Eventual Consistency for CRDTs

Radha Jagadeesan James Riely

DePaul University
Chicago, USA

ESOP 2018

CRDTs?

CRDTs?

C = blah blah
R = mumble

DT = Data Type

Data Type

> “An abstract data type defines a class of abstract objects which is
completely characterized by the operations available on those
objects.” (Liskov/Zilles 1974)

Data Type

> “An abstract data type defines a class of abstract objects which is
completely characterized by the operations available on those
objects.” (Liskov/Zilles 1974)
> Eg, binary set with operations:
> +@, +1: add
> -0, -1: remove
> X0, X1: membership query returning false
> /0, /1: membership query returning true

Data Type

> “An abstract data type defines a class of abstract objects which is
completely characterized by the operations available on those
objects.” (Liskov/Zilles 1974)
> Eg, binary set with operations:
> +@, +1: add
> -0, -1: remove
> X0, X1: membership query returning false
> /0, /1: membership query returning true
> Sequential interface:
© +0-0x0
@ +0-0v0

Data Type

> “An abstract data type defines a class of abstract objects which is
completely characterized by the operations available on those
objects.” (Liskov/Zilles 1974)

> Eg, list with operations:

> put(@), put(1), put(2),...: add to end
> g=[1, g=[@], g=[0,1], ...: query returning list contents

Data Type

> “An abstract data type defines a class of abstract objects which is
completely characterized by the operations available on those
objects.” (Liskov/Zilles 1974)
> Eg, list with operations:
> put(@), put(1), put(2),...: add to end
> g=[1, g=[01, g=[0,11], ...: query returning list contents
> Sequential interface:
© put(@) put(1) g=[0,1]
@ put(@) put(1) g=[1,0]

Data Type

> “An abstract data type defines a class of abstract objects which is
completely characterized by the operations available on those
objects.” (Liskov/Zilles 1974)
> Eg, list with operations:
> put(@), put(1), put(2),...: add to end
> g=[1, g=[01, g=[0, 1], ...: query returning list contents
> Sequential interface:
© put(@) put(1) g=[0,1]
@ put(@) put(1) g=[1,0]
> ADT: contract between implementor and client
> Implementor and client take turns

What about concurrent
clients?

Linearizability (Herlihy/Wing 1990)

> “Each method call should appear to take effect instantaneously
at some moment between its invocation and response”
(Herlihy/Shavit 2008)

Specification E

(u
™
L
m
(V]

Linearizability (Herlihy/Wing 1990)

> “Each method call should appear to take effect instantaneously
at some moment between its invocation and response”
(Herlihy/Shavit 2008)

(V]

Specification E] ¢

Execution ¢

(V]

Linearizability (Herlihy/Wing 1990)

> “Each method call should appear to take effect instantaneously
at some moment between its invocation and response”
(Herlihy/Shavit 2008)

Specification F—~—6——¢

i
P
N I
~ |
NS

AN I
> I
I

(V]

Execution ¢

(V]

Linearizability (Herlihy/Wing 1990)

> “Each method call should appear to take effect instantaneously
at some moment between its invocation and response”
(Herlihy/Shavit 2008)

(V]

Specification F—~—6——¢

\
/7

Execution ¢

(V]

© Client wins!
© Compositional (Herlihy/Wing 1990)
© Exactly characterizes programmer view (for coordinating clients)
(Filipovic/O’Hearn/Rinetzky/Yang 2010)

Linearizability (Herlihy/Wing 1990)

> “Each method call should appear to take effect instantaneously
at some moment between its invocation and response”
(Herlihy/Shavit 2008)

(V]

Specification F—~—6——¢

\
/7

Execution ¢

(V]

© Client wins!
© Compositional (Herlihy/Wing 1990)
© Exactly characterizes programmer view (for coordinating clients)
(Filipovic/O’Hearn/Rinetzky/Yang 2010)
@® Implementor loses!

@ Intrinsically inefficient (Dwork/Herlihy/Waarts 1997)
See also: CAP theorem (Gilbert/Lynch 2002)

High performance? @

High performance? @

R = Replicated

Replicated Sets: Add-Wins Set

» Example Execution:

=
/0
0

Replicated Sets: Add-Wins Set

> Specification of query:
> X0 if every +0 followed by -0
> /0 if some +0 not followed by -0

» Example Execution:

=
v0
(]

Replicated Sets: Add-Wins Set

> Specification of query:
> X0 if every +0 followed by -0
> /0 if some +0 not followed by -0

» Example Execution:

@© High-performance implementation
Not linearizable: No interleaving satisfies both v@ and V1

Replicated Sets: Add-Wins Set

> Specification of query:
> X0 if every +0 followed by -0
> /0 if some +0 not followed by -0

» Example Execution:

@© High-performance implementation
Not linearizable: No interleaving satisfies both v@ and V1

© Strong Eventual Consistency (SEC)

Replicas that see same updates give same answers

Replicated Sets: Amazon Dynamo (?)

» Specification:
...sloppy quorum...vector clock...

© High-performance implementation
© Strong Eventual Consistency (SEC)

Replicas that see same updates give same answers

» Example: (Bieniusa/Zawirski/Preguica/Shapiro/Baquero/Balegas/Duarte 2012)

Replicated Sets: Amazon Dynamo (?)

» Specification:
...sloppy quorum...vector clock...
© High-performance implementation

© Strong Eventual Consistency (SEC)

Replicas that see same updates give same answers

» Example: (Bieniusa/Zawirski/Preguica/Shapiro/Baquero/Balegas/Duarte 2012)

N

@ Is this a set?
+0v/0-0v0 is not a set execution

Replicated Sets: Amazon Dynamo (?)

» Specification:
...sloppy quorum...vector clock...
© High-performance implementation

© Strong Eventual Consistency (SEC)

Replicas that see same updates give same answers

» Example: (Bieniusa/Zawirski/Preguica/Shapiro/Baquero/Balegas/Duarte 2012)

@ Is this a set?
+0v/0-0v0 is not a set execution

© No, it’s a Multi-Value Register (Shapiro 2011, MSR Talk)

Replicated Sets: Amazon Dynamo (?)

» Specification:
...sloppy quorum...vector clock...
© High-performance implementation

© Strong Eventual Consistency (SEC)

Replicas that see same updates give same answers

» Example: (Bieniusa/Zawirski/Preguica/Shapiro/Baquero/Balegas/Duarte 2012)

@ Is this a set?
+0v/0-0v0 is not a set execution

© No, it’s a Multi-Value Register (Shapiro 2011, MSR Talk)
@ But SEC does not explain this

State Of Play

> Correctness Criterion: Strong Eventual Consistency (SEC)
© Add-Wins Set Example
© Amazon Dynamo Example

@® But Add-Wins is more set-like

State Of Play

> Correctness Criterion: Strong Eventual Consistency (SEC)

© Add-Wins Set Example
© Amazon Dynamo Example

@® But Add-Wins is more set-like

» Correctness: sequential vs replicated

’ Idea Sequential Replicated

Safety
Termination

State Of Play

> Correctness Criterion: Strong Eventual Consistency (SEC)

© Add-Wins Set Example
© Amazon Dynamo Example

@® But Add-Wins is more set-like

» Correctness: sequential vs replicated

’ Idea Sequential Replicated

Safety Partial correctness
Termination | Total correctness

State Of Play

> Correctness Criterion: Strong Eventual Consistency (SEC)

© Add-Wins Set Example
© Amazon Dynamo Example

@® But Add-Wins is more set-like

» Correctness: sequential vs replicated

’ Idea

Sequential

‘ Replicated

Safety
Termination

Partial correctness
Total correctness

Convergence = SEC

State Of Play

> Correctness Criterion: Strong Eventual Consistency (SEC)

© Add-Wins Set Example
© Amazon Dynamo Example

@® But Add-Wins is more set-like

» Correctness: sequential vs replicated

’ Idea

Sequential

‘ Replicated

Safety
Termination

Partial correctness
Total correctness

7
Convergence = SEC

State Of Play

> Correctness Criterion: Strong Eventual Consistency (SEC)

© Add-Wins Set Example
© Amazon Dynamo Example

@® But Add-Wins is more set-like

» Correctness: sequential vs replicated

’ Idea

Sequential

‘ Replicated

Safety
Termination

Partial correctness
Total correctness

7
Convergence = SEC

» This paper: What is a good notion of safety?

Safety? @

C = Conflict-free

CRDTs (Shapiro/Preguica/Baquero/Zawirski 2011)

> Conflict-free, operationally defined = either

> Convergent, State-based
> Commutative, Operation-based

CRDTs (Shapiro/Preguica/Baquero/Zawirski 2011)

> Conflict-free, operationally defined = either

> Convergent, State-based
> Commutative, Operation-based

© Sufficient to establish SEC

CRDTs (Shapiro/Preguica/Baquero/Zawirski 2011)

> Conflict-free, operationally defined = either

> Convergent, State-based
> Commutative, Operation-based

© Sufficient to establish SEC

® Examples also appear to satisfy safety (in some sense)

CRDTs (Shapiro/Preguica/Baquero/Zawirski 2011)

> Conflict-free, operationally defined = either

> Convergent, State-based
> Commutative, Operation-based

© Sufficient to establish SEC
® Examples also appear to satisfy safety (in some sense)
@ Correctness defined using concurrent spec

“It is infinitely easier and more intuitive for us humans to specify how
abstract data structures behave in a sequential setting, where there are no
interleavings. Thus, the standard approach to arguing the safety properties
of a concurrent data structure is to specify the structure’s properties sequen-
tially, and find a way to map its concurrent executions to these ‘correct’
sequential ones.” (Shavit 2011)

CRDTs (Shapiro/Preguica/Baquero/Zawirski 2011)

> Conflict-free, operationally defined = either
> Convergent, State-based
> Commutative, Operation-based
© Sufficient to establish SEC
® Examples also appear to satisfy safety (in some sense)
@ Correctness defined using concurrent spec

“It is infinitely easier and more intuitive for us humans to specify how
abstract data structures behave in a sequential setting, where there are no
interleavings. Thus, the standard approach to arguing the safety properties
of a concurrent data structure is to specify the structure’s properties sequen-
tially, and find a way to map its concurrent executions to these ‘correct’
sequential ones.” (Shavit 2011)

® This paper:
An extensional notion of safety for CRDTs
appealing only to the sequential spec

This talk: From Linearizability to CRDTs in 5 relaxations

Relaxations:

v

Real time: Distributed system
Order after an accessor: Update serializability
Order between independent updates: Preserved Program Order

Linearize labels, not events: Punning

vV v.v Yy

Quotient specification by observational equivalence: Stuttering

This talk: From Linearizability to CRDTs in 5 relaxations

Evidence that definition is the “right” one (in paper)
© Simulation-based characterization

© Most General CRDT, expressed as Labelled Transition System
© Compositionality and Substitutivity results
© Validation of CRDT Graph built using CRDT sets

© Corner cases

© Updates to one replica only = linearizable
© Permutation equivalence in spec = ...

© Validates all known CRDTs
© Add-Wins Set (Shapiro/Preguica/Baquero/Zawirski 2011)

© Collaborative Text-Editing Protocol
(Attiya/Burckhardt/Gotsman/Morrison/Yang/Zawirski)

This talk: From Linearizability to CRDTs in 5 relaxations

Evidence that definition is the “right” one (in paper)
© Simulation-based characterization
© Most General CRDT, expressed as Labelled Transition System
© Compositionality and Substitutivity results
© Validation of CRDT Graph built using CRDT sets
© Corner cases
© Updates to one replica only = linearizable
© Permutation equivalence in spec = ...
© Validates all known CRDTs
© Add-Wins Set (Shapiro/Preguica/Baquero/Zawirski 2011)
© Collaborative Text-Editing Protocol
(Attiya/Burckhardt/Gotsman/Morrison/Yang/Zawirski)
@ Validates every possible CRDTs

@ Def of CRDT does not mention sequential spec
© Our def = proposal for meaning of CRDT

Components of Safety

> Linearization: response must be consistent with some spec string
> List replica that sees put (@) and put(2) may respond
© o=[0,2]
© q=[2,0]
® o=[1]
® o=[1,0,2]
> Monotonicity: responses evolve sensibly
> List replica in state q=[0, 2], may evolve to
© q=[0,1,2], due to arrival of put (1)
@ qg=[2,0], no support for delete or reorder

Relaxation 1: Order in Distributed Systems

> vis valid for X if ...

3 = specification = set of strings of labels
v = execution = Labeled Partial Order (LPO)
Order of LPO = non-overlapping method calls (real time)

N e e I :@@’

> Example:

Relaxation 1: Order in Distributed Systems

> vis valid for X if ...

C(v) = downclosed sets of v (i.e., cuts) (Chandy/Lamport 1985)
3 = specification = set of strings of labels

v = execution = Labeled Partial Order (LPO)

Order of LPO = non-overlapping method calls (real time)

¢ :) 5 = () (3)
Cuts={a}, {a,c}, {b}, {a, b}, {a, b, c}
Frontiers = {a}, { c}, {b}, {a, b}, { b,c} (Maximal elements)

> Example:

Relaxation 1: Order in Distributed Systems

> vis valid for Y if there exists a map f : C(v) — events(v)* s.t.
> Vpe C(v). p linearizes to f(p) and labels(f(p)) € =
> Vp, g€ C(v). p S qimplies f(p) <seq f(q)
C(v) = downclosed sets of v (i.e., cuts) (Chandy/Lamport 1985)
3 = specification = set of strings of labels
v = execution = Labeled Partial Order (LPO)
Order of LPO = non-overlapping method calls (real time)

¢ :) 5 = () (3)
Cuts={a}, {a, c}, {b}, {a, b}, {a, b, c}
Frontiers = {a}, { c}, {b}, {a, b}, { b,c} (Maximal elements)

For specification abc, f maps cuts to subsequences of abc

> Example:

Relaxation 1: Order in Distributed Systems

> vis valid for Y if there exists a map f : C(v) — events(v)* s.t.
> Vpe C(v). p linearizes to f(p) and labels(f(p)) € =
> Vp, g€ C(v). p S qimplies f(p) <seq f(q)
C(v) = downclosed sets of v (i.e., cuts) (Chandy/Lamport 1985)
3 = specification = set of strings of labels
v = execution = Labeled Partial Order (LPO)
Order of LPO = non-overlapping method calls (real time)

, —a&— = @@
Cuts={a}, {a, c}, {b}, {a, b}, {a, b, c}
Frontiers = {a}, { c}, {b}, {a, b}, { b,c} (Maximal elements)

For specification abc, f maps cuts to subsequences of abc

> Example:

> Replicated system: No global clock

Relaxation 1: Order in Distributed Systems

> vis valid for Y if there exists a map f : C(v) — events(v)* s.t.
> Vpe C(v). p linearizes to f(p) and labels(f(p)) € =
> Vp, g€ C(v). p S qimplies f(p) <seq f(q)
C(v) = downclosed sets of v (i.e., cuts) (Chandy/Lamport 1985)
3 = specification = set of strings of labels
v = execution = Labeled Partial Order (LPO)
Order of LPO = per-replica visibility

¢ :) 5 = () (3)
Cuts={a}, {a, c}, {b}, {a, b}, {a, b, c}
Frontiers = {a}, { c}, {b}, {a, b}, { b,c} (Maximal elements)

For specification abc, f maps cuts to subsequences of abc

> Example:

> Replicated system: No global clock

Relaxation 2: Update Serializability

> vis valid for Y if there exists a map f : C(v) — events(v)* s.t.
> Vpe C(v). p linearizes to f(p) and labels(f(p)) € =
> Vp, g€ C(v). p C qimplies f(p) <seq f(q)
C(v) = downclosed sets

Relaxation 2: Update Serializability

> vis valid for Y if there exists a map f : C(v) — events(v)* s.t.
> Vpe C(v). p linearizes to f(p) and labels(f(p)) € =
> Vp, g€ C(v). p C qimplies f(p) <seq f(q)
C(v) = downclosed sets

» Cannot linearize X0 and X1 together

Relaxation 2: Update Serializability

> vis valid for Y if there exists a map f : C(v) — events(v)* s.t.
> Vpe C(v). p linearizes to f(p) and labels(f(p)) € =
> Vp, g€ C(v). p C qimplies f(p) <seq f(q)
C(v) = pointed downclosed sets

> Cannot linearize X0 and X1 together

Relaxation 2: Update Serializability

> vis valid for Y if there exists a map f : C(v) — events(v)* s.t.
> Vpe C(v). p linearizes to f(p) and labels(f(p)) € =
> Vp, g€ C(v). p C qimplies f(p) <seq f(q)
C(v) = pointed downclosed sets

> Cannot linearize X0 and X1 together
> When linearizing v1, must not include both X0 and X1

Relaxation 2: Update Serializability

> vis valid for Y if there exists a map f : C(v) — events(v)* s.t.
> Vpe C(v). p linearizes to f(p) and labels(f(p)) € =
> Vp, g€ C(v). p S qimplies f(p) <seq f(q)
C(v) = pointed update-downclosed sets

> Cannot linearize X0 and X1 together
> When linearizing v1, must not include both X0 and X1

Relaxation 2: Update Serializability

> vis valid for Y if there exists a map f : C(v) — events(v)* s.t.
> Vpe C(v). p linearizes to f(p) and labels(f(p)) € =
> Vp, g€ C(v). p S qimplies f(p) <seq f(q)
C(v) = pointed update-downclosed sets

7

> Cannot linearize X0 and X1 together
> When linearizing v1, must not include both X0 and X1

Relaxation 2: Update Serializability

> vis valid for Y if there exists a map f : C(v) — events(v)* s.t.
> Vpe C(v). p linearizes to f(p) and labels(f(p)) € =
> Vp, g€ C(v). p C qimplies f(p) <seq f(q)
C(v) = pointed update-downclosed sets

7

> Cannot linearize X0 and X1 together
> When linearizing v1, must not include both X0 and X1

> State of prior art (Burckhardt/Leijen/Fahndrich/Sagiv 2012)
Cf. Update serializability: global order for updates
(Hansdah/Patnaik 1986, Garcia-Molina and Wiederhold 1982)

Relaxation 3: Preserved Program Order

> vis valid for Y if there exists a map f : C(v) — events(v)* s.t.
> Vpe C(v). p linearizes to f(p) and labels(f(p)) € =
> Vp, g€ C(v). p C qimplies f(p) <seq f(q)
C(v) = pointed update-downclosed sets

Relaxation 3: Preserved Program Order

> vis valid for Y if there exists a map f : C(v) — events(v)* s.t.
> Vpe C(v). p linearizes to f(p) and labels(f(p)) € =
> Vp, g€ C(v). p S qimplies f(p) <seq f(q)
C(v) = pointed update-downclosed sets

» Cannot linearize -1 and -0 together

Relaxation 3: Preserved Program Order

> vis valid for Y if there exists a map f : C(v) — events(v)* s.t.
> Vpe C(v). p linearizes to f(p) and labels(f(p)) € =
> Vp, g€ C(v). p S qimplies f(p) <seq f(q)
C(v) = pointed dependent-update-downclosed sets

» Cannot linearize -1 and -0 together

Relaxation 3: Preserved Program Order

> vis valid for Y if there exists a map f : C(v) — events(v)* s.t.
> Vpe C(v). p linearizes to f(p) and labels(f(p)) € =
> Vp, g€ C(v). p S qimplies f(p) <seq f(q)
C(v) = pointed dependent-update-downclosed sets

.\ P.\
rr ./

» Cannot linearize -1 and -0 together

Relaxation 3: Preserved Program Order

> vis valid for Y if there exists a map f : C(v) — events(v)* s.t.
> Vpe C(v). p linearizes to f(p) and labels(f(p)) € =
> Vp, g€ C(v). p C qimplies f(p) <seq f(q)
C(v) = pointed dependent-update-downclosed sets

.\ P.\
rr ./

» Cannot linearize -1 and -0 together

» Cf. Preserved Program Order in relaxed memory models
(Higham/Kawash 2000, Alglave 2012).

Relaxation 3: Preserved Program Order

> vis valid for Y if there exists a map f : C(v) — events(v)* s.t.
> Vpe C(v). p linearizes to f(p) and labels(f(p)) € =
> Vp, g€ C(v). p S qimplies f(p) <seq f(q)
C(v) = pointed dependent-update-downclosed sets

.\ P.\
rr ./

» Cannot linearize -1 and -0 together

» Cf. Preserved Program Order in relaxed memory models
(Higham/Kawash 2000, Alglave 2012).

» Independency is a property of the specification

Relaxation 4: Puns

> vis valid for Y if there exists a map f : C(v) — events(v)* s.t.
> Vpe C(v). p linearizes to f(p) and labels(f(p)) € =
> Vp, g€ C(v). p S qimplies f(p) <seq f(q)
C(v) = pointed dependent-update-downclosed sets

o)

+0

e

> Linearization must have -0° before +0¢

Relaxation 4: Puns

> vis valid for Y if there exists a map f : C(v) — events(v)* s.t.
> Vpe C(v). p linearizes to f(p) and labels(f(p)) € =
> Vp, g€ C(v). p C qimplies f(p) <seq f(q)
C(v) = pointed dependent-update-downclosed sets
(o~ (),

> Linearization must have -0° before +0¢

> Linearization must have -0/ before +0¢

Relaxation 4: Puns

> vis valid for Y if there exists a map f : C(v) — events(v)* s.t.

> Vpe C(v). p linearizes to f(p) and labels(f(p)) € =
> Vp, g€ C(v). p S qimplies f(p) <seq f(q)
C(v) = pointed dependent-update-downclosed sets

()
) E e)

> Linearization must have -0° before +0¢

> Linearization must have -0/ before +0¢

> Must linearize actions/labels, not events

Relaxation 4: Puns

> v is valid for Y if there exists amap f : C(v) — X s.t.
> VpeC(v). p linearizes to f(p)
> Vp, g€ C(v). p S qimplies f(p) <seq f(q)
C(v) = pointed dependent-update-downclosed sets

()
) E e)

> Linearization must have -0° before +0¢

> Linearization must have -0/ before +0¢

> Must linearize actions/labels, not events

Relaxation 4: Puns

> v is valid for Y if there exists amap f : C(v) — X s.t.
> VpeC(v). p linearizes to f(p)
> Vp, g€ C(v). p S qimplies f(p) <seq f(q)
C(v) = pointed dependent-update-downclosed sets

()
) E e)

> Linearization must have -0° before +0¢

> Linearization must have -&/ before +0¢

> Must linearize actions/labels, not events
+0%, +0° @ +0
-0, -0/ : +0-0
v0°, VO : +0-0+0v0

Relaxation 4: A Bad Joke

> vis valid for Y if there exists amap f : C(v) — X s.t.
> VpeC(v). p linearizes to f(p)
> Vp, g€ C(v). p C qimplies f(p) <seq f(q)
C(v) = pointed dependent-update-downclosed sets

‘@@=

> Update order +0-0+0-0 with subsequences:

v0°¢ . +0-0+0v0 (X0€ requires -0 between the +0s)
X0X 1 +0+0-0X0 (X0* requires -0 after the +0s)

Relaxation 4: A Bad Joke

> vis valid for Y if there exists amap f : C(v) — X s.t.
> VpeC(v). p linearizes to f(p)
> Vp, g€ C(v). p S qimplies f(p) <seq f(q)
C(v) = pointed dependent-update-downclosed sets

‘@@=

> Update order +0-0+0-0 with subsequences:

v0°¢ . +0-0+0v0 (X0€ requires -0 between the +0s)
X0X 1 +0+0-0X0 (X0* requires -0 after the +0s)

Relaxation 4: A Bad Joke

> vis valid for Y if there exists amap f : C(v) — X s.t.
> VpeC(v). p linearizes to f(p)
> Vp, g€ C(v). p C qimplies f(p) <seq f(q)
C(v) = pointed dependent-update-downclosed sets, for accessors
all dependent-update-downclosed sets, for updates

‘@@=

> Update order +0-0+0-0 with subsequences:

v0°¢ . +0-0+0v0 (X0€ requires -0 between the +0s)
X0X 1 +0+0-0X0 (X0* requires -0 after the +0s)

Relaxation 4: A Bad Joke

> vis valid for Y if there exists amap f : C(v) — X s.t.
> VpeC(v). p linearizes to f(p)
> Vp, g€ C(v). p C qimplies f(p) <seq f(q)
C(v) = pointed dependent-update-downclosed sets, for accessors
all dependent-update-downclosed sets, for updates

@@=

> Update order +0-0+0-0 with subsequences:

v0°¢ . +0-0+0v0 (X0€ requires -0 between the +0s)
X0X 1 +0+0-0X0 (X0* requires -0 after the +0s)

> Execution disallowed by monotonicity
{+0%, -0P, +0°} cannot be linearized to satisfy both v and X0*

Relaxation 5: Observationally Equivalent Specifications

> vis valid for Y if there exists amap f : C(v) — X s.t.
> VpeC(v). p linearizes to f(p)
> ¥p, g€ C(v). p < qimplies f(p) <seq f(q)
C(v) = pointed dependent-update-downclosed sets, for accessors
all dependent-update-downclosed sets, for updates

Relaxation 5: Observationally Equivalent Specifications

> vis valid for Y if there exists amap f : C(v) — X s.t.
> VpeC(v). p linearizes to f(p)
> ¥p, g€ C(v). p < qimplies f(p) Sseq f(q)
C(v) = pointed dependent-update-downclosed sets, for accessors
all dependent-update-downclosed sets, for updates

» Should this linearize to +0-0-0+0-0+0-0-0, or
+0-0+0-0-0+0-0-07?

Relaxation 5: Observationally Equivalent Specifications

> vis valid for Y if there exists amap f : C(v) — X s.t.
> VpeC(v). p linearizes to f(p)
> ¥p, g€ C(v). p < qimplies f(p) <obs f(q)
C(v) = pointed dependent-update-downclosed sets, for accessors
all dependent-update-downclosed sets, for updates

» Should this linearize to +0-0-0+0-0+0-0-0, or
+0-0+0-0-0+0-0-07
» These are observationally equivalent
Cf. stuttering equivalence (Brookes 96)

Relaxation 5: Observationally Equivalent Specifications

> vis valid for Y if there exists amap f : C(v) — X s.t.
> VpeC(v). p linearizes to f(p)
> Vp, g€ C(v). p C qimplies f(p) <obs f(q)
C(v) = pointed dependent-update-downclosed sets, for accessors
all dependent-update-downclosed sets, for updates

» Should this linearize to +0-0-0+0-0+0-0-0, or
+0-0+0-0-0+0-0-07
» These are observationally equivalent
Cf. stuttering equivalence (Brookes 96)

> Observational subsequence is a property of the specification

Safety: Summary

> vis valid for Y if there exists amap f : C(v) — X s.t.

> VpeC(v). p linearizes to f(p)

> Vp, g€ C(v). p C qimplies f(p) <obs f(q)

C(v) = pointed dependent-update-downclosed sets, for accessors
all dependent-update-downclosed sets, for updates

> Relaxations from linearizability:

> Real time: Distributed system
Order after an accessor: Update serializability
Order between independent updates: Preserved Program Order
Linearize labels, not events: Punning
Quotient specification by observational equivalence: Stuttering

vVvyyvyy

The Most General CRDT

X0, +0/0

- >
S S
L $

S —~ +
Y s
e TS
S = S +
X s
S]
T — ®§
IS) S
< §

X0, -0X0
> What is the programmer model?
Interacting with any CRDT implementation, for any specification
> Example for Set, with single +@ and -0

LTS with labels = LPOs showing client history
Maximal elements = new client actions

The Most General CRDT

X0, +ov0

. >
S S}
\ -

S —~ +
Y s
e =
s= &
X =
S | |
I~ (SIS
s S
s K

X0, -0X0

» Contrast with linearizability
> Updates may come out of order

The Most General CRDT

X0, +0/0

X0, ~0X0, ~0+0v/0,
(-ell+e)vo

X0, =0X0

» Contrast with linearizability

> Updates may come out of order
> Accessors don’t cause change of state

ox(o+llo-)
DX0-0+ QL0+ OX

This talk: Definition of safe execution for CRDTs

In paper:
© Simulation-based characterization
© Most General CRDT, expressed as Labelled Transition System
© Compositionality and Substitutivity results
© Validation of CRDT Graph built using CRDT sets
© Corner cases
© Updates to one replica only = linearizable
© Permutation equivalence in spec = ...
© Validates all known CRDTs
© Add-Wins Set (Shapiro/Preguica/Baquero/Zawirski 2011)
© Collaborative Text-Editing Protocol
(Attiya/Burckhardt/Gotsman/Morrison/Yang/Zawirski)
@ Validates every possible CRDTs

@ Def of CRDT does not mention sequential spec
© Our def = proposal for meaning of CRDT

