i and that b is undefined whenever i is undefined. The proof
for ¢ then consists of the following three components (recall

that ¢ = ¢'[img:=Img]):

Vimg. (Bnd C img = ¢') (1)
Bnd C Img )
{V,=}-elimination to conclude ¢ 3)

If both Bnd and ¢’ are small, then (1) is small, and therefore
it can be checked by the base verifier. Since (2) includes

Img, this formula must be checked by an external assumption
verifier. Trust in the external verifier must be established sepa-
rately. The decision procedure for map inclusion is extremely
simple, therefore standard program verification techniques can
be applied to the external verifier without great cost. The
deduction (3) is a first-order deduction carried out by the
composition verifier.

Monotonicity: Often, formula (1) above can be established
by demonstrating that ¢’ is monotone with respect to C
and then establishing ¢'[img:=Bnd]. That is, the following
statements are established in the base verifier, then (1) is
deduced.

e Monotonicity of ¢':

Vimgy,img,. (img; T img, A ¢'[img:=img,| = ¢'[img:=img,])

e ¢’ is shown to hold for Bnd: ¢’[img:=Bnd]

Example Il1.1 (Monotonicity of Parsing Ext2 Superblocks).
Monotonicity results are often obtained compositionally, and
the intermediate results may have additional quantification.
For example, the procedure to compute a superblock record
from an Ext2 file system image is monotone in the image. This
is captured in the following Coq lemma from our Honeynet
development (where the Found constructor indicates a
successful operation):
Lemma findAndParseSuperBlock_subset :
forall (imgl img2 : map) (superblock :
imgl C img2 ->
findAndParseSuperBlock imgl = Found superblock ->
findAndParseSuperBlock img2 = Found superblock.

SuperBlock) ,

B. Spatial Decomposition

A search for documents in a file system often produces
thousands of files. In such cases, the claim for a forensics
search yields a formula that is too large to represent in
existing theorem provers such as Coq. Fortunately, forensics
search results are often naturally represented as conjunctions
of subformulas that refer to distinct areas of an image. Sub-
formulas are checked by the base verifier, and conjunctions
of those subformulas are checked by the simpler composition
verifier, facilitating, e.g., parallel or randomized verification of
components of forensics results.

Consider a statement ¢ £ Nicr 9i, where Img appears in each
subformula ¢;. As an example of such a statement, each ¢;
may describe the existence of a file in Img. Assume a family
of partial maps (Bnd; | i € I) and formulas (¢/ | i € I) such
that ¢; = ¢/[img:=Img]|, each ¢/ contains no occurrences of
Img, and each y; is provable with the base verifier, where:

v; = Yimg : map. (Bnd; C img = ¢) (Viel)

Now the size of the conjunction A;c; ¥; may still be too large
for the base verifier because of the size of X;c;|Bnd;|. For
example, if ¢; represents a statement about the contents of
a file in a file system, then each Bnd; could be the entire
file contents. Moreover, if I ranges over all files within a file
system, then the size of the statement A, y; is linear in the
size of the allocated space within the file system. For this



reason, the final deduction of ¢ must be performed by the
composition verifier.
The proof for ¢ then consists of three components:

Vimg. (Bnd; C img = ¢/) (Viel) 4)
Bnd; C Img (Viel) Q)
{V,=}-elimination and {A}-introduction to conclude ¢ (6)

Again (4) is checked by the base verifier, (5) by an external
verifier, and (6) by the composition verifier.

More generally, it may not be possible to find small partial
maps as above. For example, consider the statement that a
directory exists at an absolute path /do/di/.../dy—1. If ¢i/
states that there is a directory entry with name d; and a path
from the root directory, then establishing ¢/ requires additional
bounds on img:

Vimg : map. ( /\ Bnd; Cimg) = ¢;)

0<j<i

(Viel)

However, o< j<;|Bnd;| may be too large. Instead, we establish
¢ as above, replacing (4) with:

Vimg. (( /\ ¢;ABndiCimg)=¢/) (Viel) (7)

0<j<i-1

Note that the upper bound on j is i — 1, rather than i. Perhaps
unusually, this application of cut serves to reduce the size of
the formulas under consideration rather than the size of proofs.

C. Sound and Complete Search Results

Consider a forensics search for a set of offsets X satisfying
a property P, e.g., occurrences of regular expression matches.
Here we consider proofs that:

(a) each offset in X satisfies P (soundness), and that
(b) X contains every offset satisfying P (completeness).

Soundness: We must establish that each offset in X satisfies
P. Let dom(Img) = [0,N) for some N. The soundness of the
search can be expressed as follows.

¢ =Yn,0<n<N= (necX= P(lmg,n))

As before, we assume partial maps (Bnd, | n € X) such that
the following is provable with the base verifier:

Vimg. Bnd, C img = P(img,n) (neX)

Now X,cx|dom(Bnd,)| may be large, so the base verifier
cannot generally deduce:

Vimg. (Anex(Bnd, Cimg)) =
Vn,0<n<N= (ne€X= P(img,n))

Instead, we use the base verifier to establish that individual
results about each Bnd,, for n € X, can be combined using
formula & below. The complexity of & arises from the quan-
tification over bounds used for partial maps (eliminated in the
subsequent composition verifier deduction). The complexity is
justified by the reduction in size of the formula presented to the

base verifier, and by the simplicity of the composition verifier.

The proof for soundness has the following steps:
Vimg. Bnd, C img = P(img,n) (neX) (8)

Y(bnd, | n € X).
(Anex (Vimg. bnd, Cimg = P(img,n))) =

Vimg. ((Anex bnd, Cimg) = ©)
(Vn. n€ X = P(img,n)))
Bnd, C Img (neX) (10)

{V,=}-elimination and {A}-introduction to conclude ¢
an

Here (8) and (9) can be checked by the base verifier, (10) by
the external verifier, and (11) by the composition verifier.

Completeness: Now we must establish that every offset
satisfying P appears in X:

¢ =VYn. 0<n<N= (P(lmg,n) =necX)

Since the entirety of Img must be examined in general, e.g.,
for regular expression matches, it is unlikely that small partial
maps can be used directly for such proofs. Instead we consider
how to use assumptions about intervals where the property P
does not hold. This is useful when the number of intervals
is significantly smaller than the total size of the intervals.
The assumptions must be checked using external verifiers that
understand P.

To illustrate, consider a family of pairs I C Z X Z represent-
ing the intervals where P does not hold, i.e.:

{n] (x,y) €eInx<n<y}=dom(Img)\X
We use trusted external verifiers to check the family of results:

((r,y) €1)

Then the proof for completeness consists of:

Vn. x <n<y= -P(Img,n)

Vimg. (Aqy)er(Vn. x <n <y=--P(img,n)))
=Vn.0<n<N= (P(img,n) =necX)

((by)el) — (13)

{V,=}-elimination and {A}-introduction to conclude ¢
(14)

(12) is checked by the base verifier, (13) by an external verifier,
and (14) by the composition verifier. The proof of (12) uses
the fact that:

Vn.0<n<N=necXV( \/ x<n<y).
(x.y)el

12)

Vn. x <n<y= -P(Img,n)

Example I11.2 (Counting Deleted Files). Consider a forensic
claim that there is exactly one deleted file in an Ext2 file system
image. To make “deleted” precise, we mean that there is an
inode with a link count of zero [Carrier 2005]. The link count
is stored in 2 bytes within an inode. The Ext2 Honeynet image
has 66,264 inodes, and so the naive formalization that uses
a subset of the file system image with all inode link counts
requires a partial map with 132,528 entries, which is large
enough to be problematic in a theorem prover.



Fortunately, inodes are stored consecutively within a small
number of block groups, and this can be used to reduce the
size of the partial map used within a theorem prover. First,
define the predicate ¢ (img,s,m,n,v,X) so that X is the set of
offsets in s, s+m, s+2m, ..., s+ (n—1)m, where a value v
occurs in two bytes within img. That is:

A

¢(img’s7m?n,v7x)
X={jl0o<j<n
Aimg[s+ jxm] +256 ximg[s+ jxm+ 1] = v}

A simple external verifier can be constructed to verify ¢.

For the Honeynet challenge image there are 2,008 inodes
per block group, and suppose that sg, si, $2, ..., 32 are the
offsets for the inode tables within each block group. There are
128 bytes per inode, and the link count is stored in offsets 26-
27 within an inode. If the forensic claim is that the deleted file
occurs in the 20th inode of block group zero, the hypothesis
used within the theorem prover is then:

¢ (img, so +26,128,2008,0, {19}) A
¢ (img, 51 +26,128,2008,0,{}) A
¢ (img, s> +26,128,2008,0, {}) A

¢ (img, 532 + 26, 128,2008,0,{})

With the above hypothesis, the definition of ¢, and file system
metadata from the superblock, it is possible to establish that
there is exactly one deleted file. With this approach, the
resulting formula for the forensic claim is linear in the number
of block groups (33 in the Honeynet example), as opposed
to being made linear in the number of inodes (66,264 in the
Honeynet example) by the large partial map. O

D. Composition Verifier

The arguments above, in (3), (6), (11) and (14), demonstrate
that, by design, results from the base verifier and external
verifiers can be composed using propositional reasoning and
V-elimination. We leave the implementation of such a compo-
sition verifier to future work, but note that it is far simpler than
the kernels of theorem provers for more sophisticated logics.
The only interesting detail is that the composition verifier
must have native support for the large maps arising from file
system images, memory images, etc. For example, formulas
might refer to the names of files containing the large maps,
as opposed to having the large maps embedded within the
formulas.

IV. GENERATION OF PROOFS

An important design principle for the architecture is that
generation of forensic certificates must be automated, and must
not require additional effort by forensic examiners. Forensic
certificates contain justifying data, claims, and proofs. Existing
forensic search tools often produce enough information to
create the first two via an automated post-processing step,
given sufficient knowledge of the search tools’ behaviour.
Formal proofs however are more difficult to recreate from
the output of forensic search tools. In addition, the size of

proofs must be minimized, as discussed in section III. Here we
illustrate the issues using the Coq theorem prover, and outline
how to generate compact proofs using a proof by reflection
strategy.

Coq is a semi-automated type-checker for a powerful
dependently-typed programming language, and is used as a
theorem-proving framework. Although proof terms in Coq can
be written directly, they are often constructed using a tactic
language. A proof term constructed by tactics is type-checked,
or verified, and can be saved for subsequent standalone veri-
fication.

Thus there are two competing methods for distributing
proofs. The first is to distribute the tactics script, which is often
easier to understand or modify than a proof term; however,
verifying the script is potentially expensive because it entails
repeating the same proof search, and tactics are less robust
than proof terms because of the potential for changes in the
proof search algorithms. The second method is to distribute the
proof term. For the content of forensic certificates, the second
method is preferable because of the potential inefficiency and
non-robustness of tactic scripts.

It remains to generate the proof term to be stored in the
forensic certificate. One approach is to develop custom tactics
that are specific to the claims produced by forensic search
tools. The custom tactics conduct an automated proof search on
behalf of the forensic examiner. Following the original design
principle, custom tactics are expected to find a proof if one
exists, so that the forensic examiner need not be involved with
the theorem prover.

Our experiments suggest that proof search for forensic
claims is challenging to execute efficiently, and easily leads
to proof terms that are too large to type check with Coq. In
particular, the size of proof terms can be proportional to the
number of cases in a proof, and naive proofs about forensic
claims do generate very large numbers of cases.

A. Proof by Reflection

Rather than use tactics based search, we have adopted a
proof by reflection strategy for the generation of proof terms.
Proof by reflection Harrison [1995] replaces a proof search
with a computational procedure, when the computational pro-
cedure has been proven correct.

Proof by reflection relies on the following type inference
rule. It allows a term M to be type checked with type U if M
has type T and the types T and U are convertible.

I't=M:T T=U
I'tM:U

The convertibility relation includes computation. For example,
consider a boolean-valued function f. The previous typing rule
can be instantiated to show that the proof term for reflexivity of
equality eq_refl has type £ x = true whenever true =f x,
i.e., when executing £ x results in true.

I'F eq_refl: true = true (true = true) = (f x = true)

't eq_refl:f x =true




Suppose additionally that it is possible to deduce a property
P x from the computation of £ x returning true, written:

I'sound: Vx,f x =true —>P x

With this form of lemma, £ can be seen as certified code for
the property P, and, if the reverse implication holds, a decision
procedure for P.

The impact of having a computational procedure f is that
a proof of P v, for some literal value v, has a simple tactics
script of the following form. It uses the sound lemma, and
then checks that computing £ v yields true.

Lemma result : P v.
Proof.

apply sound; reflexivity.
Qed.

B. Application to Forensic Certificates

In the context of forensic certificates with large sources and
the limitations of existing theorem provers, the size of the tac-
tics script is less important than the size of the corresponding
proof term that it creates. In the case of result above, the
proof term is:

sound v (Q@eq_refl bool true)

In particular, for forensic claims, the literal value v may be a
large fragment of a disk image. Naive proof terms generated
by custom tactics can have size that is quadratic or worse in
the size of v, and so the single occurrence of v in the proof
term above is a significant improvement.

In addition to decreasing the size of proof terms, our
experiments suggest that it is easier to develop computational
procedures than custom tactics for proving forensic claims.
Moreover, the procedures are for verification of justifying data
from a forensic certificate, as opposed to searching for the
same data, and so the procedures are simpler than forensic
search tools. However, the procedures to be developed even
for simple file system claims have more variety than the code
found in a file system driver, because they may verify prop-
erties of partially-corrupted data structures, e.g., for verifying
claims about deleted files.

The correctness of the computational procedures is estab-
lished by lemmas such as sound above. This allows the
specification for forensic claims to be defined via, e.g., a graph
logic statement encoded in Coq, rather than via a reference
implementation. The former is more convenient for the type
of analysis discussed in section VI.

Finally, the use of computational procedures for verifying
forensic certificates facilitates reasoning about the complete-
ness of the procedure, as opposed to custom tactics. This can
remove the risk that a forensic search produces a claim that
cannot be proven despite testing of the process to generate a
proof.

C. Runtime Performance

To verify each proof in a forensic certificate, the theorem
prover must re-execute the computational procedure. For this

reason, we must pay attention to the efficiency of reduction
in theorem provers. Our experiments in this area suggest that,
with care, the Coq theorem prover can perform computations
for our formalization of a forensics challenge from the Hon-
eynet project within a few seconds. In section VII we discuss
related work on increasing runtime performance necessitated
by the use of a proof by reflection style.

V. CASE STUDY: COMPUTER INTRUSION

In this section, we return to our formalization of Matt
Borland’s forensic report for one of the Honeynet Project’s
challenges [Honeynet Project 2001]. The formalization in-
volves verification of results using both Coq and external
verifiers, in addition to deduction between the components
as discussed in section III. The following discussion reflects
the fact that almost all of the development effort lay in the
specification and verification using Coq.

The Coq development for this case study is available at
http://fpl.cs.depaul.edu/projects/forensics/.

A. Forensic Claim

Recall the Coq definition of the predicate for the claim of
Borland’s report:

Definition borland_rootkit (img : Img)
exists (file : File),
isOnDisk file img
/\ isDeleted file
/\ isGzip file img
/\ Tar.looksLikeRootkit (gunzip file img).

: Prop :=

This predicate indicates that there is a deleted file within
the file system image img, it is a gzip-compressed file, and
the result of decompressing the file is a tar archive that is
consistent with a rootkit.

The File type represents metadata about the file, including
its size, the location of the file’s content, and whether or not
the file is deleted. The isOnDisk predicate establishes that
the metadata given in file exists in img. The definition of
the isOnDisk predicate is specific to the Ext2 file system. We
leave the modular specification of other file systems to future
work.

The isGzip predicate is a simple signature-based check of
the contents of the file. This predicate examines the actual
file content from img, where the location of the content is
determined by file. The decision to refer to file content by
indirection to img, as opposed to storing a copy of the file
content in file, makes it easier to avoid duplication of the
content in the resulting proof term’s witness for the existential.

The Tar.looksLikeRootkit predicate examines the struc-
ture of a tar file, and tests whether two or more names
of archive entries are on a blacklist, reflecting Borland’s
discussion. Borland’s report does not contain an analysis of
the malicious executables within the tar file. We discuss the
use of gunzip below.
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B. Proof Outline

If there were no limits on the size of data that could be
handled by Coq, we would like to prove:
Lemma attemptl

where honeynet_img is a data structure holding the entire
259MB file system image. However, as discussed in the intro-
duction, this data structure is many orders of magnitude larger
than Coq can handle. Our second attempt is to identify a subset
honeynet_img_partial of honeynet_img, and prove:

: borland_rootkit honeynet_img.

Lemma attempt2 :

This is useful in the presence of a monotonicity result of the
form (recall that C is the inclusion order on maps represented
as functions):
Lemma borland_rootkit_mono :
forall (imgl img2 : Img),
imgl C img2 ->
borland_rootkit imgl ->
borland_rootkit img2.
Assuming a proof term inclusion for the order:
inclusion :

borland_rootkit honeynet_img_partial.

honeynet_img_partial C honeynet_img
we would then have the following proof term for the original
lemma attemptl above:
borland_rootkit_mono

honeynet_img_partial

honeynet_img

inclusion

attempt2
: borland_rootkit honeynet_img.
Since honeynet_img, and consequently inclusion, cannot
be defined in Coq, this final conclusion must be checked by a
composition verifier rather than Coq. Additionally, the proof of
honeynet_img_partial T honeynet_img involves running
a simple external verifier that has access to the partial image
used in Coq and the full file system image.

C. Decompression

It remains to prove attempt2. This proof is complicated
by the presence of decompression in borland_rootkit (the
forensics claim). There are two issues. The first is that a
Coq coding of the gzip decompression algorithm is non-trivial
to develop. The second is that the decompression algorithm
uses the entire compressed input to produce the entire decom-
pressed output, and the entire compressed input file is also
too large to represent in Coq. This is unfortunate because the
predicate Tar.looksLikeRootkit requires only part of the
decompressed file, by analogy with the use of honeynet_-
img_partial above. It is possible to describe relationships
between partial input and partial output for the decompression
algorithm, but these relationships are particularly complex.

For these reasons, we rely on an external program to
decompress the file. The external decompressor becomes part
of the TCB, in addition to the Coq type checking kernel, the
specification library, and other external verifiers. While not
ideal, including decompression in the TCB seems to be a be-
nign compromise: we believe that errors in forensic claims are
more likely to be associated with specialized, domain-specific

tools and arguments rather than with standard decompression
tools.

In addition to executing the decompression algorithm out-
side Coq, we also leave the decompression algorithm uninter-
preted within the Coq specification and proof of the forensic
claim. That is, the Coq script includes the declaration of a free
variable for the decompression function:

Variable gunzip : File -> Img -> File.

Note that the File type may optionally include file content,
and this is important for gunzip because the result of decom-
pressing cannot normally be found in the file system image.

We have already seen that the uninterpreted gunzip function
appears in the forensic claim borland_rootkit. In order to
establish a property of the results of gunzip, we require a
hypothesis about gunzip in the forensic claim. The hypothesis
is that there is a subset gunzipped_partial of the decom-
pressed data obtained from the compressed file £i1e23 (the
file for inode 23 in the Honeynet challenge image) within the
file system image, written as follows:
gunzip_inclusion :

gunzipped_partial T gunzip file23 honeynet_image
The proof of borland_rootkit is then based on factoring
it into the following lemma about the subsets honeynet_-
image_partial and gunzipped_partial of the file system
image and the decompressed file respectively:

Lemma attempt3 :

isOnDisk file23 honeynet_image_partial

/\ isDeleted file23

/\ isGzip file23 honeynet_image_partial.

/\ Tar.looksLikeRootkit gunzipped_partial.
Monotonicity results are used to extend the above lemma
to larger file system images. For the first three predicates,
monotonicity results resemble borland_rootkit_mono. For
the last predicate, we show that Tar.looksLikeRootkit is
monotone in its File argument:

Lemma looksLikeRootkit_mono :
forall (f1 f2 : File),

f1 C £f2 ->

Tar.looksLikeRootkit f1 ->

Tar.looksLikeRootkit £f2.
The individual monotonicity results are combined as:
Lemma borland_rootkit_mono_revised :

forall (imgl img2 : Img) (file f1 £2 :

imgl T img2 ->

f1 C £f2 ->

(isOnDisk file imgl

/\ isDeleted file

/\ isGzip file imgi

/\ Tar.looksLikeRootkit f1) ->

(isOnDisk file img2

/\ isDeleted file

/\ isGzip file img2

/\ Tar.looksLikeRootkit £2).
Outside Coq, this monotonicity result can be used with the
large honeynet_image to create the following proof term:
borland_rootkit_mono_revised

honeynet_image_partial honeynet_image

file23

gunzipped_partial (gunzip file23 honeynet_image)

File),



inclusion gunzip_inclusion
attempt3 :
(isOnDisk file23 honeynet_image
/\ isDeleted file23
/\ isGzip file23 honeynet_image

/\ Tar.looksLikeRootkit (gunzip file23 honeynet_image)).

Within Coq, we instead finalize the formalization of the
forensic claim as:
Lemma borland_honeynet_final :
forall (img : Img),
honeynet_image_partial LT img ->
gunzipped_partial T gunzip file23 img ->
borland_rootkit img.
Then the conclusion (borland_rootkit honeynet_image)
depends only on external verification of the two properties:
inclusion :
honeynet_image_partial T honeynet_image
gunzip_inclusion :
gunzipped_partial T gunzip file23 honeynet_image
The external verifiers for these properties are part of the TCB
for the verification architecture. The first property is trivial to
check. The second property can easily be implemented using
http://zlib.net/, which also becomes part of the TCB.

D. Coq Formalization

The Coq formalization of Borland’s report has two compo-
nents:

(a) The specification of the forensic claim, including the defi-
nition of data structures for the Ext2 file system.

(b) Procedures used in proof by reflection, and proofs of lem-
mas.

Code in (a) is part of the TCB, in addition to the Coq standard
library definitions and the Coq type checking kernel, and is
approximately 800 lines of code. Code in (b) is not part of the
TCB, and is approximately 1,800 lines of code.

The proof of concept currently lacks integration with ex-
isting forensics search tools. For example, we have used
simple custom tools to extract honeynet_image_partial
and gunzipped_partial for insertion into Coq statements.
These custom tools are not part of the TCB.

Verifying the entire development, including both the foren-
sic claim and proofs of correctness, takes approximately
26 seconds. We use Coq’s vm_compute tactic to normalize
terms with the virtual machine, as opposed to the default
normalization mechanism, for reasons of speed. The default
normalization mechanism requires 267 seconds to complete the
proof for attempt3, whereas the virtual machine mechanism
completes the same proof in 4.6 seconds. The reported times
are for Coq 8.4pl2 and Linux kernel 3.2.0, executing on a Xeon
E3-1230 running at 3.20GHz with 16GB of RAM.

VI. ANALYSIS OF FORENSICS SPECIFICATIONS

If a forensics certificate includes a claim about a file system,
it must inevitably include description of that file system. Such
descriptions can be complex, and yet they must be trusted. In
this section we discuss analysis of forensics specifications to

develop confidence in their correctness. We focus on specifi-
cations of heuristics used in the recovery of deleted files. Our
results have been partially formalized in Cogq.

Digital forensics tools do not necessarily limit themselves
to a specification of a file system needed for a file system
driver, referred to as a standard specification in the sequel.
This is because it is useful to interpret data structures that are
undefined, or invalid with respect to the standard specification.
This additional effort may recover data that is hidden/secret,
or may constitute proof of prior actions, e.g., possession of
data at a certain time. Instances include: intepreting partially-
overwritten file systems after a “quick format” has taken place,
recovering deleted files, or recovering data deliberately hidden
by anti-forensics tools [Garfinkel 2007].

If a forensics search recovers secret data, e.g., cryptographic
keys or the names of conspirators, and learning the secret is
sufficient, then there may be no need to provide evidence.
On the other hand, if the purpose of a forensics search is to
convince others that recovered data has not been fabricated
by the search process or that the search process is thorough,
then supporting evidence is required. For such evidence to
be satisfactory, it must provide some meaning to otherwise
undefined or invalid data structures. We refer to this as an
extended specification in the sequel.

To illustrate, we sketch an extended specification for deleted
files in the FAT file system.

A. Semantics of Deleted Files in the FAT File System

The FAT file system [Microsoft Corporation 2000] stores the
contents of files in cluster chains, consisting of one or more
clusters that may be contiguous or fragmented across the file
system. The File Allocation Table (FAT) is a data structure that
records both the allocation status of clusters and the order of
clusters that make up a file. Conceptually, the FAT is a partial
map FAT : Z — {UN,TM} UZ. For a cluster number n, if
FAT (n) = UN, then cluster 7 is unallocated. If FAT (n) =n' € Z,
then cluster n is allocated and it is followed by cluster n’ in
a cluster chain. If FAT(n) = TM, then cluster n is allocated
and is the terminal entry in a cluster chain. A FAT should not
have occurrences of UN in cluster chains. A directory entry in
a FAT file system image contains the filename, the file size,
and the starting cluster number. A file system driver accesses
a file’s contents by calculating the cluster chain from the FAT.

Typically, when a file is deleted, the first byte of the filename
is overwritten with a distinguished value (marking the directory
entry as unallocated), and the entire cluster chain is marked as
unallocated in the FAT. A side effect of the FAT representation
is that the cluster chain is overwritten by the deallocation.

An extended specification for the existence of a deleted file
in a FAT file system then has to: (a) identify an unallocated
directory entry, yielding partial file name and file size; and
(b) identify a cluster chain storing the file contents.

It is reasonable to justify (a) either by exhibiting a path from
the root directory to the directory entry, or by showing that the
contents matches the form of a directory entry.

For (b), Carrier [2005] describes two simple heuristics
for choosing a cluster chain for deleted files. To see the
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heuristics for a deleted file, consider a cluster chain map
cluster : [0,L) — Z of length L = [(fileSize/clusterSize)]. We
insist that cluster(0) = init is the starting cluster number given
in the directory entry for non-empty files, and that all clusters
in the chain are unallocated:

V0 <i< L. FAT(cluster(i)) = UN

The specification for the first heuristic states that the cluster
chain is contiguous:

V0 <i < L. cluster(i) = init+i

The second heuristic generalizes the first. The specification
allows the cluster chain to be fragmented, but each fragment
must be filled with allocated clusters:

V0 <i<L.
cluster(i) =
init+i+|{j | 0 <j < cluster(i) AFAT (init+ j) # UN}|

Casey [2004] demonstrates that both of these heuristics are
used in forensic tools, and yield different results.

B. Analysis of the Semantics of Deleted Files

Since there are many possible extended specifications for
recovery of information from deleted files, or more generally
undefined and invalid data structures, how do we know whether
a particular choice of specification is reasonable?

One approach is to ask whether an undeletion heuristic
reflects a sequence of file operations on a file system that
could have taken place. However, in fragmented file systems
the undeletion heuristics described above may recover files
incorrectly, despite the existence of a file system and a deletion
operation that could have led to the file system that is being
analyzed.

Rather than abstract operations, we consider patches to an
image. A patch is intended to restore an undefined or invalid
data structure to a valid state. Patches provide a deterministic,
concrete explanation of changes. We represent a patch as a
partial map A from offsets to bytes, and write Img® A for the
partial map where A updates Img.

The question is now, if the extended specification
justifies recovery of a deleted file from Img,, does
there exist a partial map A such that the file exists
in Img, ® A with respect to the standard specification?
This property holds for the extended specifications de-
scribed above. Diagrammatically, we have the following.

Img2 GBA« ************* |mg2

fileExists |

~

(filename, content)

fileExistsDeleted

(filename, content)

Without any constraint, of course, patching is too powerful
to be useful. The entirety of the disk can be overwritten!

The simplest form of constraint limits the size of a patch.
For example, a patch for the recovery of a deleted (but not
overwritten) JPEG image file would be suspicious if it modi-
fied more than a few hundred bytes. Nevertheless, constraints

on patch size may not identify patches that modify, e.g., EXIF
metadata in a JPEG image file (to suggest that a photo was
taken at a particular location and time), or the contents of a
spreadsheet.

For this reason, it is important to understand the semantic
content of a patch. Often the domain of a patch provides an
adequate approximation. In the case of the extended specifi-
cations described above, the patch A modifies: a single byte
within the directory entry for the recovered file, and parts of
the FAT. This is sufficient to argue that the contents of the file
has not been manufactured by the forensics process.

We have developed a standard specification of the FAT162
file system, and an extended specification for the existence of
deleted files following the first heuristic described above, in
Coq. The specifications have been tested against sample file
system images. To analyze the extended specification, we have
defined a function to construct the patch A described above,
given a reference to a deleted file within a FAT16 file system.
We are in the process of formalizing the proof that a patch A for
a deleted file (with respect to our extended specification) can
be applied to the file system to yield a new file system where
the file exists (with respect to our standard specification). In
these proofs, tight constraints are needed on values in A to
ensure that the file system is not corrupted, e.g., A must not
modify the metadata that determines the size of entries in the
File Allocation Table, and must not create entries in the File
Allocation Table that are out of range.

VII. RELATED WORK

In this section we describe related work in digital forensics
and theorem proving.

A. Declarative Models of Forensics

Stallard and Levitt [2003] describe a declarative encoding
of data invariants and a decision tree format to codify the
deductions performed by a forensic examiner.

Leigland [2004] discusses the effectiveness of forensics
procedures against attackers in the context of a formal model.
Carrier and Spafford [2006] provide a general model, incor-
porating history, to compare digital forensics methodologies,
but do not consider specifications of evidence. KahvedZi¢ and
Kechadi [2011] explores a semantic model of evidence using
an existing forensics ontology.

van den Bos and van der Storm [2011] pioneer the tool-
independent specification of file formats for creation of file
recognizers for forensics purposes.

B. Validation of Computer Forensics Software and Results

Guo et al. [2009] develop and classifies detailed require-
ments for forensic tool testing. Lyle [2008] describes undesir-
able and inconsistent behavior of forensics tools. This has led
to a subsequent program of testing [Lyle 2010]. The Scientific
Working Group on Digital Evidence [2013] identify soundness
problems in the output and interpretation of forensics tools, as
well as completeness issues discussed in section III.

2FAT file systems may use 12, 16, or 32 bits for an entry in the File
Allocation Table, and it is simpler to formalize just one variant, because the
semantics of some metadata depends on the size of entries.



C. Proof Generation

Proof by Reflection: In section IV, we described the
construction of proofs in forensic certificates via proof by
reflection. This technique has been used in computationally-
intensive formalizations, e.g., Gonthier [2007]. We have not yet
investigated the use of architectures developed to assist with re-
flection Gonthier and Mahboubi [2010]; Malecha et al. [2013].
Chaieb and Nipkow [2008] argue that decision procedures
used in proof by reflection should be abstract enough to share
between theorem provers; the goal of reducing dependency on
a particular theorem prover is relevant to forensic certificates.

Runtime Performance: To improve the performance of
proof checking within Coq, Grégoire and Leroy [2002]
show how to perform strong reduction (reduction under A-
abstractions) on a variant of the ZAM abstract machine (for
the Objective Caml bytecode interpreter) using symbolic weak
reduction and a readback scheme. Boespflug [2010]; Boespflug
et al. [2011] describe recent work on untyped Normalization
by Evaluation Berger et al. [1998] for Coq that compiles to
Objective Caml programs.

Our formalization described in section V uses the imple-
mentation of binary integers in the Coq standard library. The
extension of Coq with machine integers and persistent arrays
Armand et al. [2010] has potential to improve the runtime
performance of our formalization.

Richer Programming Models: Coq’s type theory is
strongly normalizing and stateless, and so it can be awkward to
encode some computational procedures. Several recent works
Claret et al. [2013]; Ziliani et al. [2013] have shown how
computation in richer programming models (including, e.g.,
non-termination and state) can be reflected into Coq.

D. Verified SAT Solvers and Certificates

The forensic certificate architecture closely resembles
that of SAT solver certificates. A SAT solver performs a
computationally-intensive search for solutions, and produces
a certificate for either a solution or a proof that the formula
is unsatisfiable Darbari et al. [2010]. The certificate is verified
by independent software. The code for the verifier, the TCB,
is smaller and simpler than the code of the solver.

Two approaches have been used to integrate SAT solving
with the Coq theorem prover. The first Lescuyer and Conchon
[2008, 2009]; Lescuyer [2011] defines a SAT solver in Coq and
establishes its correctness, i.e., proof by reflection is used in the
search. The second, Darbari et al. [2010]; Armand et al. [2011],
uses external SAT solvers for search, and then verifies the
witnesses within Coq. The verification is conducted by certified
code, i.e., proof by reflection is used in the verification.
The latter approach avoids the need to certify the complex
optimizations used in a SAT solver and the limitations of
the runtime systems in existing theorem provers. Our forensic
certificate architecture follows the latter approach.

One glaring dissimilarity between SAT solver certificates
and our forensic certificate architecture lies in the treatment
of negation. For SAT solver certificates, unsatisfiability is
witnessed by a resolution proof. For forensic certificates, as
discussed in subsection III-C, the absence of occurrences of

a property in a large interval of an image may be dealt
with using external verifiers in conjunction with deduction
using traditional theorem provers. The external verifiers may,
of course, be verified using traditional program verification
techniques or extracted from certified implementations.

VIIIL.

The end goal of this research is trustworthy digital forensics.
Practitioners and researchers have identified the opacity of
software tools as a significant impediment in achieving this
goal. Ongoing work in the community to address this situation
has borrowed two important ideas from classical software
engineering: (a) the clarification of software requirements for
digital forensics tools, so as to identify what they are really
doing, and (b) the facilitation of composition between tools
to enable the construction of complex software artifacts from
simpler pieces.

Our work borrows yet another idea from software construc-
tion: for software that is difficult to verify directly, one should
focus instead on the correctness of individual executions. This
has led us to design an architecture for forensic certificates
that can be validated independently of the tools that created
them in the first place.

In this paper, we have explored the challenges of applying
this idea to the domain of digital forensics, in particular file
system forensics. In the process, we have been forced to
clarify the semantics of file system specifications and the trust
relationships that are often left implicit in presenting the results
of forensics analysis. Our case study from a forensics challenge
provides some evidence for the viability of our approach.

We have introduced a novel approach for the specifica-
tion and analysis of forensic data-recovery heuristics based
on providing patches that restore data structures. We have
discussed this in the context of recovering deleted files. More
generally, forensic certificates containing patches (with seman-
tic constraints) can explain forensics results that do not have
commonplace operations. As two examples:

o A forensics search tool may find a partially-overwritten file
in a disk image and provide a patch that fills in the missing
data. The missing data might be taken from an older copy of
the file found in a backup. The patch can describe precisely
how much of the file is present on the original disk and how
much is reconstructed from the backup.

e A simple anti-forensics tool that changes the size of clusters
in the metadata can make a file system appear corrupt. A
forensics search tool can create a patch that undoes the
alteration and justifies that the change is consistent with
other information in the file system. In other cases, tools
may show that no such patch is possible.

We intend this paper as part of an ongoing research program
to encompass other areas of digital forensics such as timeline
analysis and memory forensics.

CONCLUSION AND FURTHER WORK
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